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Abstract

We propose a general fractional matching model. Each person has a set
of potential partners and consumes a bundle of partnerships with them. A
feasible allocation is one where each person consumes the same quantity of
a particular partnership as his partner does. Each person’s preferences are
defined over partnership bundles.

This model has several natural applications: probability distributions
over deterministic matchings for marriage problems, school choice, schedul-
ing different workers at various work sites, organizing paired activities among
a group, and so on.

For this novel model, we define a price based solution. We show that
the core of each problem is non-empty. We show that our solution selects
a subset of the core. We also show that if the number of people involved
increases—in a way that there is a fixed number of “kinds” of people—the
gains from misreporting preferences diminish.

JEL classification: C71, C78, D51, D61

Keywords: Randomization, matching, marriage problems, school choice, general equilibrium

1 Introduction

We start with a simple application of our model. Consider a group of players at
a tennis club. They are all at the club for the day and have preferences over who
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they play and for how long. The problem is to determine who plays whom, and
for how long.

The abstract model that we study is one where each person has a set of potential
partners. His consumption space is the set of all combinations of potential partners
(i.e. the simplex whose dimension is the number of his potential partners). His
preferences are convex, continuous, and locally non-satiated, except at the maxima,
over this consumption space. A feasible allocation is one where, for each pair i
and j, the amount of partnership with j that i consumes is exactly the same as
the amount of partnership with i that j consumes and no person is partnered for
more than his availability.

Our model is very general. Among others, it includes the following models as
special cases:

1. The fractional (heterosexual) marriage model (Rothblum 1992, Roth, Roth-
blum and Vande Vate 1993, Aldershof, Carducci and Lorenc 1999, Bäıou and
Balinski 2000, Klaus and Klijn 2006, Bogomolnaia and Moulin 2004, Sethura-
man, Teo and Qian 2006, Manjunath 2011): Since the potential partners are
determined by a bi-partition, any feasible allocation is a bistochastic matrix
and thus a probability distribution over deterministic matchings. In fact,
our model covers a fractional version of the roommate problem (Gale and
Shapley 1962). However, fractional matchings for the roommate problem
cannot necessarily be expressed as probability distributions over determinis-
tic matchings (Budish, Che, Kojima and Milgrom 2010).

2. The model of trade under bilateral constraints (Bochet, İlkılıç, Moulin and
Sethuraman 2010): This is the case where each person is indifferent between
partners and has single peaked preferences over the time that he spends with
other people (rather than being alone).

3. School choice (Abdulkadiroğlu and Sönmez 2003, Abdulkadiroğlu, Pathak,
Roth and Sönmez 2005, Erdil and Ergin 2008, Abdulkadiroğlu, Che and
Yasuda 2010): While a school does not have preferences over the children
that are admitted to it, each school is associated with a priority order over
children. These priorities dictate which children are to be favored at each
school. Just as in the fractional marriage model, feasible allocations are
bistochastic matrices.

4. A model of matching workers with different skills to various employers who
desire particular combinations of skills. We interpret a feasible allocation as
a schedule that determines the time each worker spends at each job. To the
extent of our knowledge, though related to the “stable schedule problem”
(Bäıou and Balinski 2002, Alkan and Gale 2003), the model presented in
Section 6.4 is novel.
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Our main contributions are:

1. We propose a new model that encompasses all of the above. We show that it
can be interpreted as a production model. A key insight is that a partnership
is a public good in some senses and a private good in others. It is like a public
good in that if a person i consumes a certain amount of partnership with j,
then j necessarily consumes the same amount of partnership with i. It is a
private good in that i excludes all others from that amount of partnership
with j. Understanding this helps us define a price-based solution for such
economies. Since “resources have preferences,” the price system that we
consider will have to reflect them. We achieve this through double-indexed
prices. A natural interpretation for “double-indexed” prices is that since
each i has preferences over whom he partners with, it is natural that he
would charge different partners different prices. Specifically, if he prefers j
to k, then he would charge j less than he would charge k.

2. We define an appropriate notion of the core and show that it is nonempty for
each economy. We do so by proving that the non-transferable-utility (NTU)
game associated with each economy is “balanced” (Scarf 1967). We also
show that our price-based solution selects a subset of the core.

3. We add some structure to our model to incorporate the concept of a “kind” of
person. In the more general version of our model, each person has preferences
over his potential partners. Think of each person as having a set of “external
characteristics” or a kind. For the examples listed above, these could be a
man or woman’s income, and education, a trader’s connections, a school
child’s proximity to a school and number of siblings, and a worker’s skills.
Not only are these characteristics observable by others, but they are what
preferences are based on.

We consider a generalization of our model where a person is identified by a
kind along with his preferences over bundles of kinds. We extend our solution
by indexing prices by kind rather than identity. This is important for two
reasons. First, from a fairness point of view, two people who are exactly
the same ought to be given exactly the same opportunities. Second, if the
market is “thick” (there are many people of each kind), for given utility
representations, the gains from misreporting preferences is small for each
person of each kind.

While Shapley and Shubik (1969) have defined competitive equilibria for match-
ing problems, we remind the reader that the model that they consider involves
monetary transfers. Subsequently, Kelso and Crawford (1982) have shown the
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nonemptiness of the core and its equivalence with the set of competitive alloca-
tions for matching markets involving money. Bikhchandani and Ostroy (2002)
and Sun and Yang (2006) have also used non-anonymous prices. Our model differs
from the ones studied in these papers in two important ways: 1) the goods in our
model are divisible and 2) monetary transfers are not possible in our model.

Allocation models where resources are not associated with preferences can be
encoded as instances of the model that we study. However, the analysis pre-
sented here is not as interesting as it is for the case where resources are associated
with preferences. In particular, we need not resort to double-indexed prices since
single-indexed competitive equilibria from equal income typically do exist for these
problems (Hylland and Zeckhauser 1979, Budish 2010).

Though there are papers on two-sided “probabilistic” (or fractional) matching,
such as those mentioned above, their focus has been on the ex-post core. Ex-
ceptions are Bogomolnaia and Moulin (2004) and Manjunath (2011). However,
Bogomolnaia and Moulin (2004) study problems where preferences are “dichoto-
mous.” For this very restricted class of problems, they propose a rule that fulfills
certain efficiency and fairness criteria. Manjunath (2011) studies various ex-ante
core notions and their logical relations.

The remainder of the paper is organized as follows. In Section 2 we formally
introduce the model and define key concepts. In Section 4 we prove that the
core is never empty. In Section 5 we prove that our solution is well defined. We
particularize our model for specific applications in Section 5. In Section 7 we
generalize our model to accommodate kinds of people.

2 The Model

Let N be a set of people. Each i ∈ N is associated with a set of potential
partners Si ⊆ N such that i ∈ Si.

1 For each i ∈ N , i’s consumption set
is ∆(Si). Let Ri be i’s preference relation over ∆(Si). We require that Ri be
continuous, convex, and locally non-satiated except at its maxima on ∆(Si). Let
Ri be the set of all such preferences. For each pair x, y ∈ ∆(Si), if i finds x to be
at least as desirable as y under preference relation Ri, we write x Ri y. Similarly,
if i prefers x to y, we write x Pi y. If he is indifferent between them, we write
x Ii y.

An economy is described by a profile of preferences R ∈ R ≡ ×i∈NRi.
A feasible allocation specifies for each i ∈ N a consumption bundle πi ∈ ∆(Si)

in a way that for each i ∈ N and each j ∈ Si, πij = πji. Let Π be the set of feasible

1While this specification of potential partners might remind the reader of that in Sönmez
(1996), it ought to be noted that Sönmez’s analysis is not restricted to bilateral situations such
as ours.
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allocations. We represent a feasible allocation by a symmetric N ×N matrix, the
rows and columns of which sum to one.

A solution, φ : R⇒ Π, associates each economy with a set of feasible alloca-
tions.

3 Solutions

We start with some normatively appealing solutions. The first one reflects a very
familiar notion of efficiency. For each R ∈ R and π ∈ Π, we say that π is Pareto-
efficient at R if there is no π′ ∈ Π such that for each i ∈ N, π′i Pi πi. Let P (R)
be the set of Pareto-efficient allocations at R.

The next solution expresses the principle that each person has the right to
“consume” himself. Let δ ∈ Π be such that for each i ∈ N , δii = 1. For each
R ∈ R and π ∈ Π, we say that π is individually rational at R if for each
i ∈ N, πi Ri δi. Let I(R) be the set of allocations that are individually rational
at R.

At one end, we have defined the Pareto solution that picks allocations that so-
ciety as a whole cannot improve upon. At the other end, the individual rationality
solution respects the rights of individuals. The following solution extends these
principles to groups of all sizes. For each R ∈ R, π ∈ Π, and S ⊆ N , S blocks π
at R if there is πS ∈ Π such that for each i ∈ S,

i)
∑
j∈S

πSij = 1 and

ii) πSi Pi πi.

The core at R, C(R), is the set of allocations that are not blocked by any
coalition at R. We will show that C(R) is never empty.

We begin our search for a price-based solution with a näıve first attempt. Since
each person “owns” himself, we assign a price to each person and allow people to
trade parts of themselves for parts of others. An allocation π ∈ Π is a Walrasian
allocation at R if there is a vector p ∈ RN such that for each i ∈ N ,

πi ∈ argmax
π′
i∈∆(Si)

Ri

subject to∑
j∈Si

πijpj︸ ︷︷ ︸
Price of π′

i

≤ 1 · pi︸︷︷︸
i’s income

.
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We refer to (π, p) as a Walrasian equilibrium. Let W (R) be the set of all
Walrasian allocations at R. As demonstrated by Example 1, W (R) may be empty.

Example 1. An economy with no Walrasian allocation.

Let N ≡ {m1,m2, w1, w2} and

Sm1 ≡ {m1, w1, w2},
Sm2 ≡ {m2, w1, w2},
Sw1 ≡ {w1,m1,m2}, and
Sw1 ≡ {w2,m1,m2}.

Let R ∈ R be such that the following are numerical representations:

For each πm1 ∈ ∆(Sm1), um1(πm1) = 2πm1w1 + πm1w2 ,
for each πm2 ∈ ∆(Sm2), um2(πm2) = 2πm2w2 + πm2w1 ,
for each πw1 ∈ ∆(Sw1), uw1(πw1) = 2πw1m2 + πw1m1 , and
for each πw2 ∈ ∆(Sw2), uw2(πw2) = 2πw2m1 + πw2m2 .

Let p ∈ RN
+ . Suppose that (π, p) is a Walrasian equilibrium. Suppose m1 ∈

argmax
i∈N

pi. Then, πm1w1 = 1. By feasibility, πm2w1 = 0. So, pw1 > pm2 . This

implies that πw1m2 = 1 and contradicts πm1w1 = 1. Since the problem is symmetric
(each person has the same preferences over bundles of being single, with the most
preferred mate and with the least preferred mate), we reach a similar contradiction
if m1 /∈ argmax

i∈N
pi. ◦

The reason that a Walrasian allocation may not exist is that some of the con-
sumption goods in these economies are not private goods: a partnership involves
both members.

For our next attempt to define a price-based solution, we draw inspiration from
the literature on public goods economies and introduce “double-indexed” prices,
as follows.

Let M ⊆ N ×N be such that (i, j) ∈ M if and only if j ∈ Si and i ∈ Sj. We
say that π ∈ ×i∈N∆(Si) is a double-indexed price (DIP) allocation at R if
there is a vector p ∈ RM

+ such that for each i ∈ N ,

πi ∈ argmax
π′
i∈∆(Si)

Ri

subject to∑
j∈Si

π′ijpij︸ ︷︷ ︸
Price of π′

i

≤
∑
j∈Si

πjipji︸ ︷︷ ︸
i’s income at π

,
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and π ∈ Π (this ensures that the “market clears”). We interpret the price vector
as follows: for each (i, j) ∈M , pij is the price that i pays for j.

We refer to (π, p) as a double-indexed price equilibrium. Let D(R) be
the set of all DIP allocations at R.

It is easy to see that a Walrasian equilibrium, if it exists, is also a DIP equi-
librium: Let (π, q) be a Walrasian equilibrium and define p ∈ RM

+ by setting, for
each i ∈ N and each j ∈ Si, pji = qi. It follows directly from the two definitions
that (π, p) is a DIP equilibrium.

Remark 1. Our definition of a DIP equilibrium has the flavor of a “Lindahl
equilibrium” (Lindahl 1958). The reason is that a positive amount of a partnership
between i and j ∈ N is not a private good (nor is it a pure public good). If
i consumes a certain amount of this partnership, say πij, then he excludes all
others from consuming it. Yet, j is not excluded. Note that partnerships are not
“common goods” or “club goods” either.2 4

Unfortunately, even DIP allocations may not exist as demonstrated by Exam-
ple 2.

Example 2. An economy with no DIP allocation.

Let N ≡ {1, 2} and for each i ∈ N , Si ≡ N . Let R ∈ R be such that for each
i ∈ N,Ri is represented by ui : ∆(Si)→ R defined as follows:

For each π1 ∈ ∆(S1), u1(π1) = π12 and
for each π2 ∈ ∆(S2), u2(π2) = −(1

4
− π21)2.

Suppose that (π, p) ∈ Π×RM
+ is a DIP equilibrium. Only the relationship between

the prices p12 and p21 is relevant. For each possibility, we show that π /∈ Π: If
p12 > p21, then π12 = 0 and π21 = 1. If p12 < p21, then π12 = 1

4
and π21 = 0.

Finally, if p12 = p21, then π12 = 1
4

and π21 = 1. ◦

The difficulty here arises from the fact that “endowments” of each person are
on the boundaries of their consumption spaces. To deal with this, we redistribute
a small amount of each person’s endowment. Before proceeding, we define some
useful notation: for each S ⊆ N , let Λ(S) = {λ ∈ RS

+ :
∑

i∈S λi ≤ 1}. Clearly,

for each i ∈ N,∆(Si) ⊂ Λ(Si). For each R ∈ R, and each i ∈ N , let R̂i be an
extension of Ri from ∆(Si) to Λ(Si) such that R̂i is:

• strictly monotonic over Λ(Si) \∆(Si),

2A common good is one that is not excludable but has congestion effects. A club good is one
that can be consumed by any number of people simultaneously but is excludable.
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Figure 1: The preference relation R̂i which is an extension of Ri from ∆(Si) to
Λ(Si).

• continuous, and

• convex.

Claim 1. Such R̂ exists.

Proof: We describe the construction of one such profile (see Figure 1). First we
extend Ri to {xi ∈ RSi :

∑
j∈Si xij = 1} and then define R̂i over Λ(Si).

Let R̃i be a continuous and convex extension of Ri from ∆(Si) to {xi ∈ RSi :∑
j∈Si xij = 1} that is locally non-satiated except at the maxima of Ri over ∆(Si).
Let Mi ≡ argmax

∆(Si)

Ri. For each x ∈ ∆(Si), let Ii(x) ≡ {y ∈ ∆i : xi Ii yi}. For

each x ∈ ∆(Si), let
d(x) = min

y ∈ Mi
z ∈ Ii(x)

||z − y||.

That is, d(x) is the shortest distance between the indifference class of x and Mi.
Note that for all x, d(x) ≤

√
2. Define R̂i as follows: for each xi ∈ ∆(Si), let the

upper contour set of R̂i at xi be

U(R̂i, x) ≡ convex hull

((
1− d(x)

2

)
Mi ∪ U(R̃i, xi)

)
∩ RSi

+ .

Let wi ∈ {xi ∈ ∆(Si) : for each yi ∈ ∆(Si), yi Ri xi}. That is, wi is one of i’s
least preferred points in ∆(Si) at preference relation Ri. The preference map over
Λ(Si) \ U(R̂i, wi) is completed by translating the level set of wi.

We verify the following facts about R̂i:

• Convexity: By definition of R̂i, at each xi ∈ Λ(Si), U(R̂i, xi) is convex.

8



• Continuity: By definition of R̂i, at each xi ∈ Λ(Si), U(R̂i, xi) is closed.

• Strict monotonicity: We check that it is also strictly monotone over Λ(Si)\
∆(Si). Let xi ∈ Λ(Si) \ ∆(Si). Then, there are yi ∈ ∆(Si), mi ∈ Mi, and
α ∈ [0, 1) such that

xi = αyi + (1− α)

(
1− d(yi)

2

)
mi.

Let zi ≡
(

1− d(yi)
2

)
mi. Consider the triangle formed by the vectors mi, zi,

and yi. It suffices to show that the angle at the vertex yi is less than 45◦.
Since U(R̂i, xi) is comprehensive and xi Îi yi, the angle at yi is no more
than 45◦. Suppose it is 45◦. Since the distance between yi and mi is at
least d(yi), the distance between mi and zi is at least d(yi)√

2
. However, this is

a contradiction since ||zi − mi|| = d(yi)
2

< d(yi)√
2

. Finally, since R̃i is locally

non-satitated except at Mi, we conclude that R̂i is strictly monotonic over
Λ(Si) \∆(Si). 2

We are now ready to define our next solution.
Let ε ∈ (0, 1). An allocation π ∈ Π is an ε-double-indexed price (εDIP)

allocation if there is p ∈ RM
+ such that:

1. For each pair (i, j) ∈M ,

pii + pjj ≥ pij + pji.

2. For each pair (i, j) ∈M such that πij > 0.

pii + pjj = pij + pji.

3. For each i ∈ N ,

πi ∈ argmax
xi∈Λ(Si)

Ri

subject to∑
j∈Si

xijpij︸ ︷︷ ︸
Price of x′i

≤ (1− ε)pii +

(
ε

|n| − 1

) ∑
j∈N\{i}

pjj


︸ ︷︷ ︸

i’s income

.

We refer to (π, p) as an εDIP equilibrium.
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The two conditions on the price vector are profit maximization conditions for
hypothetical firms that produce partnerships, taking the individuals as inputs. Let
Dε(R) be the set of all εDIP allocations at R. As we will show, for each ε ∈ (0, 1)
and each R ∈ R, there is an εDIP allocation.

Note that if we set ε = 0, the above definition coincides with that of a DIP
allocation.

We now define our last solution. An allocation π ∈ Π is a limit DIP (lim-
DIP) allocation if there is a sequence {πε}ε∈(0,1) ∈ Π such that

i) for each ε ∈ (0, 1), πε ∈ Dε(R) and
ii) lim

ε→0
πε = π.

Let Dl(R) be the set of all limit DIP allocations. In Section 5 We will show that
Dl(R) ⊆ C(R).

4 Existence of a core allocation

Theorem 1. For each R ∈ R, C(R) 6= ∅.

Proof: Let R ∈ R. We proceed by associating with R an NTU game and then
showing that it is “balanced.”

For each i ∈ N , let ui : ∆(Si)→ R be a numerical representation of Ri. That
is, for each pair πi, π

′
i ∈ ∆(Si),

ui(πi) ≥ ui(π
′
i)⇔ πi Ri π

′
i.

For each S ⊆ N , let

V S ≡

vS ∈ RS : there is πS ∈ Π such that for each i ∈ S,

∑
j∈S

πSij = 1 and

vi ≤ ui(π
S
i )

 .

Let T ⊆ P(N) be a collection of subsets of N . If there is (δS)S∈T ∈ RT
+ such that

for each i ∈ N , ∑
S ∈ T

s.t. i ∈ S

δS = 1,

then T is balanced.
The game (V S)S∈N is balanced if for each v ∈ RN and each balanced collec-

tion T ,
if for each S ∈ T, vS ∈ V S, then v ∈ V N .3

10



By verifying that (V S)S⊆N is balanced, we conclude that C(R) 6= ∅ (Scarf 1967).4

Let T be a balanced collection with weights δ. Let v ∈ RN be such that

for each S ∈ T, vS ∈ V S.

Then, for each S ∈ T , there is πS ∈ Π such that for each i ∈ S,
∑

j∈S π
S
ij = 1 and

vi ≤ ui(π
S
i ). Define π ∈ RN×N

+ by setting for each i ∈ N and each j ∈ Si,

πij ≡

{ ∑
S ∈ T

s.t. i ∈ S

δSπ
S
ij if j ∈ Si and

0 otherwise.

For each i ∈ N ,∑
j∈Si

πij =
∑
j∈Si

∑
S ∈ T

s.t. i ∈ S

δSπ
S
ij =

∑
S ∈ T

s.t. i ∈ S

δS
∑
j∈Si

πSij =
∑
S ∈ T

s.t. i ∈ S

δS · 1 = 1.

Further, for each j ∈ Si \ {i} and each S ∈ T , πSij = πSji and,

πij =
∑
S ∈ T

s.t. i ∈ S

δSπ
S
ij =

∑
S ∈ T

s.t. i, j ∈ S

δSπ
S
ij =

∑
S ∈ T

s.t. j ∈ S

δSπ
S
ji = πji.

Thus, π ∈ Π.
For each i ∈ N , since πi is a convex combination of (πSi )S ∈ T

s.t. i ∈ S

and since Ri is

convex, ui(πi) ≥ min
S ∈ T

s.t. i ∈ S

ui(π
S
i ) ≥ vi and v ∈ V N . Thus (V S)S⊆N is balanced and

C(R) 6= ∅. 2

5 Nonemptiness of lim-DIP

We first show that an εDIP always exists. Since Π is compact, we then conclude
that a lim-DIP exists (Theorem 2).

Proposition 1. For each ε ∈ (0, 1) and R ∈ R, Dε(R) 6= ∅.

3For each v ∈ RN and each S ⊆ N , we denote the projection of v onto the coordinates in S
by vS .

4Note that we appeal to the sufficient condition for nonemptiness of the core for NTU games
by Scarf (1967) rather than the necessary and sufficient conditions for TU games by Bondareva
(1962) and Shapley (1965).
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Figure 2: The preference relation R̂i which is an extension of Ri from ∆(Si) to
Λ(Si).

Proof: We proceed by embedding R in an Arrow-Debreu model. We then show
the existence of a competitive equilibrium of this augmented economy (McKenzie
1959, Arrow and Hahn 1971). We conclude by showing that this competitive
equilibrium corresponds to an εDIP of R.

Step 1: Embed R in a classical economy.
For each i ∈ N , let i’s consumption space be Xi ⊆ RM

+ defined by

x ∈ Xi ⇔ (xij)j∈Si ∈ RSi
+ and for each pair (j, k) ∈M such that j 6= i, xjk = 0.

That is, Xi ≡ RSi
+ × {(0, . . . , 0)}. By definition, Xi is closed and convex.

A notable feature of these consumption spaces is that for each pair i, j ∈ N
Xi ∩Xj = {0}.

Note that Λ(Si) × {0} ⊆ Xi. For each i ∈ N , we now extend R̂i (defined in
Section 3) from Λ(Si) to Ri over Xi (see Figure 2).

For each xi ∈ Λ(Si), let the upper contour set of Ri at xi be

U(Ri, xi) ≡ comp U(R̂i, xi).
5

Since for each mi ∈Mi, U(Ri,mi) is convex, the preference map in this region
is completed by translating the level set of Mi.

Clearly, Ri is continuous, convex, monotone, and strictly monotone over Λ(Si) \∆(Si)

Let F be a set of |M |−|N |
2

firms. Label these firms by unordered (distinct) pairs
from N , a generic member being {i, j}. The production set of {i, j} ∈ F is

Y{i,j} ≡
{
y ∈ R{ij,ji,ii,jj} : yij = yji = −yii = −yjj

}
× {0} ⊂ RM .

5Denote the “upper comprehensive hull” of X ⊆ Rl by comp (X) ≡ X + Rl
+.
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Note that Y{i,j} is closed and convex.
For each {j, k} ∈ F and each i ∈ N , let σi({j, k}) be i’s share of {j, k}. Thus,

for each {j, k} ∈ F,
∑

i∈N σi({j, k}) = 1.
Finally, for each i ∈ N , let ωi ∈ RM

+ be such that for each pair k, j ∈ N ,

ωikj =


1− ε if i = j = k,
ε

|N |−1
if i 6= j = k, and

0 otherwise.

Let ω ≡ (ωi)i∈N .
We have now specified an exchange economy with productionE ≡ (X, Y,R, ω, σ).

Step 2: Check that E has a competitive allocation.
Since the set of goods that each person is endowed with is the same, E is

“irreducible” (McKenzie 1959) (alternatively, we could have shown that it satisfies
“resource relatedness” (Arrow and Hahn 1971)). Let Y ≡

∑
{i,j}∈M Y{i,j} + ω and

X ≡
∑

i∈N Xi. We have the following:

1. For each i ∈ N , Xi is convex, closed, and bounded from below.

2. For each i ∈ N , Ri is continuous, convex, and weakly monotonic.

3. For each i ∈ N,Xi ∩ Y 6= ∅.

4. For each {i, j} ∈M , Y{i,j} is closed and convex.

5. Y ∩ RM
+ = {0}.

6. ω is in the relative interiors of Y and X.

7. Irreducibility (McKenzie 1959): For each bi-partition N1, N2 of N , if xN1 ∈
Y −

∑
i∈N2

Xi, then there is w ∈ Y −
∑

i∈N2
Xi and x′ ∈ X such that

w =
∑

i∈N1
x′i −

∑
i∈N2

xi and for each i ∈ N1, x
′
i Ri xi with x′i Pi xi for at

least one i ∈ N1.

By Theorem 2 of McKenzie (1959), E has a competitive allocation (x, y, p) ∈
X × Y × RM

+ .

Step 3: Show that (x, p) ∈ Dε(R).
We check that for each i ∈ N, xi ∈ ∆(Si). From this, we conclude that

x ∈ Dε(R). Suppose that there is i ∈ N such that xi /∈ ∆(Si).
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Case 1:
∑

j∈Si xij > 1. Then,
∑

j∈Si\{i} xij + xii > 1 =
∑

j∈N ω
j
ii.

For each j ∈ Si \ {i}, xij ≤ y
{i,j}
ij = −y{i,j}ii .

Thus,
∑

j∈Si\{i} xij ≤ −
∑

j∈Si\{i} y
{i,j}
ii ,

Finally, we establish that xii ≥ ωii +
∑

j∈Si\{i} y
{i,j}
ii . This violates the feasi-

bility of (x, y) for E.

Case 2:
∑

j∈Si xij < 1. Let α = 1 +
∑

j∈Si\{i} y
{i,j}
ii . By feasibility, α ≥ xii. If α > xii

then, let x′ ∈ X be such that x′ii = α and for each j ∈ N \ {i}, xj ′ = xj and
x′ij = xij. Since Ri is strictly monotone at x, we know that x′i P i xi. This

violates the Pareto-efficiency of (x, y) at R (which is a competitive allocation
for E).

Thus, 1 +
∑

j∈Si\{i} y
{i,j}
ii = xii. So, xii −

∑
j∈Si\{i} y

{i,j}
ii = 1 >

∑
j∈Si xij.

From this, we conclude that there is j ∈ Si \ {i} such that xij < −y{i,j}ii =

y
{i,j}
ij . Let x′ ∈ X be such that for each k ∈ N \ {i}, xk ′ = xk, for each

k ∈ Si \ {j}, x′ik = xik, and x′ij = y
{i,j}
ij . Since Ri is strictly monotone at

x, we know that x′i P i xi. This violates the Pareto-efficiency of (x, y) at R
(which is a competitive allocation for E).

Since
∑

j∈Si xij = 1 and xii = 1−
∑

j∈Si y
{i,j}
ij , we have

∑
j∈Si xij =

∑
j∈Si y

{i,j}
ij .

Since for each j ∈ Si \ {i}, xij ≤ y
{i,j}
ij , we have xij = y

{i,j}
ij . Since for each

{i, j} ∈ F, y{i,j}ij = y
{i,j}
ji , we deduce that xij = xji.

Since (x, y, p) is an equilibrium, for each pair i, j ∈ N , if y
{i,j}
ij = y

{i,j}
ij > 0 then

pij + pji = pii + pjj. Otherwise, pij + pji ≥ pii + pjj.
As we have established, for each i ∈ N, xi ∈ ∆(Si). From the definition of Y{i,j}

for each {i, j} ∈M , we have xij = xji. Thus, x ∈ Π. It is clear that that for each
i ∈ N , πi ∈ ∆(Si) :

∑
j∈Si

πijpij ≤ (1− ε)pii +

(
ε

|n| − 1

) ∑
j∈N\{i}

pjj



⊆{
xi ∈ Xi :

∑
j∈Si

xijpij ≤ p · ωi
}

Thus, (x, p) is a εDIP equilibrium at R and x ∈ Dε(R). 2

We now establish that an lim-DIP allocation always exists.
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Theorem 2. For each R ∈ R, Dl(R) 6= ∅.

Proof: For each ε ∈ (0, 1), let πε ∈ Dε(R) (this is possible since Dε(R) 6= ∅).
Since Π is compact, π ≡ lim

ε→0
πε is well defined and π ∈ Dl(R). 2

An appealing property of lim-DIP is that it is a subsolution of the core.
To prove this, we will use the following definitions. Recall the definition, for

each R ∈ R, of R̂ in Section 3.

Let ε ∈ (0, 1). Let S ⊆ N and αS ≡ 1 −
(
|N |−|S|
|N |−1

)
ε. We say that S ε-blocks

π ∈ Π if there is xS ∈ ×
i∈S

Λ(Si) such that:

1. For each i ∈ S and each j ∈ S ∩ Si, xSij = xSji, and

2. For each i ∈ S,

i)
∑

j∈Si∩S

xSij = 1−
(
|N | − |S|
|N | − 1

)
ε,

ii)
∑
j∈Si\S

xSij = 0, and

ii) xSi P̂i πi.

The ε-core, Cε(R), is the set of allocations are not ε-blocked by any coalition.

Lemma 1. For each R ∈ R, Dε(R) ⊆ Cε(R).

Proof: Let π ∈ Dε(R) and (π, p) is an εDIP equilibrium. Suppose that S ⊆ N
ε-blocks xS. Then, for each i ∈ S,

∑
j∈Si∩S

pijx
S
ij > pii(1− ε) +

 ∑
j∈N\{i}

pjj

 ε

|N | − 1
.

Summing over all members of S,

∑
i,j∈S

pijx
S
ij >

(∑
i∈S

pii

)(
1− |N | − |S|

|N | − 1
ε

)
+

 ∑
i∈N\S

pii

 |S|ε
|N | − 1

.

However, for each (i, j) ∈M , pii + pjj ≥ pij + pji and so,∑
i,j∈S

pijx
S
ij ≤

(∑
i∈S

pii

)(
1− |N | − |S|

|N | − 1
ε

)
.
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From this contradiction we conclude that π ∈ Cε(R). 2

Next, we show that the limit of a sequence of ε-core allocations, as ε goes to
zero, is a core allocation.

Lemma 2. For each R ∈ R, and each sequence {πε}ε∈(0,1) such that for each
ε ∈ (0, 1), πε ∈ Cε(R), lim

ε→0
πε ∈ C(R).

Proof: Let π ≡ lim
ε→0

πε. Suppose that π /∈ C(R). Then there is S ⊆ N and πS

such that for each i ∈ S,

i)
∑

j∈S π
S
ij = 1 and

ii) πSi Pi πi.

Let V be a neighborhood of π and V S be a neighborhood of πS such that for each
v ∈ V , each vS ∈ V S, and each i ∈ S,

vSi R̂i vi.

Since R̂i is continuous, such V and V S exist. For ε small enough, πε ∈ V and

(1−
(
|N |−|S|
|N |−1

)
ε)πS ∈ V S. This contradicts πε ∈ Cε(R). 2

We finally establish that the set of lim-DIP allocations is a subset of the core.

Theorem 3. For each R ∈ R, Dl(R) ⊆ C(R).

Proof: This follows directly from Lemmas 1 and 2. 2

6 Applications

In this section, we consider, in more detail, each of the applications mentioned in
the introduction.

6.1 Probabilistic (heterosexual) marriage problems

Let M be a set of men and W be a set of women. A deterministic matching either
associates each person with a mate of the opposite sex or leaves them single.

As with other problems involving indivisibilities, randomization is one way to
bring a sense of justice to a matching process (Aldershof et al. 1999, Klaus and
Klijn 2006, Sethuraman et al. 2006). A common approach is to randomize only
over the ex post core (or the stable set) (Sethuraman et al. 2006). However, if
groups are able to commit to probabilistic allocations among themselves, a notion
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of ex ante stability is called for. That is, we should look for probabilistic matchings
that are in the core with respect to their preferences over lotteries.6

To encode these problems in our model, let N ≡M ∪W . For each m ∈M , let
Sm ≡ {m} ∪W and for each w ∈ W , let Sw ≡ {w} ∪M . For each i ∈ N , let Ri

be i’s linear (von Neumann-Morgenstern) preferences over ∆(Si).
The following is an implication of Theorem 2:

Corollary 1. Every probabilistic marriage problem has a lim-DIP allocation.

By considering preferences over lotteries, rather than just preferences over in-
dividual partners, we are able to account for intensities of preferences and achieve
ex ante efficiency gains. The following example emphasizes this.

Example 3. A probabilistic marriage problem where every lim-DIP allocation
Pareto dominates the unique stable allocation.

Let M ≡ {m1,m2} and W ≡ {w1, w2}. Let their preferences over lotteries be
such that they maximize the expectation of the index in the left hand column of
the following table:

Index Rm1 Rm2 Rw1 Rw2

1 w1 w2 m2 m1

0.1 m1 m2 w1 w2

0 w2 w1 m1 m2

The unique ex-post stable matching is πxp ∈ Π where for each i ∈ N , πxpi (i) = 1.
For each i ∈ N , let bi ∈ Si be i’s most preferred (best) mate and li be i’s least
preferred (worst) mate. Then, for each π ∈ Dl(R), 0.9 ≥ πi(bi) ≥ 0.1 and πi(i) = 0.
Thus, π Pareto dominates πxp. Note that this is not an unusual example. As long
as for each i ∈ N , the intensity of preference for bi over i is greater than the
intensity of preference for i over li, each π ∈ Dl(R) Pareto dominates πxp. ◦

6.2 Trade under bilateral constraints

Suppose there is a group V of vendors of some good, and a group of buyers B.
However, not every vendor can sell to every buyer. Instead, a graph G ⊆ V × B
dictates which vendor-buyer pair can trade (Bochet et al. 2010): the pair v ∈
V, b ∈ B can trade only if (v, b) ∈ G. Each v ∈ V has single peaked preferences,
R̂v, over the amount that he sells. Each b ∈ B has single peaked preferences, R̂b,
over the amount that he purchases. Since preferences are defined over the real
line, we pick suitable bounds and normalize so that the maximum any buyer can

6See Manjunath (2011) for more on probabilistic marriage problems.
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Figure 3: Let i ∈ N be such that Si ≡ {i, j, k}. We construct Ri from R̂i.

purchase or seller can sell is one unit.7 The goal is then to specify an amount for
each vendor to sell and for each buyer to purchase.

This model can be embedded in ours as follows: Let N ≡ V ∪ B. For each
v ∈ V , let Sv ≡ {v} ∪B and for each b ∈ B, let Sb ≡ {b} ∪ V . For each i ∈ N , let
Ri be such that for each πi, π

′
i ∈ ∆(Si), (see Figure 3)

πiRiπ
′
i ⇔

(∑
j∈Si

πi(j)

)
R̂i

(∑
j∈Si

π′v(j)

)
.

The following is an implication of Theorem 2:

Corollary 2. Every problem of trade under bilateral constraints has a lim-DIP
allocation.

Our model can accommodate two natural generalizations of these problems:

1. Diverse vendors and buyers. Corollary 2 holds for more general preferences
on the part of both buyers and vendors. For instance, the vendors need not
sell identical goods. The only restrictions on preferences are that, as listed
earlier, they are continuous, convex, and locally non-satiated except at the
maxima.

7While Bochet et al. (2010) do not assume that such a bound exists, if we apply their “vol-
untary participation” axiom, such a normalization is possible.
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2. More general graphs. Rather than work with a bipartite graph such as G,
Theorem 2 applies to a larger set of trading constraints. For instance, we can
consider a situation where each person i owns an input that he can either
sell to a set of buyers Bi or can combine with other inputs that he buys from
the vendors Vi. Then, for each i ∈ N , and each v ∈ Vi, i ∈ Bv and for each
b ∈ Bi, i ∈ Vb. Thus, Si ≡ {i} ∪ Vi ∪ Bi and Ri is such that for each pair
πi, π

′
i ∈ ∆(Si), ∑

b∈Bi πi(b) ≥
∑

b∈Bi π
′
i(b)

and∑
b∈Bi πi(b) ≥

∑
v∈Vi π

′
i(v)

⇒ πi Ri π
′
i.

6.3 School Choice

Let S be a set of schools and C be a set of children. For each c ∈ C, let Rc be c’s
(more likely, his parents’) von Neumann-Morgenstern preferences ∆(S). For each
s ∈ S, let ≺s be a priority ordering of children for school s which involves large
indifference classes. Let Rs be von Neumann-Morgenstern preferences over ∆(C)
that are consistent with ≺s. Call (RC , RS) an “augmented school choice problem.”

We can now select an lim-DIP allocation.

Corollary 3. Every augmented school choice problem has a lim-DIP allocation.

In real-world school choice problem, ties are broken randomly (Erdil and Ergin
2008, Abdulkadiroğlu et al. 2010, Pathak and Sethuraman 2010) and used as inputs
for deterministic algorithms like the Boston and deferred acceptance algorithms.
Since these algorithms only consider ordinal information in students’ preferences,
there are ex ante efficiency losses (Abdulkadiroğlu et al. 2010). These losses can
be avoided by modeling these problems as fractional matching problems.

Example 4. A school choice problem.8

Let S ≡ {s1, s2, s3} and C ≡ {c1, c2, c3}. For each s ∈ S, let ≺s be degenerate
so that each child has the same priority. Let RC be defined by the following von
Neumann-Morgenstern indices:

uc1 uc2 uc3
s1 0.8 0.8 0.6
s2 0.2 0.2 0.4
s3 0.0 0.0 0.0

Since each child has the same preferences over individual schools, both the Boston
and deferred acceptance algorithms single out the same recommendation: equal

8Taken from Abdulkadiroğlu et al. (2010).
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probability for each child at each school. This, however, is inefficient. Consider
the allocation π ∈ Π such that πc1s1 = πc1s3 = 0.5, πc2 = πc1 and πc3s2 = 1. Clearly
π Pareto-dominates equal division (see Figure 4). Further, since for each s ∈ S,
Rs is complete indifference, π ∈ lim−DIP (RC , RS).

s3 s2

R3

R1, R2

π3

π1, π2

(1
3
, 1
3
, 1
3
)

s1

Figure 4: Clearly, equal division is dominated by π at (RC , RS).

6.4 Workers and employers

Let E be a set of employers and W be a set of workers. For each e ∈ E, let Re

be e’s preferences over RW
+ . For each w ∈ W , let Rw be w’s preferences over RE

+.
Each w ∈ W has a unit supply of labor and each e ∈ E can hire at most one unit
of labor. The goal is to assign a work schedule to each worker. An allocation in
the core of such a problem ensures participation of all groups. It is easy to see
that, as in the applications above, this problem is a special case of our model.

The following is an implication of Theorem 2:

Corollary 4. Every problem of workers and employers has a lim-DIP allocation.

Example 5. A problem involving workers and employers.

Let E ≡ {e1, e2} and W ≡ {w1, w2}. Let the preferences of each e ∈ E be
as shown in Figure 5. Let the preferences of each w ∈ E be as shown in Figure
6. While there are many lim-DIP allocations for this economy, Figure 7 is an
illustration of one of them.
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Figure 5: Preferences of e1 and e2.

Rw2

w1 e2

e1

w2 e2

e1

Rw1

Figure 6: Preferences of w1 and w2.

7 Kinds of people

In this section, we describe a more general model than the one analyzed so far. In
particular, we introduce the notion of a kind for each person and show that the

21



Budget set

πe2
πe1

πe1(w1)

πw1

πw2

πw1(e2)

πe2(w1)

πw1(e1)

Rw1

w1

w2

e2

Rw2

w1 e2

e1

w2 e2
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Figure 7: An lim-DIP equilibrium for the economy described in Figures 5 and 6
that can actually be supported by prices.

prices of an lim-DIP allocation can be indexed by kinds rather than identities.
Recall that the lim-DIP equilibria are somewhat like Lindahl equilibria as ex-

plained in Remark 1. A common indictment of Lindahl allocations, however, is
that as the number of people involved increases, the number of prices must also
increase. While prices are “personalized” in the definition of an lim-DIP equilib-
rium, we show here that they only need to be indexed by the kind of person and
not his identity. The role of double-indexing is to reflect the “preferences of the
resource.” Suppose that two people are identical to the rest of the world. Since
they are identical, anyone matched to them is indifferent between the two. The
two should then face the same prices. Here, we generalize our earlier definitions
and results to reflect this.

Let K be a set of kinds. For each t ∈ K, let St ⊆ K be such that t ∈ St.
The set of potential partner kinds of t are St \ {t}. As before, let N be the
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set of people involved. Let κ ∈ KN be such that for each i ∈ N , i’s kind is κi.
For each pair s, t ∈ K if s ∈ St then t ∈ Ss. For each i ∈ N , i’s consumption
set is ∆(Sκi). Let Ri, i’s preference relation over ∆(Sκi), be continuous, convex,
and locally non-satiated except at its maxima. We require Ri to satisfy local non-
satiation except at its maxima on ∆(Sκi). Let Ri be the set of all such preferences.
Let (Nt)t∈K be a partition of N such that for each t ∈ K,Nt ≡ {i ∈ N : κi = t}.
An economy is described by a profile of preferences R ∈ R ≡ ×i∈NRi and a
profile of kinds κ ∈ KN .

A feasible allocation specifies for each i ∈ N a consumption bundle πi ∈ ∆(Sκi)
in a way that for each t ∈ K and each s ∈ St,∑

i ∈ Nt
j ∈ Ns

πij =
∑
i ∈ Nt
j ∈ Ns

πji.

Let Π be the set of feasible allocations.
Let M ⊆ K ×K be such that (s, t) ∈ M if and only if s ∈ St and t ∈ Ss. An

allocation π ∈ Π is a double-indexed price (DIP) allocation at R if there is
a vector p ∈ RM

+ such that for each i ∈ N ,

πi ∈ argmax
π′
i∈∆(Sκi )

Ri

subject to∑
t∈Sκi

π′itpκit︸ ︷︷ ︸
Price of π′

i

≤
∑
t∈Sκi

∑
j∈Nt

π′jκiptκi︸ ︷︷ ︸
i’s income at π′

,

and π ∈ Π. We interpret the price vector as follows: for each (s, t) ∈M , pst is the
price that each i ∈ Ns pays for a partnership with someone of kind t.

We refer to (π, p) as a DIP equilibrium. Let D(R) be the set of all DIP
allocations at R.

Of course, for the same reasons as before, D(R) may be empty. So we define
εDIP and lim-DIP allocations here as well. While the definition of εDIP equilib-
rium is nearly the same as before, there are a few minor differences that we will
highlight.

For each i ∈ N , Λ(Sκi) ≡ {λ ∈ RSκi
+ :

∑
t∈Sκi

λt ≤ 1 + ε|Nκi |}. Clearly, for

each i ∈ N,∆(Sκi) ⊂ Λ(Sκi). For each R ∈ R and each ε ∈ (0, 1), let Rε
i be an

extension of Ri from ∆(Sκi) to Λ(Sκi) such that Rε
i is:

• strictly monotonic over {λ ∈ Λ(Sκi) :
∑

t∈Sκi
λt < 1},

• continuous,
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• convex, and

• For each pair x, y ∈ Λ(Sκi) if
∑

t∈Sκi
xt < min{1−ε,

∑
t∈Sκi

yt}, then y P ε
i x.

That is, if the sum of x’s coordinates are less than 1 − ε, then any point
whose coordinates have a greater sum is preferred to x.

Claim 2. Such Rε exists.

Proof: The proof is identical to that of Claim 1 with only a few changes. For
each x ∈ ∆(Sκi),

U(R̂i, x) ≡ convex hull

((
1− d(x)ε

2

)
Mi ∪ U(R̃i, x)

)
∩ RSκi

+

Then, we complete the preference map over Λ(Sκi) in a way that indifference curves
through any point x such that

∑
t∈Sκi

xt ≤ 1−ε are parallel to the simplex ∆(Sκi).

The remainder of the proof remains the same as that of Claim 1 and the extension
of R̂ to the positive orthant in the proof of Proposition 1. 2

We say that π ∈ Π is an εDIP allocation if there is p ∈ RM
+ such that for

each pair (s, t) ∈M ,
pss + ptt ≥ pst + pts,

for each (s, t) such that
∑
i ∈ Ns
j ∈ Nt

πij > 0,

pss + ptt = pst + pts,

for each i ∈ N ,

πi ∈ argmax
xi∈Λ(Sκi )

Ri

subject to∑
j∈Si

xijpij︸ ︷︷ ︸
Price of x′i

≤ (1− ε)pii +

(
ε

|n| − 1

) ∑
j∈N\{i}

pjj


︸ ︷︷ ︸

i’s income

,

and for each pair (i, j) ∈M , ∑
i ∈ Nt
j ∈ Ns

πij =
∑
i ∈ Nt
j ∈ Ns

πji.

The “clearing” condition here is more permissive. The allocation π need not a
feasible allocation itself. However, it is “within ε” of one.
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Proposition 2. For each ε ∈ (0, 1) and each (R, κ) ∈ R×KN , εD(R, κ) 6= ∅.

Proof: This proof is very similar to that of Proposition 1. Once preferences are
extended to the positive orthant, and the problem is encoded as an Arrow-Debreu
model. For each i ∈ N , i’s consumption space is

Xi ≡ RSκi
+ × {0} ⊂ RM

+ .

Define the extension R
ε

i of Rε
i to Xi exactly as in the proof of Proposition 1.

For each x ∈ Λ(Sκi), set

U(R
ε

i , x) ≡ comp U(Rε
i , x).

Define Mi as before and and translate the preference map over U(R
ε

i ,Mi).
Firms are defined the same way, except that the are indexed by pairs of kinds

rather than pairs of people. The production set of firm (s, t) ∈ F is

Y{s,t} ≡
{
y ∈ R{st,ts,ss,tt} : yst = yts = −yss = −ytt

}
× {0} ⊂ RM .

For each i ∈ N , i’s endowment is ωi ∈ RM
+ such that for each pair s, t ∈ K,

ωist =


1− ε if s = t = κi,
ε

|N |−1
if j = k 6= κi, and

0 otherwise.

For each {s, t} ∈ F , and each i ∈ N , let σi({s, t}) be i’s share of {s, t}. Thus,
for each {s, t} ∈ F,

∑
i∈N σi({s, t}) = 1.

As before, the economy E ≡ (X, Y,R
ε
, ω, σ) has a competitive allocation

(x, y, p) ∈ X × Y × RM
+ . We show that (x, p) is actually an εDIP equilibrium.

Since (x, y, p) is a competitive equilibrium, for each i ∈ N , xi R
ε

i (1− ε)δi. Then,
by definition of Rε and therefore R

ε
, for each i ∈ N ,

∑
t∈Sκi

xit ≥ 1− ε. Thus, by

feasibility, for each t ∈ K and i ∈ N ,
∑

t∈Sκi
xit ≤ 1 + ε|Nt|. Finally, as argued in

the proof of Proposition 1, by definition of Y and feasibility,∑
i ∈ Nt
j ∈ Ns

πij =
∑
i ∈ Nt
j ∈ Ns

πji.

2

As before, an allocation π ∈ Π is a limit DIP (lim-DIP) allocations if there
is a sequence {πε}ε∈(0,1) ∈ Π such that

i) for each ε ∈ (0, 1), πε ∈ Dε(R) and
ii) lim

ε→0
πε = π.

Let Dl(R) be the set of all limit DIP allocations..
From Proposition 2 we have the following.

Theorem 4. For each (R, κ) ∈ RN ×KN , Dl(R, κ) 6= ∅.
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7.1 Discussion regarding kinds

There are two distinct benefits to adding kinds to our model. The first is that two
people who are, for all intents and purposes, the same should be given the same
opportunities. The lim-DIP solution does exactly that. Since prices are indexed
by kind rather than identity, each person of a particular kind is faced with exactly
the same “budget set.” If prices are indexed by identities, then identical people
may be treated differently.

The second is to apply our model to situations where no person is unique in the
eyes of others. Take, for instance, a school district where each school has a large
number of seats and large groups of students have identical priorities at each of
the schools. Or think of a problem involving many workers and many tasks where
there are many workers with identical skills and many tasks that are identical.

Unlike Lindahl equilibria, as the number of people involved increases, as long
as there number of kinds remains fixed, the dimension of the price vector remains
fixed. Since εDIP equilibria are actually general equilibria of appropriately defined
Arrow-Debreu models for fixed utility representations, the gains from misreporting
preferences diminish as the number of people of each kind increases.
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