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Abstract

We consider a cash-constrained firm learning on the value of an irreversible

project at a privately-known speed. Under perfect information, the optimal date of

investment may be non-monotonic in the learning speed: better learning increases

the value of experimenting further, but also the speed of updating. Under asym-

metric information, the firm uses its investment timing to signal confidence in the

project and obtain cheaper credit from uninformed investors, which may generate

timing distortions: investment is hurried when learning is sufficiently fast, and de-

layed otherwise. The severity of the cash constraint affects the magnitude of the

distortion, but not its direction.
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1 Introduction

A sizable literature on investment has underlined the importance of real options: when

investment is uncertain and irreversible, refraining from investing allows to keep the option

not to invest open, which is valuable in case relevant information accrues in the meantime.1

In such a context, the optimal timing of investment reflects a tradeoff between the benefit

of learning and the cost of delay. An important related concern is that firms’ timing

and investment decisions may be distorted in the presence of information frictions. A

recent literature has begun to explore how asymmetric information affects investment

timing decisions, yielding various predictions: some papers establish that it may distort

investment in the direction of hurried investment as compared to the optimal timing, some

others predict delayed investment.2 One way of interpreting this pattern is by relating the

direction of the timing distortion to the nature of the information or corporate governance

problem. For instance, Grenadier and Malenko (2011) predict hurried investment in

situations where the decision maker wants the market to believe that the value of the

project is larger than it truly is, and delayed investment in the opposite case where he

prefers the market to underestimate the value.3 In this paper, we take a complementary

approach and consider a model where an entrepreneur wants to minimize his average cost

of capital (hence always prefers the market to be optimistic about the value of the firm),

but assume asymmetric information on the precision of the information which is learnt,

that is, on the value of learning. This contrasts with the existing literature, which has

instead focused on private information on the intrinsic value of the project. While there is

a monotonic relationship between the optimal timing decision and the value of the project,

which in turn implies that the distortion can only go in one direction, the precision of the

signal has a non-monotonic effect on investment timing: observing a more a precise signal

increases the marginal value of experimenting further, but at the same time increases the

speed of updating, which increases incentives to reap the benefit from investing. This non-

1For a review, see Dixit and Pindyck (1994).
2Specifically, Morellec and Schürhoff (2011) and Bustamante (2012) obtain hurried investment, while

Bouvard (2014) obtains delayed investment; in a paper in which four different corporate governance
applications are considered, Grenadier and Malenko (2011) show that investment is hurried in two of
their applications, and delayed in the other two.

3As illustrations, a manager prompts investment when he wishes to maximize a combination of the
true value of firm and the stock price, and delays investment when he wants to divert cash from the
firm’s proceeds. In a similar vein, Bebchuk and Stole (1993) show that information frictions may lead to
overinvestment or underinvestment according to the way the information asymmetry is modeled.
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monotonicity results in the distortion possibly going in both directions (hurried or delayed

investment). Our paper therefore offers a simple and tractable model where information

and financial frictions may generate either hurried or delayed investment, and highlights

the role of the learning environment as the main determinant of the direction of the timing

distortion. This provides a novel interpretation of differences in timing or investment

decisions across firms or markets: some firms may hurry investment while others delay

investment because they have access to testing technologies with different precisions, and

not necessarily because they are facing different corporate governance problems.

Specifically, we consider a continuous time model which combines the following ingre-

dients: (a) an entrepreneur owns an irreversible project over which he learns as long as

the project has not been launched (the entrepreneur holds a real option); (b) the precision

of the signal he observes, hence the value of the option, is private information; (c) the

entrepreneur is cash-constrained and needs outside funding to finance the project. Private

information on the signal’s precision implies that the entrepreneur has superior informa-

tion about the value of the project compared to investors, hence a signaling problem: the

date at which the entrepreneur launches the project conveys information on how confident

he is, and the entrepreneur would have investors believe that he is as confident as possible

in order to obtain cheaper credit.

We first analyze the benchmark case with complete information, and examine how

the optimal investment timing varies with the precision of the signal. The impact of a

higher precision is two-fold: on the one hand, a more precise signal increases the value of

learning, hence incentives to experiment further; on the other hand, as learning is faster,

the entrepreneur becomes optimistic on the project more quickly, raising his incentives to

invest. When the prior net present value of the project is positive, the optimal investment

date is single-peaked in the precision: it is optimal to invest early both when the signal

is very precise, because learning is then very fast, and when it is very imprecise, as there

is little to be learnt from waiting. This suggests that the information content of the

investment timing is intrinsically ambiguous: if the entrepreneur wants to signal that he

observes precise signals, it is a priori unclear whether he should invest early or late.

When the precision of the signal is private information, we first establish that the

entrepreneur can always reach his complete information payoff whenever he holds sufficient

cash: when a high share of the investment is internally financed, an entrepreneur with
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an imprecise signal is unwilling to distort his investment timing to pretend his signal is

precise, as the cost of an inefficient investment policy dwarfs the benefit of cheaper credit.

However, the investment timing has to be distorted whenever the entrepreneur holds

insufficient cash, and the distortion is more severe the higher the cash shortage. This

is because signaling concerns become more salient when a higher share of the project is

financed with outside funds. Interestingly, though, while the magnitude of the distortion

depends on the severity of the cash constraint, the direction of the distortion is orthogonal

to the entrepreneur’s net worth.

Indeed, the direction of the distortion only depends on the ordering of investment

dates under complete information, which by definition is independent of the information

problem. Specifically, whenever an entrepreneur with a precise signal invests later (resp.

earlier) than one with an imprecise signal under complete information, the former must

delay (resp. hurry) investment as compared to the optimal timing in order to increase the

mimicking cost for the latter. The ranking of investment dates under complete information

depends on two sets of parameters: (a) the intrinsic value of the project, (b) the value

of learning. First, everything else equal, a higher expected value of the project makes

early investment relatively more attractive to a slow-learning type whose option value is

smaller, resulting in delayed investment by the fast-learning type. Second, everything else

equal, fast-learning firms tend to prompt investment in an environment where learning

is more accurate: indeed, the firm learning faster starts to lose its comparative learning

advantage early when the slow-learning type also learns fast enough, as the latter quickly

catches up on beliefs.

Empirically, the distortion in investment policy may have several interpretations. For

instance, hurried investment as compared to the benchmark can be understood in a literal

sense, but also implies that the total probability of investing is larger, since the firm is

overall less likely to learn bad news (over-investment as compared to the benchmark), and

that the probability of success conditional on investing is lower than in the benchmark

(under-experimentation). Accordingly, the model allows predictions regarding timing de-

cisions (e.g., the timing of release of a new product or a new version of the same product,

IPO timing, strategic acceleration or deferment of patent examination procedures...), but

also on the probability of success conditional on investment. In either case, a major de-

terminant of the direction of the distortion created by information and financial frictions
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is the precision of the learning technology (hence the speed of learning): in industries or

markets characterized by fast learning, one should observe hurried investment. Hurried

investment may for instance materialize in “grandstanding”: Gompers (1996) has shown

that young venture capital firms tend to take ventures public early because of signal-

ing or reputation concerns; it may also materialize in under-experimentation, that is, an

inefficiently high failure rate conditional on investment. Conversely, we should expect

delayed investment, or over-experimentation in industries where learning is slower. This

is consistent with evidence on the pharmaceutical industry, an industry where develop-

ment and testing is extremely long.4 For instance, Guedj and Scharfstein (2004) focus

on drug development and establish that cash-constrained firms tend to invest less than

unconstrained ones, and have a lower failure rate. This is also consistent with Henkel

and Jell (2010), who establish that long patent examination deferments are particularly

frequent in the pharmaceutical and chemical industries. Finally, our model predicts that

investment might trigger a stock price reaction, as the investment possibly signals rele-

vant information on the entrepreneur’s beliefs. The direction of the price reaction also

depends on the learning environment. In the region where investment is hurried, invest-

ment triggers a positive stock price reaction because the fast-learning entrepreneur invests

first; conversely, when investment is delayed, slow learners invest first and the stock price

reaction upon investment should be negative.

Our paper relates to the literature on real options (Dixit and Pindyck, 1994), and

on exponential/Poisson learning, notably Keller et al. (2005) and Décamps and Mariotti

(2004). It is more particularly related to a class of models with no commitment where the

investment timing is used as a signaling device (Grenadier and Malenko, 2011; Morellec

and Schürhoff, 2011; Bustamante, 2012). Like these papers, ours also features a “real

option signaling game”. It is also related to a strand of the recent literature on exper-

imentation dealing with the impact of asymmetric information. Agency problems may

involve adverse selection (private learning), moral hazard (unobservable learning effort),

or both. Several papers have considered the question of the design of the optimal con-

tract (or the optimal mechanism) for experimenting agents, for instance Manso (2011),

Gerardi and Maestri (2012), or Halac et al. (2013, 2014). In particular, a series of pa-

4In the market for drugs, DiMasi et al. (2003) estimate the time between the start of clinical testing
and submission for approval to the FDA to 72.1 months. This takes into account neither the preclinical
phase, which lasts on average between 1 and 6 years, nor the length of the FDA’s approval process.
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pers has focused on the question of the financing of experimentation (Bergemann and

Hege, 1998, 2005; Hörner and Samuelson, 2013; Bouvard, 2014; Drugov and Macchiavello,

2014). However, most of the aforementioned papers model private information on a vari-

able which monotonically affects the optimal timing decision (e.g, the prior belief, or the

cost of investment). In turn, this monotonicity implies that the distortion always goes in

one direction.5 Instead, we model private information on the parameter which directly

captures the precision of learning, which notably implies a non-monotonic relationship

between the optimal investment date and the learning speed. The resulting signaling

game does not exhibit the usual single-crossing property, which makes the analysis richer,

and precisely generates the possibility of both hurried and delayed investment. In addi-

tion, the analysis provides an intuitive account of the determinants of the direction of the

distortion, namely the precision of the learning process.

The paper is organized as follows: Section 2 is devoted to the presentation of the model.

In Section 3, we characterize the optimal investment timing policy in the benchmark case

of perfect information. In Section 4, we derive the unique equilibrium of the signaling

game, and discuss the determinants of the direction of the distortion. Section 5 reviews

the empirical implications of the model. In Section 6, we discuss the robustness of the

results. Finally, Section 7 concludes. All the proofs are relegated to the Appendix.

2 The model

A firm owns a project with ex ante uncertain value. With probability p0, the project is

of high quality, and yields a revenue R > 0. With probability 1− p0, the project is of low

quality, and yields zero revenue. Investment involves an irreversible cost I ∈ (0, R). The

firm is risk neutral and discounts future revenues and costs at rate r > 0. We typically have

in mind young startups with no established reputation which have not yet raised capital

from financial markets, but the firm could also be a more established firm facing cash

constraints. In what follows, we call the firm “the entrepreneur”, but the entrepreneur

could be backed by a venture capitalist. In case it is, we assume that the interests of the

5A notable exception is Halac et al. (2013), who consider a setup with private information on the
probability of success of the project, in which learning comes from observing past successes or failures.
They derive a non-monotonicity result similar to ours under complete information, but find that asym-
metric information always results in under-experimentation (hurried investment), while we establish that
over-experimentation (delayed investment) may also arise, and characterize conditions under which it
does.
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current shareholders (the venture capitalist and the entrepreneur) are perfectly aligned,

so that they behave as a single entity. Therefore, our view is complementary to the

literature on venture capital, which addresses issues raised by information asymmetries

and misaligned interests between venture capital firms and the venture they back (e.g.,

IPO timing strategies, the design of venture capital contracts (Gompers, 1996; Kaplan and

Strömberg, 2003; Gompers and Lerner, 2004)). Instead, we focus on information problems

between the current shareholders/management and outsiders (the capital market).

2.1 Learning environment

The entrepreneur decides the date t ≥ 0 at which he invests, if he ever does. The rationale

behind waiting is that the entrepreneur learns about the quality of the project as long as

investment has not taken place. We assume, following Décamps and Mariotti (2004), that

he observes a signal modeled as a Poisson process with intensity λ > 0 if the project is of

low quality, and with intensity 0 in case the project is of high quality. Therefore, “no news

is good news”: a jump perfectly identifies a low-quality project, whereas the entrepreneur

gets increasingly optimistic about project quality as long as nothing is observed. One may

think of the pre-investment or learning period as a phase during which the entrepreneur

runs tests (for instance the phase I of the FDA’s drug review process), and of λ as the

accuracy of the testing technology.6 The signal is observed for free, so that the benefit

of learning is only traded against the cost of delaying investment.7 Let s(λ, t) denote the

probability of receiving no signal before date t :

s (λ, t) = p0 + (1− p0)e−λt. (1)

Using Bayes’ rule, the entrepreneur’s beliefs at date t conditional on no signal being

observed read

p∗ (λ, t) =
p0

s (λ, t)
=

p0
p0 + (1− p0)e−λt

. (2)

We assume that the precision of the testing technology λ is private information to the

entrepreneur. There are several reasons why the quality of the entrepreneur’s learning

6The assumption that only bad news can be learnt may then be interpreted in the following way:
the value R created by the project is well-known, but there may be essential impairments which “kill”
the value of the project. For instance, the entrepreneur is perfectly aware of the performance of a drug,
car, or software, but needs to run clinical tests, crash tests, or design an alpha/beta version in order to
confidently reject the presence of side-effects, safety risks, or bugs.

7As discussed in Section 6, one could equivalently assume costly experimentation.
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may be prone to private information. First, various testing procedures may be available,

and knowing which is the most efficient requires a specific talent. This is typically the

case in the software industry. Tassey (2002) notably reports that “software testing is still

more of an art than a science, and testing methods and resources are allocated based

on the expert judgment of senior staff”. This suggests that there is no such thing as a

standardized testing procedure, and that heterogeneity of testing skills is prevalent. In

addition, outsiders are likely to observe neither the accuracy of the testing procedure

chosen, nor the resources allocated to testing. In pharmaceuticals, a great deal of trials

are subcontracted to contract research organizations (CROs), and this layer of delegation

may raise additional information concerns. Asymmetric information on λ may accordingly

capture in a reduced-form way the moral hazard problem created by such delegation. In

a similar spirit, when the entrepreneur is backed by a venture capitalist, some elements

of the contract between the VC and the entrepreneur may be unobservable to outside

investors. Finally, λ could capture the privately-known ability of the VC to advise the

entrepreneur, or its opportunity cost of time or effort.

2.2 The financing problem

The entrepreneur initially holds assets with value A < I. These assets can be liquid assets

(cash or quasi-cash), or illiquid assets which can be pledged as collateral. In principle,

these assets could continuously capitalize at any rate r0 ≤ r, but we focus here on the

case where r0 = 0 for simplicity.8 This allows to shut down the impact of time on the

entrepreneur’s cash position, and to focus on its impact on beliefs only.

The entrepreneur therefore needs to borrow cash at the date when he decides to invest

in the project. Given that the payoff is either R or 0, the security which is issued (debt

or equity) is irrelevant.9 We assume for simplicity that the entrepreneur raises cash from

risk neutral and competitive investors by issuing equity: the entrepreneur sells a fraction

x of the firm in exchange for cash.

Importantly, we assume that investors can observe how long the entrepreneur has

8In Section 8.9 of the Appendix, we show how our results extend to the general case r0 ≤ r.
9It is easy to see that the assumption of binary payoffs is irrelevant as long as the entrepreneur’s action

is also binary. Since our focus here is on investment timing rather than the intensity of investment, we
consider a stopping game with only two actions: invest or continue learning. It would be interesting to
consider as well an intensive margin, and examine the sensitivity of investment to the cash and information
constraints, but this is beyond the scope of this paper.
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been learning before raising cash.10 However, whether a signal revealing a bad project is

observed by all parties or privately observed by the entrepreneur is irrelevant here, as the

entrepreneur never solicits funding if he knows the project to be bad. Indeed, the cash he

must invest out of pocket (or the collateral) would then be lost for sure.11

3 Complete information benchmark

Before we turn to the signaling problem raised by private information on λ, let us first

examine how λ affects the entrepreneur’s behavior in the benchmark case of perfect in-

formation. In this case, even if investors do not observe the entrepreneur’s beliefs on the

project, they can perfectly back out these beliefs using (2). Since investors are competi-

tive, the entrepreneur obtains the full value of the project regardless of the date at which

he solicits funding. Let W ∗(λ, t) denote the expected discounted payoff at date 0 of a

entrepreneur learning at speed λ when he invests at date t (conditional on no bad news).

We have:

W ∗ (λ, t) = e−rts (λ, t) (p∗ (λ, t)R− I)

= e−rt (p0R− I + (1− s(λ, t)) I) .

This expression evidences the trade-off faced by the entrepreneur between discounting

and learning: while waiting delays the realization of the payoff, it also allows to keep the

option not to invest open.

The value of this option depends on 1− s(λ, t), the probability that bad news accrues,

in which case the entrepreneur does not invest and avoids sinking the outlay I. This

probability increases in λ : better learning increases the value of the option.

The optimal investment date t∗ reflects this tradeoff. It is such that:12

t∗ = argmax
t≥0

W ∗ (λ, t) = max

(
−1

λ
ln

p0r (R− I)

(1− p0) (λ+ r) I
, 0

)
. (3)

10For instance, if the firm is backed by a venture capitalist, the market can observe the date of the first
round of financing. Alternatively, the market can observe the date of the first clinical trials, the date at
which the firm first filed a patent application, or the date of release of previous versions of a software.
See also Section 6.4 to see how one could relax the assumption of perfect observability.

11This assumes though that the entrepreneur cannot take the money and run, i.e., raise cash and not
invest in the project. Implicitly, we therefore assume that new shareholders can monitor the entrepreneur
and impose investment at the date when capital is raised.

12Notice that it is fine to solve this stopping problem by maximizing the date-0 expected payoff since
the entrepreneur perfectly forecasts at date 0 his conditional beliefs at all future dates.
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It is immediate to see that t∗ is nonincreasing in R, p0 and r, and nondecreasing in I.

However, t∗ may be non-monotonic in λ :

Proposition 1 The impact of λ on the optimal investment date t∗ depends on the prior

NPV of the project:

• If p0R− I < 0, t∗(λ) is a decreasing function of λ;

• If p0R − I ≥ 0, there exist λ∗ and λ∗∗, with 0 ≤ λ∗ < λ∗∗, such that t∗(λ) = 0 for

λ ≤ λ∗, t∗(λ) is increasing on [λ∗, λ∗∗] and decreasing on [λ∗∗,+∞).

!

t*(!)

(a) p0R− I < 0.

!

t*(!)

!* !**

(b) p0R− I ≥ 0.

Figure 1: t∗(λ) depending on the prior NPV.

The qualitative difference between the positive NPV case and the negative NPV case

has to do with the fact that an entrepreneur who does not learn at all (λ = 0) never

invests when p0R− I < 0 (i.e., t∗(0) =∞), while he invests at date 0 as soon as the NPV

becomes nonnegative. Generically, λ impacts the optimal investment date in two ways. An

entrepreneur with a higher λ triggers investment when his beliefs reach a higher threshold,

because the value of the option is higher.13 Meanwhile, he also reaches a given threshold

faster. When p0R − I < 0, the latter effect always dominates, whereas both effects

alternatively dominate when p0R− I ≥ 0. Notice that Halac et al. (2013, 2014) derive the

same non-monotonicity result in models with costly information acquisition.14 This non-

monotonicity makes the signaling content of investment timing intrinsically ambiguous:

13Precisely, the entrepreneur invests when his beliefs first hit a threshold (λ+r)I
rR+λI , which increases in λ.

14In their case, though, the case where t∗ is decreasing in λ never obtains. Indeed, they focus on the
case where costly experimentation is valuable, which is the “counterpart” of our positive NPV case. In
the opposite case where experimentation is too costly, there is no learning, so the investment date does
not reflect the learning speed. This non-monotonicity is also apparent in Bloch et al. (2011) in a duopoly
model of entry timing.
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for instance, early investment could stem from an entrepreneur with a high λ who has

learnt fast, or from an entrepreneur with a low λ whose option has little value. In the

next section, we explore in detail how this non-monotonicity shapes signaling incentives

under asymmetric information.

4 Incomplete information

We now assume λ to be private information: λ ∈
{
λ, λ
}
, with 0 ≤ λ < λ, and Pr(λ =

λ) = q0. To simplify notation, let us denote t
∗

= t∗(λ) and t∗ = t∗(λ).

4.1 Payoffs

The cost of capital reflects investors’ beliefs over the quality of the project. Investors

know long the entrepreneur has been waiting, but do not know his true beliefs because

of private information on λ. If q denotes the probability that the market assigns to the

entrepreneur being of type λ, the market perceives the probability of success to be

p (q, t) =
p0

qs
(
λ, t
)

+ (1− q)s (λ, t)
. (4)

For simplicity, we consider here the case where the assets A are liquid, so that the

entrepreneur borrows I −A.15 Since investors are competitive, the entrepreneur needs to

sell a share x(q, t) of the firm such that

x(q, t)p (q, t)R = I − A. (5)

The cost of outside capital then equals x(q,t)R−(I−A)
I−A = 1−p(q,t)

p(q,t)
. There are two implicit

assumptions behind (5): first, the entrepreneur does not borrow more than needed. This

can easily be shown to be optimal. Indeed, the entrepreneur is risk neutral, so the only

motive for selling shares is the cash shortage. For a good entrepreneur, the cost of outside

capital is no smaller than the cost of inside funds, as the market can never be more

optimistic about the project than he is. Therefore, it is a weakly dominated strategy for

him to sell more shares than needed, and the market should accordingly interpret extra

15If A was the value of illiquid assets pledged as collateral, the entrepreneur would have to borrow I,
but financiers would then be able to seize A in case of failure of the project, so the two interpretations
are completely equivalent.
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issuance as coming from a bad entrepreneur.16 Second, we assume that the entrepreneur

does not underprice by selling shares below their expected value. Generically, equilibria

involving money burning might exist, but we ignore them here for simplicity.

Let W (λ, q, t) denote the expected discounted payoff at date 0 of type λ ∈ {λ, λ}

when he invests at date t, and is perceived as type λ with probability q. We have

W (λ, q, t) = e−rts (λ, t) [p∗ (λ, t) (1− x(q, t))R− A] . (6)

It is easy to see that W (λ, 1, t) = W ∗(λ, t) and W (λ, 0, t) = W ∗(λ, t), i.e., the en-

trepreneur’s expected payoff under asymmetric information is the same as under perfect

information as long as investors hold true beliefs on λ, a consequence of competition

among investors. However, when the market holds wrong beliefs, the cost of inside and

outside funds differ, and there is a benefit (cost) for the entrepreneur from being mistak-

enly perceived as a good (bad) type: W (λ, q, t) is nondecreasing in q.

From (5) and (6), we derive:

W
(
λ, q, t

)
−W (λ, q, t) = Ae−rtf(t), (7)

where

f(t) ≡ s(λ, t)− s(λ, t) = (1− p0)(e−λt − e−λt). (8)

For given investor beliefs, the only difference between two entrepreneurs with different

signal precisions lies in the value of their options to wait: the good type (rightly) abstains

from investing with probability 1 − s(λ, t), in which case he saves the outlay (Ae−rt in

present value), while the bad type does so only with probability 1− s(λ, t). It is easy to

see that f(t) is nonnegative, as the good type invests in the project less often than the

bad type, and that f(0) = 0, as both types differ only to the extent that some learning

has taken place. Finally, f is single-peaked in t. This has to do with the fact that learning

exhibits decreasing returns with such Poisson learning: the probability of learning bad

news before t increases with t, but the marginal increase is decreasing with time. This

implies that the comparative learning dynamics is characterized by two phases: a first

phase in which the good type learns more at the margin (as time goes by, the good type

becomes increasingly more optimistic than the bad type), and a second phase in which

16This holds because A is symmetric information. To make this statement, we implicitly use a refine-
ment in the spirit of D1. See Section 4.2.1.
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the bad type catches up on beliefs: in the limit, there is perfect learning for any positive

λ, so the difference between types becomes negligible.

Finally, it is easy to show that e−rtf(t) is also single-peaked in t and reaches its

maximum at

t0 ≡
ln(λ+ r)− ln(λ+ r)

λ− λ
> 0.

4.2 Equilibrium analysis

Before we turn to the equilibrium analysis, let us first notice that asymmetric information

has no bite when t
∗

= 0. Indeed, if t
∗

= 0, then a fortiori t∗ = 0, using (3), so both types

can reach their complete information payoff by investing at date 0, in which case investors’

beliefs are irrelevant (p(q, 0) = p0 for all q). In what follows, we therefore restrict attention

to t
∗
> 0.

4.2.1 Equilibrium definition and concept

We look for perfect Bayesian equilibria satisfying D1. Whenever D1 is not enough to guar-

antee uniqueness, we select the Pareto-dominant equilibrium, or least-cost equilibrium.17

A pure-strategy equilibrium features investment dates t and t (conditional on no news)

for types λ and λ, and a belief function q(t), which assigns a probability that investment

at date t comes from type λ.18

4.2.2 Separating equilibria

We first look for separating equilibria where t 6= t. First of all, it is standard that, in

any separating equilibrium, we must have t = t∗.19 Therefore, the following incentive

constraint has to hold:20

W (λ, 0, t∗) ≥ W (λ, 1, t). (9)

17D1 imposes to attribute a deviation to some date t to the type with the stronger incentive to deviate
to t (see Section 8.2 for details on how D1 applies to the signaling game we consider). We will see that,
whenever there is equilibrium multiplicity, the only equilibria are separating, meaning that they can be
Pareto-ranked.

18Mixed strategies in such a continuous time game are not obvious to define, but we will later show that
a mixed strategy equilibrium must involve one type randomizing between exactly two pure strategies,
and the other type playing a pure strategy. See Lemma 3 in the Appendix.

19If t 6= t∗, type λ could always increase his payoff by playing t∗ : even it is does not improve the
market’s beliefs, it yields a higher expected payoff.

20This constraint is necessary for a separating equilibrium, but generically not sufficient. We show in
the Appendix that, provided that the equilibrium is a least-cost separating equilibrium and survives the
D1 refinement, it is also sufficient.
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This constraint states that the slow-learning type prefers to play his optimal investment

strategy rather than mimic the fast-learning type. Using (7), this is equivalent to

W (λ, 0, t∗) ≥ W ∗ (λ, t)− Ae−rtf(t). (10)

Before exploring separating equilibria, let us remark that D1 allows us to restrict the set

of possible equilibrium dates t, as Lemma 1 shows.

Lemma 1 In any separating equilibrium, the good type invests at a date comprised be-

tween t
∗

and t0 : t ∈ [min
(
t0, t

∗)
,max

(
t0, t

∗)
].

Lemma 1 states that the equilibrium investment date must reflect the compromise

between the preferred investment strategy of the good type (invest at t
∗
) and the call

for incentives, which requires distorting investment in the direction of t0 to increase the

difference in option values. Indeed, this difference in option values, Ae−rtf(t), is maximum

at t = t0. Therefore, a deviation to an off-equilibrium date between t0 and t (“in the

direction of t0”) is relatively more beneficial to the good type (no matter the out-of-

equilibrium associated to this deviation), so that D1 imposes to attribute such a deviation

to the good type. Given this restriction, it is clear that Lemma 1 has to hold. Otherwise,

by deviating in the direction of t0, the good type could secure a strictly higher expected

payoff, while still being perceived as good.

The next Proposition provides necessary and sufficient conditions for the existence of

a separating equilibrium.

Proposition 2 There exists a separating equilibrium if and only if

A ≥ A1 ≡ max

(
0,
W ∗ (λ, t0)−W ∗ (λ, t∗)

e−rt0f(t0)

)
.

In addition, (t∗, t
∗
) is an equilibrium if and only if

A ≥ A0 ≡
W ∗ (λ, t∗)−W ∗ (λ, t∗)

e−rt
∗
f(t
∗
)

∈ (A1, I).

In a separating equilibrium, the sorting of types is achieved by making sure that the

difference between each type’s beliefs on the project is large enough that it is worthwhile

for the good type to invest his cash A out of pocket, but too costly for the bad type.

This is why a separating equilibrium is only possible when the entrepreneur has enough

14



cash. Whenever the cash constraint is sufficiently soft (A ≥ A0), the entrepreneur can

reach his complete information payoff. Indeed, a high share of the investment is then

externally financed, and the benefit of cheap credit does not compensate the loss due

to the inefficiency of the investment policy, so that mimicking is not a concern. When

A ∈ (A1, A0), the timing must be distorted, but the entrepreneur still has enough cash

to make separation possible. Notice that A0 > 0, so efficiency is never attainable when

A is too small. However, one may have A1 = 0, in which case there exists a separating

equilibrium even if the entrepreneur has no cash. This is because the preferences of

each type over investment timing is a sorting force per se, as it is intrinsically costly

for an entrepreneur of a given type to mimic the other type, even when the project is

fully externally financed. Accordingly, the preferences may be sufficiently different for a

separating equilibrium to exist even when the entrepreneur has no cash.

4.2.3 Pooling and semi-pooling equilibria

We now characterize pooling and semi-pooling equilibria:

Proposition 3 If A ≥ A1, any equilibrium is fully separating.

In addition, ∃A2 ≤ A1 such that:

• If A2 ≤ A < A1, the unique equilibrium is such that t = t0, and λ randomizes

between t0 and t∗,

• If A < A2, the unique equilibrium is pooling: t = t = t0.

In the Appendix, we derive the cutoff value A2 :

A2 = max

(
0, I − W ∗(λ, t∗)−W ∗(λ, t0)

q0e−rt0f(t0)

)
.

Notice that the pooling equilibrium never exists ifA2 = 0, i.e., when q0 ≤ W ∗(λ,t∗)−W ∗(λ,t0)
Ie−rt0f(t0)

.

This corresponds to instances where the prior probability q0 is small enough, in which

case the bad type is unwilling to distort his investment strategy, as the gain of being

perceived as the average type is too small.

Two findings emerge from Proposition 3. First, the equilibrium cannot involve any

pooling when a separating equilibrium exists. Second, when there is pooling in equilib-

rium, it must be at date t0. This springs from Lemma 1, which imposes that the distortion
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be “capped” at t0 : investment at t0 corresponds to maximal incentives, as it maximizes

the difference between each type’s beliefs. We derive the following Corollary:

Corollary 1 There is a unique least-cost equilibrium satisfying D1.

The only possible range of multiplicity is A ≥ A1. In this case, there may be a

continuum of separating equilibria, but pooling is then impossible. Therefore, all these

equilibria can be Pareto-ranked, and there is consequently a unique least-cost separating

equilibrium.

4.3 The cash constraint and the magnitude of the distortion

The equilibrium strategies reflect the severity of the incentive problem, which is measured

by A. When the cash constraint is soft, the complete information payoffs are attained.

Otherwise, the good type needs to distort his investment date in the direction of t0 in

order to prevent mimicking by the bad type. When the information problem becomes too

severe (A is too small), the only solution for the good type is to invest at t0 to maximize

the difference in option values. When this is not sufficient to achieve separation, the good

type must be (fully or partially) pooled with the bad type. Proposition 4 establishes

formally that the distortion incurred by the good type increases with the cash shortage.

Proposition 4 The magnitude of the distortion |t∗ − t| is nonincreasing in A.

Figure 2: Cash constraint and distortion

From W (λ, 1, t) = W ∗(λ, t) − Ae−rtf(t), one sees that changes in t have a larger impact

on the incentive constraint of the bad type whenever A increases, which reduces the

distortion. A captures the stake of the entrepreneur in his project, i.e., the share of the
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investment which is financed internally. As the cash shortage problem improves (that is,

as A increases), the benefit from fooling investors decreases, and the cost from distorting

the timing away from the preferred timing policy increases. By improving the sorting of

types, a higher A therefore attenuates the information problem, and decreases the welfare

loss.

4.4 The direction of the distortion

We have characterized so far how the severity of the cash constraint measured by A

shapes equilibrium behavior, and possibly results in timing distortions. In addition, we

have underlined in Lemma 1 that incentive constraints call for a deviation in the direction

of t0. Let us now examine how the direction of the distortion depends on the primitives

of the model.

One first remark is that t
∗

and t0 are independent of A, which implies that the direction

of the distortion does not depend on the cash constraint. A therefore only affects the

magnitude of the distortion, but not its direction.

Second, because t
∗

is decreasing in p0 as long as it is positive, and t0 is independent

of p0, we derive that there exists a critical value p̂ ∈ (0, 1) such that t
∗ ≤ t0 ⇔ p0 ≥ p̂.

Similarly, there exists R̂ > I such that t
∗ ≤ t0 ⇔ R ≥ R̂. Accordingly, an empirical

prediction of the model is that projects with a low expected value (a low p0 or R) are

hurried when the cash constraint is too severe, while projects with better prospects are

delayed.

Third, it is easy to see that t
∗ ≤ t0 ⇔ t∗ ≤ t

∗
.

Therefore, the direction of the distortion is simply given by the ordering of the optimal

investment dates. If the good type invests earlier (resp. later) than the bad type under

complete information, then he should hurry (resp. delay) investment as compared to

his optimal timing to prevent mimicking from the bad type. This is helpful to derive

whether investment should be hurried or delayed as a function of λ and λ. Indeed, a

direct consequence of Proposition 1 is that, whenever p0R−I < 0, one always has t
∗
< t∗,

so that investment can only be hurried. When p0R− I ≥ 0, there are two cases:

• λ ≤ λ∗∗, in which case t∗ < t
∗

and investment can only be delayed,

• λ > λ∗∗, in which case there exists a cutoff value λ0 such that t∗(λ0) = t∗(λ).

Investment is delayed if λ ≤ λ0, and hurried otherwise.
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Relatedly, an empirical prediction is that investment should be hurried in markets

where learning is fast (both λ and λ are large enough), and delayed in markets where

learning is slow (λ is small enough). To understand this, recall that f reflects the com-

parative learning dynamics: in a first phase, the beliefs of both types diverge apart, with

the good type learning faster than the bad type at the margin; in a second phase, the

bad type catches up on beliefs. When both types learn sufficiently fast, the phase dur-

ing which the good type learns faster stops early. In this case, signaling fast learning

imposes to invest early to make sure that the bad type is sufficiently less confident than

the good type about the project. Conversely, when the slow-learning type learns little

enough, the first phase stops later, and the good type should exploit as much as possible

his comparative learning advantage by waiting longer.

Figure 3: Equilibrium characterization

To conclude this section, we summarize in Figure 3 the different equilibrium regions

in the space (λ,A) in the positive NPV case. The figure displays that higher values of A

make it more likely that (t∗, t
∗
) is an equilibrium, and, if not, that there exists a separating

equilibrium. It also shows that separation is obtained by delaying investment when λ is

sufficiently small, and by hurrying investment otherwise, regardless of the value of A.
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4.5 Belief reversal

Since the entrepreneur endogenously decides the date at which he invests, it is a priori not

clear whether an entrepreneur with a precise signal is more or less confident upon investing

than an entrepreneur with an imprecise signal. Indeed, the latter could compensate

the lower accuracy of the learning technology by experimenting longer. Under complete

information, it is not difficult to see that this can never be the case, and that, even when

a fast-learning entrepreneur optimally invests sooner, he still is more confident at the date

when he invests. Under asymmetric information, this is a fortiori true when investment

is delayed. However, when investment is hurried, we show that the timing distortion

may be large enough to generate a reversal of beliefs, in that the bad type becomes more

optimistic on the project upon investing than the good type.

Proposition 5 Suppose p0R − I > 0. For all λ > λ∗∗, there exists a cutoff λ1 ∈ (λ0, λ)

such that

λ > λ1 ⇒ ∃A > 0, p∗(λ, t∗) > p∗(λ, t) for A < A.

Figure 4: Belief reversal

4.6 The role of the expected value of the project

Before concluding this section, we examine the impact of p0 and R on the equilibrium.

Proposition 6 There exist {p, p, p, p} with 0 < p < p < p̂ < p < p < 1 and {R,R,R,R}

with I < R < R < R̂ < R < R such that:

• If p0 /∈
(
p, p
)
⇔ R /∈

(
R,R

)
, the equilibrium involves investment at the optimal

dates (t∗, t
∗
);
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• If p < p0 < p ⇔ R < R < R, the equilibrium is separating and investment is

hurried;

• If p < p0 < p̂ ⇔ R < R < R̂, the equilibrium is semi-pooling or pooling (t = t0),

and investment is hurried;

• If p̂ < p0 < p ⇔ R̂ < R < R, the equilibrium is semi-pooling or pooling (t = t0),

and investment is delayed;

• If p < p0 < p ⇔ R < R < R, the equilibrium is separating, and investment is

delayed.

Figure 5: The equilibrium investment date t as a function of p0

The investment timing is not distorted when the expected value of the project is either

large or small enough. In the intermediate region where investment has to be distorted,

investment should be hurried when the expected value of the project is small, and hurried

otherwise. In addition, for any A < I, the equilibrium spans all the different regions

(separating and pooling equilibrium, hurried and delayed investment) when p0 varies

from 0 to 1.

5 Empirical predictions

A first prediction of the model is that information and financial constraints affect in-

vestment: otherwise identical firms with different levels of cash have different investment

policies. This is consistent with the finding that cash-rich firms have an investment pol-

icy which is less sensitive to their net worth than cash-constrained firms (see Hubbard
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(1998) for a survey). In addition, our model predicts more specifically that inefficient

investment may take both the form of hurried investment (under-experimentation) or de-

layed investment (over-experimentation) according to the expected value of the project

and the shape of the learning curves in the market. First, projects with a high prior

expected value tend to be delayed, while those with a low prior value tend to be hur-

ried. This suggests that there should be too much and too risky investment in markets

with poor prospects (in terms of probability of success, or profits conditional on success).

Conversely, there should be too little and insufficiently risky investment in markets with

better prospects. Second, in industries with slow learning, cash-constrained firms should

invest later than unconstrained firms, which implies that they should succeed with a

higher probability conditional on investing. This is consistent with Guedj and Scharfstein

(2004), who show that small drug companies with less initial cash are less likely to move

to subsequent phases of clinical tests, and are more likely to succeed in these phases, that

is, cash-constrained firms experiment longer. This is also consistent with the fact that

long deferments of patent examination are particularly frequent in the pharmaceutical and

chemical industries (Henkel and Jell, 2010).21 In industries characterized by fast learning,

cash-constrained firms should invest earlier than unconstrained firms, and have accord-

ingly a lower probability of success. In terms of the timing of patenting decisions, this

implies that firms in industries where learning is relatively fast (e.g., software) should be

more prone to soliciting accelerated patent examination procedures.22 Overall, our model

suggests that an empirical analysis on the impact of cash constraints on investment should

group firms according both to how financially constrained they are, and to the speed of

learning in the industry. Indeed, our results hint that an analysis where firms are grouped

according to their net worth only would possibly underestimate the impact of the cash

constraint, by pooling together firms which underinvest and firms which overinvest.

In addition, the model predicts that young firms which are more prone to asymmetric

information about the precision of their learning technology behave differently from more

21Some patent offices allow patent applicants to solicit accelerated and/or deferred examination of their
application, lowering or expanding de facto the duration of the experimentation period. Patents are often
perceived as a way for cash-poor firms to secure financing by signaling their quality (Hall and Harhoff,
2012).

22Unfortunately, there has been little evidence on the characteristics of firms which file for accelerated
procedures so far. Harhoff and Stoll (2014) exploit as a natural experiment the fact that the Euro-
pean Patent Office has switched from a regime where accelerated examination procedures were publicly
disclosed to a regime where they are kept secret. But they do not focus on differences in the pool of
applicants across industries.
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established firms for which private information is less of an issue. For instance, young

venture capital firms with no established reputation should distort the date at which

they take ventures public because of signaling concerns. This is reminiscent of Gompers

(1996), who evidences the importance of “grandstanding”, i.e., the tendency of venture

capitalists to take ventures public early, among young venture capital firms. However,

while our model clearly predicts the possibility of grandstanding (hurried investment),

it also suggests that such a phenomenon should be rather prevalent in industries where

learning is fast, but less so in industries with slow learning, where we might instead observe

the reverse pattern of deferred IPO timing.

Our model also yields predictions in terms of stock price reactions. Since investment

possibly reveals information about the entrepreneur’s confidence, the stock price should

react to investment. However, our model predicts that the stock price reaction should

be different in industries characterized by different learning speeds, and for firms with

different financial constraints. In markets where investment is hurried, fast-learning firms

invest earlier and investment triggers a positive stock price reaction; conversely, when

investment is delayed, the stock price reaction upon investment should be negative, as

slow learners invest first. However, such a stock price reaction occurs only in the case

where the firm holds sufficient cash. Otherwise, the equilibrium is pooling, meaning that

the investment date is uninformative, and triggers no price change.

Finally, we evidence two distinct “ranges of inaction” in which investment does not

respond to a change in the expected profitability of the project (see Figure 5, where there

are two parts on which t is flat). One range corresponds to the situation in which the

option to wait is not exerted (if investment takes place at date 0, an increment in the NPV

does not change the entrepreneur’s behavior, both under complete and incomplete infor-

mation); the other range corresponds to the zone where there is (full or partial) pooling:

the entrepreneur is fully constrained by the incentive problem, and keeps investing at date

t0, even when the NPV marginally increases. Therefore, the non-responsiveness of invest-

ment to changes in the value of the investment may have two radically different causes:

the option-like feature of investment and the cash constraint. In firms prone to cash con-

straints and asymmetric information, the non-responsiveness is more likely to originate

from an incentive problem, while for firms holding projects which are easier to revert (for

instance, when there is a liquid second-hand market for assets), the option has a smaller
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value, and the non-responsiveness could rather reflect the desire of the entrepreneur to

reap the benefits from investment as soon as possible. It would be interesting to test these

predictions empirically.

6 Discussion

6.1 Other corporate finance applications

In our specification, the entrepreneur’s objective is to minimize the average cost of capi-

tal. Therefore, the problem we study is qualitatively similar to a problem of managerial

myopia, in which the manager cares about both the true value of the firm and the stock

price, or to a problem of optimal IPO timing, where the entrepreneur (or the venture

capitalist) chooses the date at which the firm goes public, so as to maximize some average

of the value of current equity and the future IPO price. Our model is therefore suited to

study the impact of information frictions on timing decisions in a more general class of

corporate governance problems. This being said, our results contrast with related results

established in this literature. Grenadier and Malenko (2011) and Bustamante (2012) both

analyze models of signaling through investment timing, the former with an application

to managerial myopia (among other applications), the latter to IPO timing. They both

find that asymmetric information generates hurried investment as compared to the com-

plete information case, while we stress that both hurried or delayed investment may arise,

depending on the shape of the learning curves in the market.

6.2 Capitalization/depreciation of A

When the asset A is capitalized at rate r0 ≤ r, we obtain W (λ, q, t) − W (λ, q, t) =

Ae−(r−r0)tf(t), a function which is still single-peaked in t, and reaches a maximum at

t̃0(r0), where t̃0(r0) increases in r0. Therefore, our main results qualitatively go through:

the region where delayed investment obtains expands if r0 > 0, and shrinks if r0 < 0.23

This highlights the complementary role played by the capitalization of the entrepreneur’s

cash: waiting longer is more of an effective signaling strategy when r0 is higher, since the

amount that is internally financed increases everything else equal, hence the cost incurred

by the bad type when mimicking the good type. This extra effect may notably generate

23See Section 8.9 of the Appendix for a formal analysis.
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timing reversals: for instance, when r0 > 0, there are situations where the good type

invests earlier than the bad type under complete information, but later under asymmetric

information.

6.3 Costly experimentation

It is also easy to show that our results would hold with costly experimentation. For

instance, we derive an essentially similar result when there is no discounting and learning

involves a flow cost c.24 In this case, since an entrepreneur who invests later has to pay

higher experimentation costs, the cash he has left to finance the project shrinks with

time.25 This effect mirrors the effect of cash capitalization described in the previous

paragraph: the cash of the entrepreneur depreciates, which makes the hurried investment

equilibrium more likely everything else equal.

6.4 Non-observability of date 0

Since the investment date is the signal which the entrepreneur uses to display his confi-

dence on the project, it is critical that investors are able to observe how long exactly the

entrepreneur has been learning, i.e., “knows date 0”. Suppose instead that the market

does not know the exact waiting time, but that an entrepreneur who has been waiting for

a length T could provide hard evidence that he has been waiting at least for any length

T̃ ≤ T.26 In other words, the entrepreneur could possibly understate, but not overstate

his waiting time. In this case, our equilibrium with hurried investment would collapse: if

investors believe an entrepreneur who pretends that he has been waiting for t to be a high

type, then the entrepreneur should wait until t
∗
, but pretend he has only been learning

for a length t. However, an equilibrium with delayed investment would be robust to this

altered information structure, since such gaming is unprofitable in this direction. There-

fore, the non-observability of date 0 would create some asymmetry between the (robust)

delayed equilibrium and the (non robust) hurried equilibrium.

24The proof is omitted for concision, but is available upon request.
25This holds of course only as long as one assumes that the experimentation costs are monetary.
26For instance, the entrepreneur could exhibit past trial outcomes, which do not provide information

on the quality of the project, but evidence that the entrepreneur was already running tests on the project
at the time of the trial.
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6.5 Good news model

Our assumption that “no news is good news” makes the analysis simpler, as there is

a one-to-one relationship between dates and beliefs as long as the entrepreneur has not

received bad news. Let us try to conjecture what would happen in a “good news” model,

i.e., in a learning environment where the Poisson process has intensity λ in case the

project is of high quality, and 0 otherwise. Under complete information, it is easy to

see that the optimal rule consists of investing either at date 0 or only upon learning

good news. We then obtain an equivalent of our non-monotonicity result: if the NPV

is negative, investment occurs at the first date at which good news arises. This date

is a random variable, with an expectation decreasing in λ. If the NPV is nonnegative,

there is immediate investment if λ is small enough, while the expected investment date

decreases in the range where the option is exerted. In the presence of a cash constraint,

asymmetric information is irrelevant as long as jumps in the Poisson process are observable

to investors. Indeed, the entrepreneur solicits funding only in instances where types with

different learning speeds have the same beliefs on the project, that is, either at date 0,

or upon observing a signal perfectly revealing a good project. However, if jumps in the

Poisson process are unobservable to the market, it is impossible to back out beliefs from

the investment date, since the first date at which there is a jump is stochastic. This is true

even with no uncertainty on the entrepreneur’s type, so that private learning gives rise

to an interesting signaling problem even under perfect information on λ. We conjecture

that the entrepreneur should not solicit funding before some critical date, in order to

make sure that he is sufficiently pessimistic that he does not invest his own cash if he has

not learnt good news yet. In case there is additional private information on λ, this also

guarantees that the bad type still prefers to invest at date 0 (when this is his preferred

strategy under complete information) than waiting to secure cheaper credit.

6.6 Commitment

By focussing on on a signaling game where the only way to signal confidence in the

project is through the investment timing, we make important restrictions on commit-

ment, communication, and instruments: first, we implicitly rule out commitment power,

which would allow the entrepreneur and the financiers to agree ex ante on some contrac-

tual terms; second, we ignore the possibility for the entrepreneur to reveal information
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on his type using other messages than the timing decision; third, we rule out possible

transfers prior to the investment date. In order to assess how sensitive our results are to

these various restrictions, we might alternatively consider a screening problem, in which a

monopolistic bank proposes a contract at date 0 to the entrepreneur. First of all, in order

to make things comparable with our model (that is, to “test” the role of our assumption

on commitment), one could impose that the entrepreneur always invests all his cash A,

and that the only contractible variables are the payoff of the entrepreneur in case of suc-

cess, and the investment date. This framework is the natural screening counterpart to

our signaling model. In such a context, the function e−rtf(t), which measures the differ-

ence in option values, captures the rent that the good type should be given not to mimic

the bad type. In order to lower this rent, the investment timing of the bad type should

be distorted away from t0.
27 In addition, notice that the result of no distortion at the

top does not always hold, as the incentive constraints imply a “monotonicity condition”

e−rtf(t) ≥ e−rtf(t), which sometimes imposes that the good type’s investment date also

be distorted in the direction of t0, as in our signaling model. The distortion therefore

reflects the incentive problem captured by the same function f, suggesting that our re-

sults are no artifact of the no-commitment assumption. Notice, however, that allowing

for a wider message space or set of instruments would relax the incentive problem.28 For

instance, if the entrepreneur was borrowing cash through a risky debt contract, the bank

could use how much the entrepreneur internally finances to screen the entrepreneur’s in-

formation, relying on the higher willingness to invest his cash out of pocket of a more

confident entrepreneur.29

7 Conclusion

We consider a model in which a cash-constrained entrepreneur learns about the value

of a project of his, but at a speed which is private information. The signaling problem

arising from the conjunction of the information friction (private precision of the learning

27A standard difference between screening and signaling two-type models, is that the type who suffers
a distortion is the bad type in a screening model (no distortion at the top), and the good type in a
signaling game. By the same logic, the distortions go in opposite directions in each model.

28For instance, Halac et al. (2013) allow for transfers at all dates prior to investment, and show that
there are timing distortions only under the conjunction of moral hazard and adverse selection. In our
model with adverse selection only, we would obtain the first best with such a richer set of instruments.

29This contrats with the fact that incentives impose that both types invest all their cash A in the
signaling game.
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technology) and the financial friction (limited cash) results in the entrepreneur distorting

his investment policy when the cash shortage is too severe. This distortion takes the

form of hurried investment (under-experimentation) in markets with fast learning, and of

delayed investment (over-experimentation) in markets where learning is slower.

The fact that both delayed and hurried investment may arise has to do with a note-

worthy property of our signaling game: the entrepreneur’s decision endogenously affects

the amount of relevant asymmetric information: the relevant asymmetric information is

not the entrepreneur’s type λ per se, but his beliefs about the project, which depend on

both his (privately observed) type λ and the (observable) timing decision t. This relevant

asymmetric information, measured by the difference in each type’s beliefs, increases and

then decreases with time. This non-monotonicity explains why signaling may possibly

involve hurried or delayed investment. Relatedly, a distinctive feature of our modeling of

private information on learning speed is that it is impossible to rank types according to

their preference over investment dates: depending on their relative learning speeds, a fast-

learning type may be more willing or less willing than a slow-learning type to invest later,

that is, the single-crossing property does not hold. While the analysis is made somewhat

more complex, it is also richer. In addition, it highlights in an intuitive way differences in

investment timing decisions across firms or industries, by relating these differences to the

accuracy of learning in the market. Both from the methodological point of view and in

terms of predictions, our paper therefore offers a substantial contribution to the literature

on real options under asymmetric information.
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8 Appendix

Let us first introduce the function f̃ defined as

f̃(t) ≡ e−rtf(t). (11)

f̃ is non-negative, single-peaked and attains its maximum at t0 = ln(λ+r)−ln(λ+r)
λ−λ .

8.1 Proof of Proposition 1

Let us consider the derivative of − 1
λ

ln p0r(R−I)
(1−p0)(λ+r)I with respect to λ :

1

λ2
ln

p0r (R− I)

(1− p0) (λ+ r) I
+

1

λ (λ+ r)
.

Its sign is given by the sign of a(λ) = ln p0r(R−I)
(1−p0)(λ+r)I + λ

λ+r
.

Note that a′(λ) = − λ
(λ+r)2

≤ 0, and that lim
λ→+∞

a(λ) = −∞.

We distinguish three cases:

i) p0R− I < 0 : − 1
λ

ln p0r(R−I)
(1−p0)(λ+r)I > 0 for all λ, and a(0) = ln p0(R−I)

(1−p0)I < 0.

Therefore, t∗(λ) is positive and decreasing for all λ.

ii) p0R − I > 0 : there exists λ∗ = r(p0R−I)
(1−p0)I > 0 such that λ ≤ λ∗ ⇔ t∗(λ) = 0.

Furthermore, a(λ∗) = λ∗

λ∗+r
> 0, so there also exists λ∗∗ > λ∗ such that a(λ∗∗) = 0,

so t∗(λ) is increasing for λ ∈ [λ∗, λ∗∗], and t∗(λ) is decreasing for λ ≥ λ∗∗.

iii) p0R− I = 0 : this implies t∗(0) = 0 and t∗(λ) > 0 for all λ > 0. One can show that

lim
λ→0

1
λ2

ln p0r(R−I)
(1−p0)(λ+r)I + 1

λ(λ+r)
= +∞.

Therefore, this case is qualitatively similar to the case p0R− I > 0 : t∗ is increasing

and then decreasing. 2

8.2 D1 beliefs

In this section, we examine how D1 restricts beliefs q(t). Suppose that the equilibrium

prescribes that λ invests at t and λ invests at t with positive probability, and consider a

date ta at which no one invests with positive probability, so that q(ta) is not pinned down

by Bayes’ rule and can be arbitrary. D1 imposes to attribute a deviation to date ta to the

type with the stronger incentive to deviate from his equilibrium action to ta.
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Let ∆(ta) ≡ W (λ, q, ta)−W (λ, q(t), t)− [W (λ, q, ta)−W (λ, q(t), t)] denote the differ-

ence between the marginal incentive to deviate to date ta for both types, when such a devi-

ation generates beliefs q. Using (7), note that ∆(ta) = W (λ, q(t), t)−W (λ, q(t), t)−Af̃(ta)

is independent of q.

D1 imposes to consider q(ta) = 0 if ∆(ta) > 0 and q(ta) = 1 if ∆(ta) < 0. If ∆(ta) = 0,

we assume that q(t) = 1 for simplicity, but this is innocuous. Overall, D1 imposes that,

for any ta off the equilibrium path, the following holds:

q(ta) ∈ {0, 1} and q(ta) = 1⇔ ∆(ta) = W (λ, q(t), t)−W (λ, q(t), t)− Af̃(ta) ≤ 0.

8.3 Proof of Lemma 1

A separating equilibrium (t∗, t) exists if and only if the following constraints hold:

W (λ, 1, t) ≥ W (λ, 0, t∗) (12a)

W (λ, 0, t∗) ≥ W (λ, 1, t) (12b)

W (λ, 1, t) ≥ W (λ, q(t), t) for all t /∈
{
t∗, t
}

(12c)

W (λ, 0, t∗) ≥ W (λ, q(t), t) for all t /∈
{
t∗, t
}

(12d)

Consider the case t
∗ ≥ t0.

Suppose that there is a separating equilibrium (t∗, t) such that t
∗
< t. Since t must

satisfy (12b), we have

W (λ, 0, t∗) ≥ W (λ, 1, t) = W (λ, 1, t)− Af̃(t).

Let us denote α(t) ≡ W (λ, 0, t∗) −W (λ, 1, t) + Af̃(t) ≥ 0 the “slack” in the incentive

constraint of the bad type.

One can write

∆(t) = W (λ, 1, t)−W (λ, 0, t∗)− Af̃(t) = A[f̃(t)− f̃(t)]− α(t).

Since t > t
∗ ≥ t0, there exists ε > 0 such that t − ε ≥ t

∗ ≥ t0. One has ∆(t − ε) < 0,

which implies q(t− ε) = 1. In addition, we must have W (λ, 1, t− ε) > W (λ, 1, t) because

t−ε ≥ t
∗
. Therefore, t−ε is a profitable deviation for λ, so (t∗, t) cannot be an equilibrium.

Suppose now that t < t0 ≤ t
∗
. By the same mechanic, one shows that type λ can

strictly increase his payoff by deviating to t+ ε such that t+ ε ≤ t0 ≤ t
∗
.
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The proof is similar in the case t0 ≥ t
∗
. 2

8.4 Proof of Proposition 2

Let us first look for conditions for investment at the optimal dates (t∗, t
∗
) to be an equi-

librium. It is clear that (12a) and (12c) are satisfied for t = t
∗
, as type λ gets his complete

information payoff. One can also show that (12d) holds for t = t
∗
. Suppose it does not,

i.e., there is some ta 6= t
∗

such that W (λ, q(ta), ta) > W (λ, 0, t∗).

Since D1 imposes to have q(t) ∈ {0, 1} , we must have q(ta) = 1, which implies:

∆(ta) = W (λ, 1, t
∗
)−W (λ, 0, t∗)− Af̃(ta) ≤ 0.

Therefore, we have

W (λ, 1, ta) = W (λ, 1, ta)− Af̃(ta) < W (λ, 1, t
∗
)− Af̃(ta) ≤ W (λ, 0, t∗).

A contradiction.

Consequently, (12b) is a necessary and sufficient condition for (t∗, t
∗
) to be an equi-

librium. Let us now derive under which condition (12b) holds at t = t
∗
. This condition

reads

W (λ, 1, t
∗
) = W (λ, 1, t

∗
)− Af̃(t

∗
) ≤ W (λ, 0, t∗). (13)

It is clear that if (13) holds for some Ã, then it must hold for all A > Ã. Note also that

(13) does not hold for A = 0. When A → I, W (λ, 1, t
∗
) → W (λ, 0, t

∗
) < W (λ, 0, t∗), so

(13) holds. We conclude that there exists A0 ∈ (0, I) such that (t∗, t
∗
) is an equilibrium

iff A ≥ A0. In addition:

A0 =
W
(
λ, 1, t

∗)−W (λ, 0, t∗)

f̃(t
∗
)

=
W
(
λ, 1, t

∗)−W (λ, 0, t∗)

e−rt
∗
f(t
∗
)

.

Let us now suppose that

A < A0 ⇔ W (λ, 1, t
∗
) > W (λ, 0, t∗).

Before going further, let us remark that the function t 7→ W (λ, 1, t)−Af̃(t) is increas-

ing on [t0, t
∗
] if t0 < t

∗
, and decreasing on [t

∗
, t0] if t

∗
< t0. This implies that

∀t ∈ [min
(
t0, t

∗)
,max

(
t0, t

∗)
], W (λ, 1, t0)− Af̃(t0) ≤ W (λ, 1, t)− Af̃(t). (14)
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We now establish the following lemma:

Lemma 2 A separating equilibrium exists if and only if W (λ, 1, t0) ≤ W (λ, 0, t∗).

Proof Let us first prove that W (λ, 1, t0) ≤ W (λ, 0, t∗) is a necessary condition for a

separating equilibrium.

Suppose we have W (λ, 1, t0) > W (λ, 0, t∗), with W (λ, 1, t0) = W (λ, 1, t0)− Af̃(t0).

Using (14), we derive that

∀t ∈ [min
(
t0, t

∗)
,max

(
t0, t

∗)
], W (λ, 1, t)− Af̃(t) > W (λ, 0, t∗).

From Lemma 1, we derive that there is no separating equilibrium.

Let us now show that W (λ, 1, t0) ≤ W (λ, 0, t∗) is a sufficient condition for a separating

equilibrium. Suppose W (λ, 1, t0) ≤ W (λ, 0, t∗) < W (λ, 1, t
∗
). This implies:

- If t0 < t
∗

: ∃!th ∈ [t0, t
∗
],W (λ, 1, t

h
) = W (λ, 0, t∗),

- If t
∗
< t0 : ∃!td ∈ [t

∗
, t0],W (λ, 1, t

d
) = W (λ, 0, t∗),

Therefore, for i ∈ {h, d} , one can write

W (λ, 1, t
i
) = W (λ, 1, t

i
)− Af̃(t

i
) for i ∈ {h, d}.

Let us now show that the good type has no profitable deviation starting from a candidate

equilibrium t = t
h

(resp. t
d
), i.e., (12a) and (12c) are satisfied for t = t

h
(resp. t

d
).

Consider first the case t0 < t
∗
. Suppose the good type deviates from t = t

h
to some

date t :

- If t < t
h
, we have W (λ, q(t), t) ≤ W (λ, 1, t) < W (λ, 1, t

h
). So such a deviation

cannot be profitable for any out-of-equilibrium beliefs q(t).

- If t
h
< t : one can write ∆(t) = W (λ, 1, t

h
)−W (λ, 0, t∗)−Af̃(t) = A[f̃(t

h
)−f̃(t)] > 0

for t0 ≤ t
h
< t. Therefore, we must have q(t) = 0. The benefit from deviating to

t becomes W (λ, 0, t) −W (λ, 1, t
h
) = W (λ, 0, t) + Af̃(t) − [W (λ, 1, t

h
) + Af̃(t

h
)] =

A[f̃(t)− f̃(t
h
)] +W (λ, 0, t)−W (λ, 0, t∗) < 0, so this deviation is not profitable.
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In the case t
∗
< t0, the proof is similar.

We have shown that the good type never has an incentive to deviate to an off-path

investment date. To establish that he does not want to invest at t∗, let us remark that,

if t
∗
< t∗ (resp. t

∗
> t∗), there exists a positive (resp. negative) ε such that W (λ, 0, t∗) <

W (λ, q(t∗− ε), t∗− ε) for any q(t∗− ε). So deviating to t∗ is always strictly dominated by

some off-path deviation which has been ruled out in the previous proof.

Therefore, the good type has no profitable deviation. The last thing we need to show

is that the bad type cannot benefit from a deviation off path either. Suppose there exists

ta such that W (λ, q(ta), ta) > W (λ, 0, t∗). Since D1 imposes to have q(t) ∈ {0, 1} for all t

in a separating equilibrium, we must have q(ta) = 1, which implies

∆(ta) = W (λ, 1, t
i
)−W (λ, 0, t∗)− Af̃(ta) ≤ 0⇔ f̃(t

i
) ≤ f̃(ta).

For i = h, f̃(t
h
) ≤ f̃(ta)⇒ W (λ, 1, ta) ≤ W (λ, 1, t

h
). Indeed, given t

h ≥ t0, a necessary

condition for f̃(t
h
) ≤ f̃(ta) is ta ≤ t

h
.

Similarly, f̃(t
d
) ≤ f̃(ta)⇒ W (λ, 1, ta) ≤ W (λ, 1, t

d
) in the case t

∗
< t0.

Therefore, one has

W (λ, 1, ta) = W (λ, 1, ta)− Af̃(ta)

≤ W (λ, 1, t
i
)− Af̃(t

i
)

= W (λ, 1, t
i
)

= W (λ, 0, t∗).

This contradicts W (λ, 1, ta) > W (λ, 0, t∗), so the bad type has no profitable deviation. 2

Let us finally check under which conditions we have W (λ, 1, t0) ≤ W (λ, 0, t∗).

One can rewrite the condition as

W (λ, 1, t0)− Af̃(t0) ≤ W (λ, 0, t∗). (15)

Again, if Ã satisfies (15), then so does A > Ã. Furthermore, (15) holds for A = A0.

Indeed, (15) can be rewritten

W (λ, 1, t0)− Af̃(t0) ≤ W (λ, 1, t
∗
)− A0f̃(t

∗
).
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From W (λ, 1, t0) − Af̃(t0) ≤ W (λ, 1, t
∗
) − Af̃(t

∗
), it is then clear that (15) holds for

A = A0.

Therefore, ∃A1 ≤ A0 such that a separating equilibrium exists if and only if A ≥ A1.

We have:

A1 = max

(
0,
W (λ, 1, t0)−W (λ, 0, t∗)

f̃(t0)

)
= max

(
0,
W (λ, 1, t0)−W (λ, 0, t∗)

e−rt0f(t0)

)
.

Finally, notice that there may be other separating equilibria involving t ∈ [t0, t
h
) (resp.

t ∈ (t
d
, t0]), but they would give a strictly lower profit to the good type than th (resp.

td). 2

8.5 Proof of Proposition 3

Let us first establish the following lemma:

Lemma 3 In any non-separating equilibrium, λ invests at date t = t0 with probability 1.

In addition, λ either invests at t0 with probability 1 (pooling equilibrium), or randomizes

between investing at t0 and t∗ (semi-pooling equilibrium).

Proof Let T be the set of dates at which both types invest with positive probability.

Given that D1 imposes to consider q(t) ∈ {0, 1} for each t off path, we have that q(t) ∈

(0, 1)⇔ t ∈ T.

We first establish that T has at most two elements. Indeed, suppose T has at least

three distinct elements (ta, tb, tc). By definition of T, one has

W (λ, q(ta), ta) = W (λ, q(tb), tb) = W (λ, q(tc), tc) for λ ∈ {λ, λ} (16)

Using (7), one derives that f̃(ta) = f̃(tb) = f̃(tc), which is impossible, since f is continuous

and single-peaked.

Suppose now that T has two distinct elements (ta, tb). One at least is different from t0,

say ta. We then have ∆(t) = W (λ, q(ta), ta) −W (λ, q(ta), ta) − Af̃(t) = A[f̃(ta) − f̃(t)],

using (7). If ta < t0, we have ∆(ta + ε) < 0, so q(ta + ε) = 1. Since q(ta) < 1, one can

always find ε small enough to obtain W (λ, 1, ta + ε) > W (λ, q(ta), ta) for all λ. So there is

a profitable deviation. The same reasoning holds for ta > t0.
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We conclude that T is a singleton. If the unique element of T is not t0, there is always

a profitable deviation, by the same reasoning as above. Therefore, T = {t0} .

Suppose now that λ invests with positive probability at some ta 6= t0. Since T = {t0} ,

λ must then invest with probability zero at date ta.

We therefore have

W (λ, 1, ta) = W (λ, q(t0), t0) = W (λ, q(t0), t0) + Af̃(t0).

This implies that

W (λ, 1, ta) = W (λ, 1, ta)− Af̃(ta) = W (λ, q(t0), t0) + A[f̃(t0)− f̃(ta)] > W (λ, q(t0), t0).

So type λ then strictly prefers to invest at date ta than at t0. A contradiction. 2

Let us now turn to the proof of the Proposition. Suppose first that a separating

equilibrium exists, i.e., A ≥ A1. Using Lemma 2, this is equivalent to W (λ, 1, t0) ≤

W (λ, 0, t∗). We then have:

W (λ, q(t0), t0) < W (λ, 1, t0) ≤ W (λ, 0, t∗).

Therefore, the bad type cannot invest at t0 with positive probability, as this is strictly

dominated by investing at t∗. Therefore, there is neither semi-pooling nor pooling equi-

libria.

Before we derive equilibrium conditions for a pooling and a semi-pooling equilibrium,

notice that, since the equilibrium payoffs are W (λ, q(t0), t0) for each type λ, we have

∆(t) = A[f̃(t0)− f̃(t)] > 0, so any off-path deviation generates beliefs q(t) = 0.

Conditions for a pooling equilibrium The following conditions must be satisfied for

a pooling equilibrium t = t = t0 to exist:

W (λ, q0, t0) ≥ W (λ, 0, t∗) (17)

W (λ, q0, t0) ≥ W (λ, 0, t) for all t 6= t0. (18)

A necessary condition for a pooling equilibrium is that a separating equilibrium does

not exist, i.e., W (λ, 1, t0) > W (λ, 0, t∗). Since W (λ, q, t0) is increasing in q, and since

W (λ, 0, t0) ≤ W (λ, 0, t∗), there exists a critical value of q such that (17) holds if and only
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if q0 ≥ q. q satisfies

W (λ, q, t0) = W (λ, 0, t∗).

Let t̂ ∈ arg
t

max W (λ, 0, t) :

W (λ, q, t0)−W (λ, 0, t̂) = W (λ, q, t0) + Af̃(t0)−W (λ, 0, t̂)− Af̃(t̂)

= W (λ, 0, t∗)−W (λ, 0, t̂) + A
[
f̃(t0)− f̃(t̂)

]
> 0.

This implies that (17) ⇒ (18). Consequently, there is a pooling equilibrium in which all

types invest at t = t0 if and only if q0 ≥ q. To derive this equilibrium condition as a

function of A, let us first notice that, at A = A1, we have q = 1 > q0, by definition of A1.

So, the pooling equilibrium does not exist when A is sufficiently close to A1. Furthermore,

it is easy to see that (6) implies that

W (λ, q, t) = W (λ, 0, t) + qf̃(t)(I − A),

which gives

q =
W (λ, 0, t∗)−W (λ, 0, t0)

f̃(t0)(I − A)
.

Therefore, q is increasing in A. When A = 0, we have q = W (λ,0,t∗)−W (λ,0,t0)

f̃(t0)I
. We derive

that:

- if q0 ≤ W (λ,0,t∗)−W (λ,0,t0)

If̃(t0)
, no pooling equilibrium ever exists,

- if q0 >
W (λ,0,t∗)−W (λ,0,t0)

If̃(t0)
, a pooling equilibrium exists if and only if A is small enough.

Overall, a pooling equilibrium exists if and only if A ≤ A2, with

A2 = max

(
0, I − W (λ, 0, t∗)−W (λ, 0, t0)

q0f̃(t0)

)
.

Conditions for a semi-pooling equilibrium The following conditions must be sat-

isfied for a semi-pooling equilibrium to exist:

W (λ, q(t0), t0) = W (λ, 0, t∗) (19)

W (λ, q(t0), t0) > W (λ, 0, t) for all t. (20)
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Using the same argument as above, it is easy to see that (19)⇒ (20).

Finally, it is obvious that q(t0) > q0, because λ does not invest at t0 with probability

1, whereas λ does. So, if q0 ≥ q ⇔ A ≤ A2, (19) cannot hold. Conversely, if q0 < q, type λ

can always invest at date t0 with a probability x ∈ (0, 1) such that q(t0) = q0
q0+(1−q0)x = q,

in which case (19) is satisfied. Hence the result. 2

8.6 Proof of Proposition 4

• If A ≥ A0, t = t
∗
, which is independent of A,

• If A < A1, t = t0, which is independent of A,

• If A ∈ [A1, A0), in the least cost separating equilibrium, the good type invests at

date t
i

given by:

W (λ, 1, t
i
) = W (λ, 1, t

i
)− Af̃(t

i
) = W (λ, 0, t∗). (21)

Differentiating with respect to A yields

∂t
i

∂A
=

f̃(t
i
)

W3

(
λ, 1, t

i
)
− A∂f̃

∂t
(t
i
)
.

The numerator is positive. The denominator is negative for i = d, as t
d ∈

[
t
∗
, t0
]
,

and positive for i = h, since t
h ∈

[
t0, t

∗]
. This implies ∂t

h

∂A
> 0, and ∂t

d

∂A
< 0, so

∂|t∗−t|
∂A

< 0. 2

8.7 Proof of Proposition 5

p∗(λ, t)− p∗(λ, t∗) has the same sign as e−λt
∗ − eλt.

Notice first that, under complete information, this difference reads

e−λt
∗ − e−λt

∗
=
rp0(R− I)

(1− p0)I

(
1

λ+ r
− 1

λ+ r

)
> 0,

so the good type is always more optimistic in this case.

If investment is delayed, the good type is more optimistic than in the complete infor-

mation case upon investing, so he is a fortiori more confident than the bad type. Therefore,

we focus on the case where investment is hurried. This implies that p0R−I > 0, and that
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λ > λ∗∗, and λ > λ0. In this case, t is increasing in A (see Proposition 4), which implies

that e−λt
∗ − e−λt is increasing in A as well. For A ≥ A0, investment is efficient, and there

is no reversal. There are two situations then:

• If there is no belief reversal at A = 0, then there is never belief reversal.

• If there is belief reversal at A = 0, then there exists A such that belief reversal

occurs if and only if A < A.

We complete the proof by showing the following lemma.

Lemma 4 Suppose that p0R− I > 0, λ > λ∗∗, λ > λ0, and A = 0.

Then there exists λ1 ∈ (λ0, λ) such that

p(λ, t)− p(λ, t∗) < 0⇔ λ > λ1

Proof When A = 0, the equilibrium is separating if and only if

W (λ, 1, t0) < W (λ, 0, t∗)

and pooling otherwise (or semi-pooling). The function W (λ, 0, t∗)−W (λ, 1, t0) is increas-

ing in λ, because t0 < t
∗

and t0 is decreasing in λ. When λ = λ0, we have by definition

t∗ = t0, so W (λ, 0, t∗) < W (λ, 1, t0). When λ→ λ, we have W (λ, 1, t0) < lim
λ→λ

W (λ, 0, t∗) =

W (λ, 1, t
∗
). Therefore, when A = 0, the equilibrium is separating if and only if λ > λa,

where λ0 < λa < λ.

If the equilibrium is separating, we have

W (λ, 1, t) = W (λ, 0, t∗),

⇔ e−rt
(
R− I

p(λ, t)

)
= e−rt

∗
(
R− I

p(λ, t∗)

)
.

It is easy to see that this implies

I

p(λ, t∗)
− I

p(λ, t)
=

(
R− I

p(λ, t)

)(
1− er(t∗−t)

)
< 0,

where the last inequality derives from p0R− I > 0 and t < t
∗
< t∗.

Therefore, if the equilibrium is separating at A = 0, then it must involve a reversal.
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If the equilibrium is pooling at A = 0, t = t0, which is decreasing in λ. So the function

p(λ, t)− p(λ, t∗) is decreasing in λ. This function is positive at λ = λ0, because t∗ = t0 at

this point. At λ = λa, it must be negative by continuity, using the proof above. Therefore,

there exists a λ1 such that the equilibrium involves belief reversal at A = 0 if and only if

λ > λ1. 2

8.8 Proof of Proposition 6

Before deriving how the equilibrium varies with p0, let us examine how t
∗
, t∗ and t0

compare when p0 varies. Recall first that

t∗(λ) = max

(
−1

λ
ln

p0r (R− I)

(1− p0) (λ+ r) I
, 0

)
.

Therefore, t∗(λ) > 0⇔ p0 <
(λ+r)I
rR+λI

.

Let us consider how t∗ − t∗ varies with p0.

For p0 ≥ (λ+r)I
rR+λI

, t∗ = 0, so t∗ − t∗ ≤ 0. For p0 <
(λ+r)I
rR+λI

, we have

t∗ − t∗ = (
1

λ
− 1

λ
) ln

p0
1− p0

+
1

λ
ln
r(R− I)

(λ+ r)I
− 1

λ
ln
r(R− I)

(λ+ r)I
.

This function is decreasing in p0, tends to +∞ when p0 → 0, and is negative at

p0 = (λ+r)I
rR+λI

, so there exists a p̂ < (λ+r)I
rR+λI

such that t
∗ ≤ t∗ ⇔ p0 ≤ p̂. In addition,

t
∗ ≥ t0 ⇔ p0 ≤ p̂.

Let us define the following function:

g(p0) = W (λ, 0, t∗)−W (λ, 1, t
∗
).

We know that (t∗, t
∗
) is an equilibrium whenever p0 is such that g(p0) ≥ 0. Instead of

working with p0, it will prove easier to work with

x(p0) ≡
p0r(R− I)

(1− p0)(λ+ r)I
. (22)

Let g̃ be such that g = g̃ ◦ x. There are three different cases to be considered:

1. If p0 ≤ (λ+r)I
rR+λI

⇔ x < λ+r

λ+r
, then t∗ = − 1

λ
ln(λ+r

λ+r
x) > 0, and t

∗
= − 1

λ
lnx > 0. In this
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case, g̃(x) = R−I
r(R−I)+(λ+r)xI

φ(x), with

φ(x) =

(
λ+ r

λ+ r

) r
λ
+1

λIx
r
λ
+1 −

(
λI + rA

)
x
r
λ
+1 + Arx

r+λ

λ . (23)

2. If (λ+r)I
rR+λI

< p0 <
(λ+r)I

rR+λI
⇔ λ+r

λ+r
< x < 1, then t∗ = 0 and t

∗
= − 1

λ
lnx > 0. In this

case, we have g̃(x) = R−I
r(R−I)+(λ+r)xI

ψ(x), with

ψ(x) =
(
λ+ r

)
xI − rI −

(
λI + rA

)
x
r
λ
+1 + Arx

r+λ

λ . (24)

3. If p0 ≥ (λ+r)I

rR+λI
⇔ x ≥ 1, then t

∗
= t∗ = 0. In this case, we have g̃(x) = 0.

Let x̂ ≡ x(p̂) = (λ+r
λ+r

)
λ

λ−λ < λ+r

λ+r
. It is easy to see that g(p̂) < 0, which is equivalent to

g̃(x̂) < 0.

Let us start with the first case, and consider the function φ defined in (23).

On can rewrite φ(x) = αxa + βxb + γxc, with a = r
λ

+ 1 > b = r
λ

+ 1 > c = r+λ

λ
, and

α > 0, β < 0, γ > 0. It is easy to see that x 7→ x−cφ(x) is decreasing and then increasing

as x varies from 0 to +∞. This function is strictly positive when x = 0 and tends to +∞

when x tends to +∞.

In the second case, let us consider the function ψ defined in (24). Simple algebra

allows us to show that ψ is increasing and then decreasing on R. When x → 1, g̃ tends

to zero by continuity and ψ′(1) < 0.

Since we know that φ(x̂) < 0, there are only two possible cases:

• φ(λ+r
λ+r

) = ψ(λ+r
λ+r

) < 0 : in this case, there exists a unique x0 ∈ [0, λ+r
λ+r

] such that

φ(x0) = 0 and a unique x1 ∈ [λ+r
λ+r

, 1] such that ψ(x1) = 0.

• φ(λ+r
λ+r

) = ψ(λ+r
λ+r

) > 0 : there exists a unique (x0, x1) with 0 < x0 < x1 <
λ+r

λ+r
such

that φ(x0) = φ(x1) = 0. In addition, we have ψ(x) > 0 for all x ∈ (λ+r
λ+r

, 1).

In any case, we have proven that g̃(x) ≥ 0 if and only if x ≤ x0 or x ≥ x1. Consequently,

there exist (p, p) ∈ [0, (λ+r)I
rR+λI

]2 with p < p̂ < p such that (t∗, t
∗
) is an equilibrium if and

only if p0 /∈ (p, p).

Let us now find conditions under which a separating equilibrium exists. From Lemma

2, we know that a separating equilibrium exists if and only if W (λ, 1, t0) ≤ W (λ, 0, t∗)⇔
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h(p0) ≥ 0, where h(p0) ≡ W (λ, 0, t∗) − W (λ, 1, t0). It is straightforward to show that

h is convex in p0. Because W (λ, 1, t0) ≤ W (λ, 1, t
∗
), we have h(p0) ≥ g(p0) for all p0

(with equality only at p0 = p̂). Therefore, h(p) > g(p) = 0 and h(p) > g(p) = 0 Finally,

h(p̂) = g(p̂) < 0, so there exists a unique (p, p) such that h(p) = h(p) = 0. In addition,

one has p < p < p̂ < p < p.

Therefore the equilibrium investment date t is

• t∗ if p0 ≤ p (optimal investment date),

• th < t
∗

if p < p0 < p (separating equilibrium, hurried investment),

• t0 ≤ t
∗

if p ≤ p0 ≤ p̂ (pooling equilibrium, hurried investment),

• t0 > t
∗

if p̂ < p0 < p (pooling equilibrium, delayed investment),

• td > t
∗

if p < p < p (separating equilibrium, delayed investment),

• t∗ if p0 ≥ p (optimal investment date). 2

The proof to derive t as a function of R is exactly similar.

8.9 The general case with r0 ≤ r

The analysis can be extended to the case where the entrepreneur’s initial assets A cap-

italize or depreciate at a rate r0 ≤ r. The first point to note is that if r0 > 0, there

exists a date t̃ after which the entrepreneur no longer needs outside financing, defined by

Aer0 t̃ = I. If t
∗
> t̃, no distortion arises in equilibrium, so the only interesting case to

consider is when t
∗
< t̃.

(5) becomes

x(q, t)p (q, t)R = I − Aer0t.

The expected discounted payoff at date 0 of type λ ∈ {λ, λ} when he invests at date

t, and is perceived as type λ with probability q now depends on whether the investment

date is larger than t̃ or not. If t ≥ t̃, the entrepreneur does not need outside funds, so

asymmetric information has no bite, and

W (λ, q, t) = W ∗ (λ, t) for all q.
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If t < t̃,

W (λ, q, t) = e−rts (λ, t)
(
p∗ (λ, t) (1− x(q, t))R− Aer0t

)
.

⇒ W
(
λ, q, t

)
−W (λ, q, t) = Ae−(r−r0)tf(t).

The function t 7→ e−(r−r0)tf(t) is single-peaked and reaches its maximum at

t0 ≡
ln(λ+ r − r0)− ln(λ+ r − r0)

λ− λ
> 0.

The results of Lemma 1, and of Propositions 2, 3, 4 naturally carry over when appro-

priately adapting f̃ to:

f̃(t) = e−(r−r0)tf(t).

We notably derive:

A0 ≡
W ∗ (λ, t∗)−W ∗ (λ, t∗)

e−(r−r0)t
∗
f(t
∗
)

,

A1 ≡ max

(
0,
W ∗ (λ, t0)−W ∗ (λ, t∗)

e−(r−r0)t0f(t0)

)
,

A2 ≡ max

(
0, Ie−r0t0 − W ∗(λ, t∗)−W ∗(λ, t0)

q0e−(r−r0)t0f(t0)

)
.

Accordingly, the equilibrium is unique as well.

The main difference with the case where r0 = 0 is that t
∗ ≥ t0 is no longer equivalent to

t
∗ ≥ t∗. Therefore, the direction of the distortion is not the one predicted by the ranking

of the complete information dates. However, one can show that, for any r0, there exists a

p̂(r0) such that t
∗
> t0 if and only if p0 < p̂(r0). Therefore, our result that projects with a

high expected value are delayed, and those with a low expected value are hurried carries

over.

In addition, it is easy to see that t
∗

= t∗ ⇒ t
∗
< t0 when r0 > 0 and t

∗
= t∗ ⇒ t

∗
> t0

when r0 < 0. This notably implies that asymmetric information can cause timing reversals.

For instance, when r0 > 0, this happens when t
∗
< t∗ < t, that is, the good type

invests later than the bad type, although he optimally invests earlier under complete

information.30

30A formal proof that this may actually happen is available upon request.
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