
Learning about a Class of Belief-Dependent
Preferences Without Information on Beliefs

Charles Bellemare∗ Alexander Sebald†

March 24, 2012

Abstract

We derive bounds on the causal effect of belief-dependent preferences on choices
in sequential two-player games without exploiting information about the (higher-
order) beliefs of players. Bounds are derived for a class of belief-dependent pref-
erences which includes reciprocity (Dufwenberg and Kirchsteiger, 2004) and guilt
aversion (Battigalli and Dufwenberg, 2007) as special cases. We show how informa-
tive bounds can be derived by exploiting a specific invariance property common to
preferences in this class. We illustrate our approach by analyzing data from a large
scale experiment conducted with a sample of participants randomly drawn from the
Dutch population. We find that behavior of players in the experiment is consistent
with significant guilt aversion: some groups of the population are willing to pay at
least 0.16e to avoid ‘letting down’ another player by 1e. We also find that our
approach produces narrow and thus very informative bounds on the causal effect of
reciprocity in the games we consider. Our bounds suggest that players have weak
reciprocal preferences.
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1 Introduction

In recent years there has been a growing interest in using belief-dependent preferences

to explain experimental behavior at odds with classical assumptions about human pref-

erences (e.g. Charness and Dufwenberg (2006), Falk, Fehr, and Fischbacher (2008)).

Belief-dependent preferences capture the idea that psychological factors such as people’s

beliefs concerning other people’s intentions and expectations affect decision making.1 Be-

havior may for example be motivated by the propensity to avoid feelings of guilt which

result from ‘letting down’ others (see e.g. Battigalli and Dufwenberg (2007)). Guilt averse

decision makers form beliefs about what others expect in order to infer how much these

persons can be and are ‘let down’ by their own decisions. Alternatively, behavior may

be motivated by reciprocity, i.e. the propensity to react kindly to perceived kindness

and unkindly to perceived unkindness (see e.g. Dufwenberg and Kirchsteiger (2004)).

Reciprocal decision makers form beliefs about the intentions of others in order to infer

the (un)kindness of their behavior and behave kind to perceived kindness and unkind to

perceived unkindness.

A natural approach to measure the relevance of belief-dependent preferences has been

to test whether stated beliefs can predict behavior in a way consistent with a given type

of belief-dependent preference. Charness and Dufwenberg (2006) for example ask players

to state their higher-order beliefs in a trust game. They find that stated beliefs correlate

with decisions in a way predicted by models of guilt aversion. More recently, Dhaene and

Bouckaert (2010) measure the relevance of Dufwenberg and Kirchsteiger’s (2004) theory

of sequential reciprocity using stated first- and second-order beliefs and find empirical

support.

But recent research has suggested that the measured effect of beliefs on choices may not

be causal as assumed by models of belief-dependent preferences. In particular, it has been

argued that stated higher-order beliefs are correlated with preferences of players, causing a

spurious correlation between stated beliefs and choices. While beliefs and preferences may

1Geanakoplos, Pearce, and Stacchetti (1989) and Battigalli and Dufwenberg (2009) present general

frameworks to incorporate belief-dependent preferences in economics.
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be correlated for various reasons, the source of this correlation is most often attributed to

the presence of consensus effects which arise when individuals believe that others feel and

think like themselves.2 Bellemare, Sebald, and Strobel (2011) empirically investigate how

correlation between preferences and stated beliefs can affect the estimated willingness to

pay to avoid feeling guilty of letting down another player. They estimate this correlation

by jointly modeling decisions and beliefs of players in a sequential trust game. They

find that correlation between preferences and stated beliefs can exaggerate the measured

level of guilt aversion in a population by a factor of two. Blanco, Engelmann, Koch, and

Normann (2011) analyze the interaction between preferences and beliefs in a sequential

prisoner’s dilemma. They exploit data from a within-subject design (with participants

playing both roles) and vary the information provided to players about the play of others

to separately identify the direct impact of beliefs on decisions from consensus effects. They

conclude that consensus effects are the primary determinants of the observed correlation

between stated beliefs and decisions. These results highlight the complexity of measuring

the causal effect of belief-dependent preferences on choices when exploiting data on higher-

order beliefs.

In this paper we take a different approach and ask whether researchers can learn some-

thing meaningful about the causal effect of belief-dependent preferences on choices without

having to measure (higher-order) beliefs, thus avoiding all the difficulties associated with

the measurement of beliefs and the spurious correlation of stated beliefs and preferences.

The answer turns out to be positive: researchers can derive and estimate meaningful

closed-form expressions for the bounds of the causal effect of belief-dependent preferences

on choices in sequential two-player games without exploiting information about the beliefs

of players. These bounds are meaningful in the sense that they provide information on

the range of values of the causal effect of specific belief-dependent preferences on choices.

In this way our approach allows to not only learn about the quantitative importance of

each of the belief-dependent preferences in our class, but also to detect preferences which

2Charness and Dufwenberg (2006) discuss the possibility that false consensus effects explain the cor-

relation between decisions and beliefs in their data.
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are only weak predictors of choices. We formally characterize conditions under which

this can be done and discuss estimation and statistical inferences. We illustrate our ap-

proach by conducting an experiment to analyze the relevance of two prominent models

of belief-dependent preferences: reciprocity à la Dufwenberg and Kirchsteiger (2004) and

guilt aversion à la Battigalli and Dufwenberg (2007).

We build on random utility models to interpret the decisions of players in games.3 We

specify the utility of players as a function of their own monetary payoffs, their psychologi-

cal payoffs which capture their belief-dependent preferences, as well as other unobservable

factors. Our main parameter of interest is the players’ ‘sensitivity’ to belief-dependent

preferences. Importantly, the belief-dependent psychological payoffs are unknown vari-

ables without information on the beliefs of players. However, they are known to lie within

well defined intervals. Our empirical strategy is to determine what can be learned about

the players sensitivity to belief-dependent preferences from observing the monetary pay-

offs and the intervals of the psychological payoffs. An immediate consequence of interval-

measurements of the belief-dependent psychological payoffs is that the model parameters

are set rather than point identified (see Manski and Tamer (2002)). Set identification im-

plies that a range of parameter values – the identification region – are consistent with the

data given the assumed model. Of course, the informativeness of the data given the model

naturally decreases with the size of the identification region. Unfortunatly, existing work

has established that identification regions of the parameters of random utility models with

interval measured regressors can be large and uninformative. Manski (2010) theoretically

analyzes the binary random expected utility model when researchers do not have any

information about the expectations of decision makers. He finds that the identification

region of the model parameters is unbounded and thus uninformative when researchers

cannot a priori sign the difference in expectation across both choices. Bellemare, Bisson-

nette, and Kröger (2010) empirically analyze decisions of senders in a binary trust game

and estimate largely uninformative identification regions of their parameters when they

3Random utility models have been extensively used to analyze choice behavior in experiments. See

Cappelan, Hole, Sørensen, and Tungodden (2007), Bellemare, Kröger, and van Soest (2008).
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do impose a priori assumptions about the beliefs of players.

One of the main insights of our analysis is that several prominent belief-dependent

preferences satisfy an ‘invariance property’ which can be exploited to produce informative

bounds on their causal effect on choices. This invariance property is best described in the

context of a game with two players – A and B. The invariance property holds e.g. if player

B’s decision is unaffected by his belief-dependent preferences when his choice does not

influence the final payoff of player A. To illustrate, suppose player B must choose between

two final allocations, both of which provide player A with the same material payoff. Then,

guilt aversion à la Battigalli and Dufwenberg (2007) predicts that player B cannot feel

any guilt from letting down player A by choosing a specific allocation because player A’s

final payoff is independent of player B’s choice. Similarly, player B cannot act reciprocally

in the sense of Dufwenberg and Kirchsteiger (2004) if player A’s payoff is independent

of player B’s choice. This is because player B cannot be (un)kind by providing player

A with an (below) above average payoff. It follows that our empirical strategy involves

implementing a sufficiently high number of games in which the invariance property holds

to identify and estimate all model parameters beside the sensitivity parameters of interest.

We discuss how this information can be exploited to obtain more informative bounds on

the relevance of belief-dependent preferences.

Our application exploits data from an experiment conducted using the LISS panel, a

large-scale Internet panel whose respondents form a representative sample of the Dutch

population. Close to 1500 panel members completed our experiment which involved 500

payoff-wise unique games. One third of these games satisfied the payoff invariance condi-

tion discussed above. We exploit the unique features of the panel to perform inferences for

different socio-economic groups, allowing us to asses the heterogeneity in belief-dependent

preferences across a broad population.

Our analysis of guilt aversion suggests that the population willingness to pay to avoid

letting down the other player by 1e is significantly different from zero and at least greater

or equal to 0.08e. We also find that the lower bound of the willingness to pay to avoid guilt

is higher for several groups of the population. In particular, we find that high educated
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individuals are willing to pay at least 0.14e to avoid letting down the other player by 1e,

while men are willing to pay at least 0.16e to avoid letting down the other player by 1e.

Our approach also produces very narrow and thus highly informative bounds around the

causal effect of reciprocity in our experiment. Our results suggest that reciprocity weakly

predicts the final decisions made in our experiment for all groups of the population we

consider. Surprisingly, these narrow bounds suggest that data on stated beliefs are not

needed to make precise inferences on the relevance of reciprocity in our experiment.

The organization of the paper is as follows. Section 2 describes our experiment and

the data. Section 3 presents our proposed approach and details how it can be applied to

the analysis of guilt aversion and reciprocity. Section 4 discusses estimation and inference

and presents our main empirical results. Section 5 concludes.

2 The experiment

2.1 Experimental design

The experiment was run in January and February 2010 via the LISS-panel, an Internet

survey panel managed by CentERdata at Tilburg University. In total 2000 members of

the panel were invited to participate in the experiment involving 500 payoffwise different

two-player, sequential-move games with a structure as shown in Figure 1.

[Figure 1]

Only the associated monetary payoffs of the players differed across the games. Formally

this strategic situation contains two non-terminal histories, i.e. sequences of actions, in

which respectively one player is active. In the initial history, denoted by h0, player A can

choose between L and R. In case player A chooses R, his outside option, the game ends

and both players respectively receive πA(R) and πB(R). On the other hand, if player A

chooses L, player B gets to decide between l and r in history h1. If player B chooses l

players respectively receive a payoff of πA(l) and πB(l). Whereas, if player B chooses r

players receive πA(r) and πB(r). The payoffs of the games used in our experiment were
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generated by randomly choosing 500 payoffwise unique games from a set of similar games

used in Bellemare, Sebald, and Strobel (2010) and recoding approximately 1/3 of them

such that πA(l) = πA(r) in these games.

Each panel member was initially randomly assigned a role and a payoffwise unique

game in the following way. First, 1500 panel members were assigned the role of player

B while 500 panel members were assigned the role of player A. This role assignment

allowed us to gather more decisions of B-players whose behavior is the primary focus of

our analysis. Subsequently, we randomly assigned each of the 500 payoff different games

to three B-players and to one A-player. In other words, each of the 500 games could

potentially be played by three B-players and one A-player.

Given the infrastructure of the LISS-panel, the game was played across two consecutive

survey months. In the first month, only panel members assigned to the role of player B

were contacted and offered the possibility to participate in the experiment. Before reveal-

ing their role and specific game, they were provided general instructions, informed that

50 payoff-wise unique games would randomly be chosen ex-post and paid out two months

later. Furthermore, they were given the possibility to withdraw from the experiment. Af-

ter the revelation of their role and game, they were told that they would be making their

decisions before A-players and that decisions would be matched ex-post. 1139 of the 1500

invited panel members accepted the invitation and completed the experiment in the role

of player B.4 Panel members who completed the experiment were first presented their

unique game and then asked to send a message to player A. We allowed B-players to send

messages to their matched A-player in order to increase their awareness concerning the

other person they were grouped with. They could choose between two different messages

and not sending a message:

� If you let me decide between l and r, I will choose l

� If you let me decide between l and r, I will choose r

� I do not want to send a message

47 more invited panel members logged on but did not complete the experiment.
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Each player B then made his/her decision using the strategy method: B-players chose

between l and r at history h1 before knowing the decision of player A at history h0.

Panel members assigned to the role of player A made their decisions during the second

survey months. All A-players were first provided instructions and were informed that

50 payoff-wise unique games would randomly be chosen ex-post and paid out at the

completion of the experiment. Again, before revealing their roles and games, they were

given the possibility to withdraw from the experiment. 328 of the 500 invited panel

members accepted the invitation and completed the experiment in the role of player A.5

For each of the unique payoffwise games for which we had more than one complete set

of B-players decisions, we randomly chose one of them to be used in the interaction with

player A. Invited panel members who accepted to participate in the experiment were

then presented their unique game, were given the message of their matched B-player, and

were asked to chose between L and R at history h0 in the game.

After the second survey month we randomly chose 50 payoff-wise unique games (i.e.

15% of the 328 games that had been completed by one B- and one A-player) and paid the

participants that had played these games according to the decisions that they had taken

in the game.

2.2 Data

Average values of πB(R) and πA(R) were 28.386e and 21.150e respectively. Moreover,

average values of πB(l) and πA(l) were 17.184e and 25.899e while corresponding averages

of πB(l) and πA(l) were 18.746e and 25.933e. Figure 5 illustrates the payoff variation of

both players which follow from history h1 in Figure 1.

[Figure 5]

In particular, we plot ∆πB = πB(r)−πB(l) and ∆πA = πA(r)−πA(l) for all 500 randomly

chosen games. Games for which the payoff of player A is independent of player B’s choice

(i.e. ∆πA = 0) are denoted Invariant and are marked by full circles. All other games

57 more invited panel members logged on but did not complete the experiment.
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are denoted V ariant and marked by empty circles. We can see that the payoff differences

for player A lie between -50e and 50e while payoff differences for player i vary between

-35e and 35e.

Our data reveals that 70.45% of A-players (first movers) determined the final allocation

by choosing the outside option. We perform a preliminary analysis of the decisions of B

players by estimating a logit model relating the choice c at history h1 (c ∈ {l, r} ) to

the difference in payoffs of both players as well as to their respective outside options. In

particular, we estimate the following equation

Pr(c = r|∆πA,∆πB, πA(R), πB(R)) =

F ([∆πB + α1∆πA + α2πA(R) + α3πB(R)]/λ̃). (1)

where λ̃ denotes a noise parameter. We find that the probability that B-players choose r

increases significantly with ∆πA (α̂1 = 0.160, se. = 0.043), suggesting that B-players take

into account the well being of A-players. Not surprisingly, the size of α̂1 is substantially

lower than 1, an indication that B-players value their own well-being more than that of

others (given that the coefficient of ∆πB is normalized to 1). Interestingly, we do not find

that any of the outside options have a significant impact on the decisions of B-players

(α̂2 = 0.103, p-value = 0.221; α̂3 = -0.006, p-value = 0.928). Finally, we estimated an

extended specification where we allowed the noise parameter λ̃ to depend on ∆πB and

∆πA by specifying λ̃ = exp(γ0 + γ1∆πB + γ2∆πA + γ3πA(R) + γ4πB(R)). We found no

significant increase in the log-likelihood function value (p-value = 0.9531), suggesting that

the noise level does not vary with the payoff levels.

3 The proposed approach

To demonstrate our approach we focus on the strategic situation depicted in Figure 1 and

in particular the decisions made by B-players.6 We start by assuming that B-players in

the population are motivated by belief-dependent preferences. In particular, our analysis

6Note that our approach is not specific to the strategic situation presented in Figure 1. It can also

be used in connection with other two-player sequential-move games. The only requirement is that our
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is based on the following empirical specification of the utility of an alternative a

uB(a) = πB(a) + ϕ(z)B(a,π,EB (EA (πA, πB))) + λ(z)ϵ(a) for a ∈ {l, r}

where π = [πA(l), πB(l), πA(r), πB(r), πA(R), πB(R)], denotes the vector of possible pay-

offs of players in the game, ϵ(a) denotes preferences from choosing the action a which are

know to the player but unknown to the econometrician and are assumed to be indepen-

dent of all variables entering the model, z denotes a vector of observable characteristics,

and λ(z) denotes a noise parameter. The central element of the model is player B’s

belief-dependent payoff B(a,π,EB (EA (πA, πB))) which is allowed to depend on the al-

ternative a, the vector of material payoffs π, and player B’s second-order expectations.7

These expectations capture player B’s expectation of EA (πA, πB) – player A’s expecta-

tion concerning the final payoffs of players in the game. Section 3.1 presents the specific

form of B(a,π,EB (EA (πA, πB))) used to model guilt aversion, while section 3.2 presents

the specific form used to model reciprocity. Both models differ with respect to the func-

tional form of B(a, ·, ·) and with respect to EA (πA, πB), where EA (πA, πB) = EA (πA) is

used in the analysis of guilt aversion while EA (πA, πB) = EA (πB) is used in the analysis

of reciprocity. Our approach focuses on the case where researchers are able to specify

the functional form of B(a,π,EB(EA (πA, πB))), but do not have knowledge of the sec-

approach should be applied to the decision of a player in a ”last” non-terminal history (i.e. a history

directly preceding a terminal history) in which the player has to make a binary choice.
7The existing literature on belief-dependent preferences assumes that people have preferences that are

a function of their infinite hierarchies of conditional beliefs [see e.g. Battigalli and Dufwenberg (2009)]

about the strategies and beliefs of e.g. all other people that are part of the same strategic environment.

In contrast, for notational simplicity we define the psychological payoff B(·) directly via player B’s

belief concerning player A’s belief about player B’s and his own ‘material’ payoff EB (EA (πA, πB)).

Of course, these second-order expectations depend on player B’s belief concerning player A’s belief

concerning player B’s strategy. For example, let α be player A’s initial belief concerning the likelihood

with which player B chooses l following his choice L - a feature of player A’s first-order belief. Given this,

EA (πA) = απA(l) + (1− α)πA(r) represents player A’s expectation of his own final material payoff from

choosing L. Player B does not know α, but holds a belief about it. Let β be player B’s belief concerning

player A’s initial belief α - a feature of player B’s second-order belief. Given this, EB (EA (πA)) =

βπA(l) + (1− β)πA(r) represents player B’s expectation of player A’s initial expectation EA (πA).
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ond order expectation EB(EA (πA, πB)) due to a lack of knowledge concerning player B’s

second-order belief.8

Our parameter of interest is ϕ(z) which measures the sensitivity of player B to his/her

psychological payoff. Our approach can account for heterogeneity of ϕ(z) and λ(z) across

players with different observable characteristics z. For notational simplicity we will sup-

press the dependance of ϕ and λ on z for the remainder of this section. Note that all

the analysis in this section can be interpreted as being applied either to the entire sample

population or to any of its relevant partitions defined by z. The empirical application

presented in section 4 will assess the heterogeneity of ϕ and λ by comparing results using

the entire sample population to those of seven different partitions of the population.

Assuming expected utility maximization, a B-player will choose to play r if

∆u = ∆πB + ϕ∆B + λ∆ϵ > 0 (2)

where ∆u = u(r) − u(l), ∆πB = πB(r) − πB(l), ∆B = B(r,π,EB(EA (πA, πB))) −

B(l,π,EB(EA (πA, πB))), and ∆ϵ = ϵ(r) − ϵ(l). Note that it is possible to construct

the covariates in (2) given knowledge of π and EB(EA (πA, πB)). Estimation of (ϕ, λ)

can then be performed for example by assuming a specific distribution F (·) for −∆ϵ (eg.

normal or logistic). However, the lack of information on EB(EA (πA, πB)) prevents the

construction of ∆B. This implies that ϕ is typically not point identified and thus standard

binary choice estimators cannot be used to make inferences on ϕ.

Define ∆B = infEB(EA(πA,πB))∆B and ∆B = supEB(EA(πA,πB)) ∆B. It follows that

∆B ∈ [∆B,∆B] (3)

Consider the case where ϕ ≥ 0. Moreover, let X contain all feasible values of the observ-

able covariates [∆π,∆B,∆B] and xj = [∆πj,∆Bj,∆Bj] denote an element of X. In our

8By limiting the belief-dependent payoff to second-order expectations we restrict the type of belief

dependent preferences that can be captured with our approach. The proposed approach however does not

depend on this and can easily be extended to higher-order expectations. Furthermore, the most prominent

models in the literature on belief-dependent preferences, reciprocity and guilt, can be captured by our

setting.
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application elements of X typically represent the payoffwise different games played the

selected partition of the population. Then, it follows from (3) and the proof of Proposition

4 in Manski and Tamer (2002) that the following must hold for all xj in X

Pr(c = a|xj) ∈ [F
(
[∆πj + ϕ∆Bj]/λ

)
, F

(
∆πj + ϕ∆Bj]/λ

)
] (4)

Inverting Pr(c = a|xj) in (4) yields an equivalent and useful expression given by

∆πj + ϕ∆Bj ≤ Qjλ ≤ ∆πj + ϕ∆Bj (5)

where Qj ≡ F−1(Pr(c = a|xj)). The identification region consists of all values (ϕ, λ)

which are consistent with either (4) or (5) for all j. The bounds in (5) fall in the class of

monotone-index models with interval regressors analyzed in Manski and Tamer (2002).

They have established in the Corollary to their Proposition 4 that the identification region

for (ϕ, λ) is convex.

To characterize our main result, define the following 5 mutually exclusive dummy

variables distinguishing the elements xj present in X

d1j = 1(∆Bj > 0,∆Bj > 0)

d2j = 1(∆Bj < 0,∆Bj < 0)

d3j = 1(∆Bj < 0,∆Bj > 0) (6)

d4j = 1(∆Bj = 0,∆Bj > 0)

d5j = 1(∆Bj < 0,∆Bj = 0)

such that
∑5

m=1 d
m
j = 1 for all j and where 1 (A) denotes the indicator function taking a

value of 1 when event A occurs, and 0 otherwise. Let Qj = F−1 (Pr(c = a|xj))) and

ϕA
j = (Qjλ−∆πj) /∆Bj (7)

ϕB
j = (Qjλ−∆πj) /∆Bj (8)

ϕC
j = max

{
ϕA
j , ϕ

B
j

}
Given this we can state our main proposition9:

9The proposition is stated for ϕ ≥ 0. The case of ϕ ≤ 0 follows analogously with the endpoints of

the identification region given by ϕl
λ = max

j∈D
[min[ϕ

j
, 0]] if D is not empty and ϕl

λ = −∞ otherwise, while

ϕu
λ = min

∀j
[min[ϕj , 0]].
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Proposition 1 Consider the game in Figure 1. Assume ϕ ≥ 0 and let [ϕl
λ, ϕ

u
λ] denote

the identification region of ϕ conditional on λ. Furthermore, let D denote the subset of

elements of X with d1j = 1 and games with d2j = 1.

Then, the endpoints of the identification region are given by

ϕl
λ = max

∀j
[max[ϕ

j
, 0]] (9)

ϕu
λ = min

j∈D
[max[ϕj, 0]] if D is not empty (10)

= +∞ otherwise

where

ϕ
j

=
(
d1j + d4j

)
ϕA
j +

(
d2j + d5j

)
ϕB
j + d3jϕ

C
j

ϕj = d1jϕ
B
j + d2jϕ

A
j .

Notes. This proposition reveals that the identification region is given by the intersection

of [ϕ
j
, ϕj] across all elements in X, where ϕ

j
and ϕj denote the lowest and highest values

of ϕ consistent with element xj conditional on λ. Which of ϕA
j , ϕ

B
j , and ϕC

j will be used to

compute ϕ
j
and ϕj will depend on the signs of ∆Bj and ∆Bj. Take elements with d1j = 1

and let ϕ → 0. It follows that the upper bound in (5) will equate Qjλ when ϕ = ϕA
j . This

determines the lowest value of ϕ consistent with that element. Now let ϕ → ∞. It follows

that the lower bound in (5) will equate Qjλ when ϕ = ϕB
j . This determines the highest

value of ϕ consistent with that game. A similar analysis applies to the other four types

of elements (d1j ̸= 1). We also note that max[ϕ
j
, 0] and max[ϕj, 0] enter (9) and (10) to

enforce the restriction that ϕ ≥ 0.

It follows from the proposition that there exists for each value λ a possibly different

range of values of ϕ which are consistent with the data. Separate identification of λ would

thus allow researchers to identify which of these ranges of values of ϕ is consistent with

the data given λ. We next show that separate identification of λ is possible when the

following three conditions hold.

Invariance condition (I) ∆Bj = 0 when πAj(l) = πAj(r).
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Support condition (S) Pr(πAj(l) = πAj(r)) > 0.

Noise condition (N) λ does not depend on π.

Condition I states that the difference between the psychological payoffs of player B from

choosing l and r is zero if the payoffs of player A do not vary with the action chosen

by player B. This condition holds for several important preferences discussed in the

literature (see sections 3.1 and 3.2 below). Condition S is satisfied in our data by design –

πA(l) = πA(r) holds for approximately 1/3 of our payoffwise different games. Condition N

states that the noise parameter does not vary with the payoffs of the game. It can however

depend on the observable characteristics of players. Condition N implies that the value of

λ for games which satisfy condition S is the same as the corresponding noise level present

in games with some payoff variation for player A. Supportive evidence for condition N

can be obtained by estimating a reduced form version of equation (1), allowing the noise

parameter to vary with the payoff levels, as done and discussed in Section 2.2. There

we were unable to reject the null hypothesis that the level of noise varies with the final

payoffs of both players.10

Together, conditions I, S and N allow separate identification of λ. In particular, for

preferences satisfying condition I, the choice probabilities for games satisfying condition

S are given by

Pr(c = a|∆πj) = F (∆πj/λ) (11)

where the psychological payoffs drop out of the choice probabilities when condition I

holds. Equation (11) can thus be used to estimate λ in a first step using the subset of

elements of X for which πA(l) = πA(r). Estimation of the identification region [ϕl
λ̂
, ϕu

λ̂
]

can be performed in a second step conditional on the first step estimate of λ. We next

discuss in detail two prominent examples of belief dependent preferences which can be

analyzed using this two step procedure.

10We are unaware of published empirical work showing that the noise level varies with the payoffs of

players in similar experimental games .
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3.1 Example 1: guilt aversion (ϕ ≤ 0)

Battigalli and Dufwenberg (2007) propose a model of simple guilt, where players are

assumed to be averse to letting down other players. More specifically, player B feels guilty

of ‘letting down’ player A when his choice c provides player A with a final payoff below

the payoff he beliefs player A expects to get. Let EA (πA) denote player A’s expectation

of his own final payoff following his choice L, and EB (EA (πA)) player B’s expectation of

EA (πA). Furthermore, denote by l the action of player B which implies the higher payoff

for player A, i.e. πA(r) < πA(l). Intuitively, Battigalli and Dufwenberg (2007) assume

that player B never feels guilty from choosing l, i.e. B(l) = 0. However, player B can feel

guilt from choosing r, the level of which is given by

B(r,π,EB(EA (πA))) = [EB(EA (πA))− πA(r)] (12)

Note thatEB(EA (πA)) lies in the interval [πA(r), πA(l)]. Without knowledge ofEB(EA (πA)),

it follows that

∆B ∈ [0, πA(l)− πA(r)] (13)

where the lower bound ∆B = 0 is obtained when EB(EA (πA)) = πA(r), while the upper

bound ∆B = πA(l) − πA(r) is obtained when EB(EA (πA)) = πA(l). Inspection of (13)

reveals that condition I is satisfied. It follows that all games are of the type 4 presented

in (6). This implies that the set D defined in Proposition 1 is empty and thus ϕl
λ = −∞.

The conditional identification region of ϕ is then given by [−∞, ϕu
λ], where

ϕu
λ = min

j

[
Qjλ−∆πj

πAj(l)− πAj(r)

]
(14)

3.2 Example 2: reciprocity (ϕ ≥ 0)

Dufwenberg and Kirchsteiger (2004) propose a model of reciprocity where the belief-

dependent psychological payoff of player B is given by the product PK×K(a). The first

term PK involves player B’s perception of player A’s kindness towards him in the game.

Dufwenberg and Kirchsteiger (2004) assume PK is negative whenever player B’s belief

about player A’s expectation of player B’s payoff is below a certain ‘equitable’ payoff
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and positive, if it is above. Let EA (πB) denote player A’s expectation of B’s final payoff

following L, and EB (EA (πB)) denote player B’s expectation of EA (πB). Moreover, define

the ‘equitable’ payoff in any game of our experiment as

πe
B =

1

2
[EB (EA (πB)) + πB(R)] . (15)

As indicated above, the equitable payoff is used by player B as a reference point to measure

the kindness of player A towards him. In particular, player B’s perceived kindness of

player A is given by the following difference

PK = EB (EA (πB))− πe
B

Expected payoffs EB (EA (πB)) higher (lower) than the equitable payoff are thus perceived

as kind (unkind). The second term entering the psychological payoff function involves the

kindness of player B towards player A when choosing l

K(l) = πA(l)−
1

2
[πA(l) + πA(r)]

=
1

2
[πA(l)− πA(r)]

A similar expression follows for K(r), the kindness when choosing r. It follows that ϕ(z)

measures player B’s willingness to pay to provide 1e to player A in return for 1e of

perceived kindness.

Multiplying PK with K(l) and K(r) and rearranging gives

B(l,π,EB (EA (πB))) =
1

2
[EB (EA (πB))− πe

B] [πA(l)− πA(r)] (16)

B(r,π,EB (EA (πB))) =
1

2
[EB (EA (πB))− πe

B] [πA(r)− πA(l)] (17)

Differencing (16) and (17) yields

∆B = [EB (EA (πB))− πe
B] [πA(l)− πA(r)] (18)

Inspection of (18) reveals that condition I is satisfied. The values of ∆B and ∆B will

depend on the signs of two terms,

[EB (EA (πB))− πe
B] , and [πA(l)− πA(r)] ,
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and thus will potentially vary across games. Without knowledge of EB (EA (πB)), it

follows that

∆B ∈ [∆B,∆B] (19)

where

∆B = min
EB(EA(πB))

{∆B} (20)

∆B = max
EB(EA(πB))

{∆B} (21)

Values in (20) and (21) can be used to estimate the endpoints using (9) and (10).

4 Estimation and inference

We observe a sample drawn from the population of interest. The data available to

us for estimation contain {(ci,πi, zi) : i = 1, 2, ..., N}, where N denotes sample size,

ci denotes the choice made by B-player i, zi contains the observable characteristics of

player i, and πi contains the vector of payoffs for the game played by B-player i, namely

(πiA(r), πiA(l), πiA(R), πiB(r), πiB(l), πiB(R)).

Our approach can be applied separately to various partitions of the populations defined

by z. In our application we divide our sample into various partitions and apply our

estimation procedure on each partition as well as to the entire sample. We will separately

analyze men and women, three education levels (low, intermediate, and high levels), and

two age groups (below or above median sample age). Finer partitions potentially including

other socio-economic variables or their interactions are in principle possible. However, our

chosen partitions ensure that we have sample sizes which allow us to make meaningful

comparisons.

We use (11) to first estimate λ by Maximum Likelihood for each parition considered by

assuming that −∆ϵ follows a logistic distribution. Let λ̂ denote the estimated value. The

second step consists of estimating the endpoints of the identification region conditional

on λ̂ and the estimated values of Qj, denoted Q̂j. We obtain estimates of Qj by inverting

estimated choice probabilities derived from the reduced form model in (1). In particular,
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we use all N B−players to estimate Pr(c = a|xj) for each xj in in X which do not satisfy

condition S. We then generate Q̂j = F−1(P̂r(c = a|xj)) for each xj.

Näıve estimators of the endpoints of the conditional identification region are given by

the following sample counterparts to Proposition 1

ϕ̂l
λ̂

= max
∀j

ϕ̂
j

(22)

ϕ̂u
λ̂

= min
j∈D

ϕ̂j (23)

where ϕ̂
j
and ϕ̂j are the estimated values of ϕ

j
and ϕj defined in Proposition 1 (with the

unknown value of λ replaced with λ̂). It is well known that the estimators (22) and (23)

are possibly biased in finite samples. This reflects the fact that the expectation of the

maximum (minimum) of random variables is generally higher (lower) than the maximum

(minimum) of the expectations. We can thus expect ϕ̂l
λ̂
to have an upward finite sample

bias while we can expect that ϕ̂l
λ̂
has a downward finite sample bias. This implies that

näıve estimators based on (22) and (23) will tend to produce overly narrow conditional

identification regions.

Chernozhukov, Lee and Rosen (2009) (hereafter CLR) propose a median-unbiased

estimator of the endpoints of the identification region and propose a method to construct

confidence intervals which can take into account the two step nature of our approach.

Here, we implement their approach for parametric models (see their appendix C.1). In

particular, we define

ϕ̂l
λ̂,θ

= max
j∈Ĵ

{
ϕ̂
j
− Ĝ(θ)s(j)

}
(24)

ϕ̂u
λ̂,θ

= min
j∈Ĵ

{
ϕ̂j + Ĝ(θ)s(j)

}
(25)

where s(j) denotes the estimated standard error of either ϕ̂
j
or ϕ̂j, Ĝ(θ) denotes the

estimated θ−quantile of max
j∈Ĵ

{(
ϕ̂
j
− ϕ

j

)
/s(j)

}
, Ĝ(θ) denotes the estimated θ−quantile

of min
j∈Ĵ

{(
ϕ̂j − ϕ

j

)
/s(j)

}
, Ĵ and Ĵ denote estimated subsets of X. Note that Ĝ(θ)s(j)

represents a bias correction term which intuitively enters negatively in (24) to correct for

the upward bias of the estimator in (22). In a similar way, Ĝ(θ)s(j) represents a bias
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correction term which enters positively in (25) to correct for the downward bias of the

estimator in (23). Both Ĝ(θ)s(j) and Ĝ(θ)s(j) account for the sampling variability of λ̂

and Q̂j. Details concerning computation of Ĝ(θ)s(j) and Ĝ(θ)s(j) can be found in CLR.

Setting θ = 0.5 yields median-unbiased lower and upper endpoint estimators. These

estimators are median-unbiased in the sense that the asymptotic probability (as N →

+∞) that the estimated values lie above their true value is at least a half. Moreover, one

sided p% confidence intervals can be obtained by computing ϕ̂l
λ̂,p

and/or ϕ̂u
λ̂,1−p

for the

relevant endpoints. Finally, results in CLR imply that a valid p% confidence interval for

[ϕl
λ, ϕ

u
λ] can be obtained by computing [ϕ̂l

λ̂,p/2
, ϕ̂u

λ̂,1−p/2
].

4.1 Results for guilt aversion

We first assess what can be learned about the model parameters without exploiting the

invariance condition. The grey area in Figure 2 presents the estimated identification region

for (ϕ, λ) for the entire sample derived by computing (14) replacingQj with Q̂j for different

values of λ. The diagonal line presents the locus of values of ϕu
λ for a selected range of

values of λ. We see that ϕu
λ is below zero for values of λ between 0 and (approximately)

21, suggesting that players are guilt averse over this range of λ values. However, ϕu
λ equals

zero when λ is greater than 21. It follows that any point in the shaded area is consistent

with the data without information about λ.

We next exploit the invariance condition to make more precise inferences on ϕu
λ by

replacing λ with a consistent estimate obtained in a first step using games which satisfy

condition I. Table 1 presents the results. Column λ̂ contains the estimated values while

column
(
−∞, ϕ̂u

λ̂

]
presents the estimated identification region using the näıve endpoint

estimator based on (14). As discussed above the näıve estimator of the upper endpoint

is potentially biased downwards in finite samples. Columns ϕ̂u
λ̂,0.5

and ϕ̂u
λ̂,0.95

present the

median-unbiased estimator and the corresponding one-sided 95% confidence band based

on CLR.

The estimated value of λ obtained for the entire sample is 14.140 and is significant
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at the 1% level.11 This estimate implies that ϕu
λ̂
is estimated to be -0.881, suggesting

that B-players are on average willing to pay at least 0.88e to avoid letting down player

A by 1e. This value can alternatively be derived from Figure 2 which plots λ̂ and the

corresponding estimated values of ϕu
λ̂
.

Column ϕ̂u
λ̂,0.5

reveals that the downward bias of these estimated upper endpoints is

substantial. In particular, the estimated upper endpoint for the entire sample increases

from -0.881 to -0.475 when controlling for the finite sample bias. The last column of the

table presents the estimated one-sided 95% confidence interval for ϕu
λ. Values less than

zero reveal significant guilt aversion. The estimated 95% confidence interval for ϕu
λ is

-0.077, suggesting significant guilt aversion in the broad population.

We now discuss results for the partitions of the population we considered. We find

that the estimated values of λ are positive and significant at the 1% level for partitions

considered. The estimated values of ϕu
λ̂
vary substantially across the sub-populations.

For example, players with low education levels have the highest estimated upper endpoint

(-0.337) while players with high levels of education have the lowest estimated upper end-

point (-1.306). The bias-corrected estimated upper endpoints for the other partitions are

also substantially higher then the corresponding estimates based on the näıve estimator,

suggesting important finite sample bias for the näıve endpoint estimator. Overall, the

median bias-corrected upper endpoints vary from -0.871 (men) to 0.029 (low education).

Finally, the estimated one-sided 95% confidence intervals for ϕu
λ suggest that guilt aversion

is significant for men, high educated players, and players above 47 years of age.

11A positive λ̂ suggests that some B players chose the option providing them with the lowest payoff,

given the payoffs of player A do not vary in games used to estimate λ. One interpretation of this result

is that ∆ϵi captures noise and sub-optimal decision making. Another interpretation is that part of ∆ϵi

captures unobserved preferences such as inequity aversion. Then, some players may be selecting the lowest

payoff for themselves in order to reduce the payoff difference with player A. This would be consistent

with results presented in Bellemare, Kröger, and van Soest (2008) who analyze responder behavior in the

ultimatum game in the Dutch population. They found that a substantial proportion of responders were

willing reject overly generous offers which provided them higher payoffs than proposers.
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4.2 Results for reciprocity

We now consider the possibility that players have reciprocal preferences as outlined in

section 3.2. Table 2 presents the results for the same sub-populations used in our analysis

of guilt aversion. All results concerning the estimation of λ are identical to the one

presented for guilt aversion. Column [ϕ̂l
λ̂
, ϕ̂u

λ̂
] presents the identification region estimated

using the näıve endpoint estimator for both endpoints. Columns ϕ̂l
λ̂,0.5

and ϕ̂l
λ̂,0.025

present

respectively the median-unbiased estimated lower endpoint and the corresponding one-

sided 97.5% confidence band using the approach proposed by CLR. Columns ϕ̂u
λ̂,0.5

and

ϕ̂u
λ̂,0.975

present the corresponding estimates for the upper endpoint of the identification

region. The interval ϕ̂l
λ̂,0.025

, ϕ̂u
λ̂,0.975

forms a 95% confidence interval for the identification

region ϕl
λ, ϕ

u
λ.

We find that the näıve estimator produces estimated endpoints which cross: the esti-

mated values of ϕl
λ̂
exceed the estimated values of ϕu

λ̂
for all sub-populations considered.12

Moreover, the estimated upper endpoints are censored at zero for all sub-populations.

Both these results can be explained by the fact that näıve estimators of the lower (upper)

endpoints are potentially biased upwards (downwards) in finite samples. We find that the

median-unbiased estimator of CLR resolves most of the crossings observed when using

the näıve estimators. A notable exception concerns the sub-population of players with

intermediate levels of education. There, the median-unbiased estimated lower endpoint

remains slightly above the median-unbiased estimated upper endpoint.

The estimated 95% confidence interval of ϕ for the entire sample is [0.006, 0.031],

suggesting weak reciprocal preferences: B players are willingness to pay at most 0.031eto

provide 1 eto player A in return for 1 eof perceived kindness. The estimated confidence

interval of ϕ are similar for all sub-population we consider. In particular, the estimated

95% confidence region of ϕ for low educated players is [−0.018, 0.048], suggesting that

players in this sub-population are willingness to pay at most 0.048eto provide 1 eto

player A in return for 1 eof perceived kindness.

12Crossing of endpoints estimated using ”naive” estimators of the form discussed in this paper are not

uncommon. Chesher (2009) provides further examples.
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5 Conclusion

Using stated beliefs to measure the causal effect of belief-dependent preferences on choices

requires that researchers credibly control for the possibility that stated beliefs are corre-

lated with unobserved preferences. We showed how researchers can now bound the causal

effect of belief-dependent preferences on choices in sequential two-player games without

exploiting information about the beliefs of players.

We obtained informative bounds for the causal effect of guilt aversion and reciprocity

in our experiment. Our analysis of guilt aversion suggests that the population willingness

to pay to avoid letting down the other player by 1e is significantly different from zero

and at least greater or equal to 0.08e. We also found that the minimum amount that

different groups of the population are willing to pay differs. In particular, high educated

individuals are willing to pay at least 0.14e while men are willing to pay at least 0.16e

to avoid letting down the other player by 1e.

Our analysis of reciprocity produced possibly the most revealing insight about the

usefulness of our approach. We found that data on beliefs are not really required to make

very precise inferences on the relevance of reciprocity in our setting. In particular, we were

able to obtain very tight bounds on the causal effect of reciprocity on choices, suggesting

that little more can be learned by exploiting data on the beliefs of players. Estimates

for the entire sample suggested that players are willing to pay at most 0.031e to provide

1e to player A in return for 1e of perceived kindness. Similar results were found for all

groups of the population we considered. These results suggest that players have weak

reciprocal preferences.

These results can be interpreted as providing approximate bounds around the average

sensitivity parameter for each partition of the population considered. Researchers may

additionally want to conduct an individual-specific analysis to learn about the entire dis-

tribution of the relevant sensitivity parameter within each partition of the population.

Our approach can in principle be extended to make individual-specific inferences by ex-

ploiting data from subjects making multiple decisions in games satisfying condition I and

games where payoffs of player A vary with the action taken by player B. Future work
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should also try to extend the approach to settings with more than two decisions as well

as to settings where researchers are interested in combining data from different games.

The later could be particularly useful to separate the role of belief-dependent preferences

from other motives (distributional concerns in particular) which can alternatively explain

the observed behavior.

Our approach ultimately allows researchers to assess the added value of exploiting

data on stated beliefs to learn about the relevance of belief-dependent preferences in

games. Our analysis of reciprocity provides an example where little can be gained by

further exploiting stated belief-data. Our results also suggests that this result is unlikely

to hold in general. Estimated identification regions in the case of guilt aversion remain

large despite revealing significant guilt aversion in various sub-groups of the population.

Researchers requiring more precise information about the exact level of guilt aversion (or

other preferences in the class) must then exploit data on higher-order beliefs to point

identify the sensitivity parameters. This will require more work to carefully address the

possibility that stated beliefs are measured with error and/or correlated with preferences

entering the model.
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