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Abstract. We design a class of indirect mechanisms, the Approval ones, which allow the play-

ers’ strategies to coincide with the subsets of the outcome space. By focusing on the single-

peaked domain, we prove that: a) each of these mechanisms is characterized by a unique

equilibrium outcome and b) essentially for every implementable welfare optimum (outcome

of a social choice rule), including the Condorcet winner alternative, there exists an Approval

mechanism that unanimously implements it. That is, Approval mechanisms help a society

achieve every feasible welfare goal and, perhaps more importantly, they promote social coher-

ence: the implemented outcome is approved by everyone.
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1. Introduction

Democratic entities, once they set their fundamental welfare goals, try to achieve them by
adopting decision making procedures which allow the equal participation of all individu-
als. These democratic decision making procedures may be broadly split in two categories:
voting and deliberation. Voting requires agents to take actions in support of certain policy
alternatives and then, given the action profile and the particular voting rule, an alternative is
implemented. In the literature, a voting mechanism is a (simultaneous or sequential) game
with formal structure, whose unique equilibrium outcome1 coincides with a specific welfare
optimum - that is, with the outcome of a social choice rule (Maskin [1999]). Indeed, in stan-
dard decision making frameworks well-defined voting mechanisms exist and implement a
variety of welfare optima/social choice rules. For example, in the context of single-peaked
preferences, as recently shown by Gershkov et al. [2015], sequential quota mechanisms may
implement any (generalized) median rule.2 On the other hand, deliberation requires agents
to engage in rounds of, more or less, informal discussions and negotiations until a consen-
sual decision is reached. These procedures guarantee that the outcome reflects the interests
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of all members (Innes and Booher [1999]) and they are employed in high-stakes decision
making (for example, by the UN Security Council and by the European Council).

Both of these approaches to democracy have deep philosophical grounds and, despite
their apparent differences, they complement each other. Arriving to unanimous decisions
through deliberations is usually deemed superior to just voting since it leads to collective
harmony. But it is also more costly. That is, a collective decision problem is commonly
solved by voting when the costs of deliberation surpass the potential costs of post-decision
confrontation and clash. When a collective body is composed of a small number of entities
(such as the 28 countries of the EU) among which clash and confrontation has been proved
to be very costly in the past (for example, by the experience of the two world wars), it is
straightforward that deliberation is the optimal choice.3 When a collective body, though, is
too large for deliberation to take place in an effective manner and/or costly clash among the
participating members is not likely to occur, then voting mechanisms are more likely to be
adopted.

Since the advantage of deliberative democracy is the implementation of a consensual al-
ternative and hence the minimization of post-decision confrontation and clash among par-
ticipating entities (at the expense of reaching this decision after a possibly long period),
while the advantage of voting is the low cost of decision making (at the expense possibly
generating post-decision conflicts), would not it be desirable to implement welfare optima
via voting mechanisms that generate unanimous outcomes?

In this paper, we focus on the framework of single-peaked preferences4 and we design
a class of indirect mechanisms, the Approval ones, which do precisely this - they bring to-
gether the described positive features of voting (low decision making costs) and deliberation
(unanimous decisions). These mechanisms allow every player to support, not just a single
alternative, but as many alternatives as one wants (an arbitrary interval within the unit in-
terval). After all individuals report their sets of approved alternatives, a publicly known
aggregation rule is applied and an alternative is implemented. These aggregation rules
might take very simple forms. The most intuitive examples are arguably the median and
the mean aggregation rule. When players submit their sets of approved alternatives a dis-
tribution of approvals is generated: the density of this distribution at x ∈ [0,1] is identical
to the number of individuals that have approved of alternative x, normalized by the total
measure of approvals. The median (resp. mean) aggregation rule simply implements the
median (resp. mean) of this distribution.

Our main finding is that (under some mild restrictions) every implementable welfare opti-
mum may be unanimously implemented by some anonymous Approval mechanism. An Approval

3Moreover, elected officials that take decisions using advice from committees of experts are much more com-
fortable following unanimous recommendations than suggestions which are disputed by a number of experts
in the committee. Unanimous recommendations minimize the responsibility of the decision maker and make
her less accountable to groups of citizens that are negatively affected by her decisions. In addition, when
experts agree on a policy recommendation, it is hard for elected officials to succumb to interest groups’ pres-
sures and neglect experts’ advice, and this should maximize probability of informed decision making. These
are only a few extra reasons why the consensus building literature was developed (see for example Bessette
[1980], Gutmann and Thompson [1996], Gutmann and Thompson [2002] and Fishkin and Laslett [2003]).
4The set of alternatives is A = [0,1] and the set of possible preference relations consists of the single-peaked
ones on A.
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mechanism is understood to unanimously implement a welfare optimum/social choice rule
if: a) it implements it in every Nash equilibrium and b) there is at least one equilibrium in
which each player includes in his strategy (set of approved outcomes) the implemented out-
come. The equilibrium strategies of most players take an easy ”I approve every alternative
at most (least) as large as the implemented alternative” form. In fact, every player with a
preferred alternative to the left (right) of the implemented one approves the implemented
alternative and all the alternatives to its left (right). That is, in equilibrium at most one
player may not include the implemented outcome and his own ideal outcome in his strat-
egy, and this player’s ideal outcome must coincide with the implemented one. Hence, every
equilibrium is substantially unanimous in the sense that, for each voter, the implemented
outcome and his ideal one are either both contained in his strategy or they coincide with
each other.

Notice that in the context of single-peaked voting, the implementable welfare optima es-
sentially coincide with the outcomes of (generalized) median rules. Indeed, as proved by
Moulin [1980] (generalized) median rules are the unique social choice rules that satisfy ef-
ficiency and strategy-proofness, while Berga and Moreno [2009] established strategy-proof
rules that are ”not too bizarre” (in the context of Sprumont [1995])5 are the only imple-
mentable ones. This allows us to provide, beyond the existence results, a transparent char-
acterization of the unique equilibrium outcome of each Approval mechanism. Moreover, it
gives us the tools to design explicitly an Approval mechanism for each (generalized) median
rule - including one for the pure median rule (also known as the Condorcet rule or, simply,
majority rule). Hence, in the end of the paper we explain how to construct an Approval
mechanism that implements any given (generalized) median rule and we provide the Ap-
proval mechanism that unanimously implements the ideal policy of the median voter (Con-
dorcet winner alternative). Finally, the fact that in equilibrium players approve, not only
the implemented outcome, but their ideal one as well, indicates that these rules, beyond
unanimity, promote sincere revelation of preferences to a certain extent.

The Approval mechanisms can be applied to a variety of decision-making problems. Con-
sider for example a number of judges who disagree on the quality of an athletic performance
(for example, in gymnastics or in figure skating) and that have to jointly assign a score to
this performance, while each of them wants the joint score to be as close as possible to her
individual performance evaluation. Another potential application is the determination of
LIBOR or the board members of the European Central Bank (ECB) deciding over the inter-
est rate from a closed and convex set of interest rates (see Cai [2009], Rausser et al. [2015]
and Rosar [2015] among others for recent analysis).6 Our Approval mechanisms can be of

5That is, we restrict attention to anonymous rules that implement each of the alternatives for at least one
preference profile (full-range).
6The London Interbank Offered Rate (Libor) is the interest rate at which banks can borrow from each other
and plays a critical role in financial markets. Libor anchors contracts amount “to the equivalent of $45000
for every human being on the planet” (see MacKenzie [2008]). The banks are asked to submit an interest
rate at which their banks could borrow money. The lowest and highest quarter of the values are discarded
and the Libor corresponds to the average of the remainder. In other words, the device used to determine this
index is the trimmed mean rule. Theorists have mostly focused on the pure mean rule (without trimming) and
their conclusion over its properties is qualified (see Renault and Trannoy [2005] and Yamamura and Kawasaki
[2013] for theoretical works on this subject and Marchese and Montefiori [2011] and Block et al. [2014] for
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interest in these settings since they can improve the quality of decision making by ensuring
a unanimous final decision.

In what follows we discuss the relevant literature (section 2), we describe the model (sec-
tion 3) and present an example (section 4) and the necessary and sufficient conditions for
the described unanimous implementation through approval mechanisms (section 5).

2. Relevant literature

The objective of the current work is to show the usefulness of indirect mechanisms to
encourage unanimous agreements. To do so, we focus on the single-peaked domain and
prove the following result: using approval mechanisms, one can unanimously implement
any anonymous, efficient and strategy-proof social choice function. The remainder of this
section reviews the related literature and underlines the interest of our contribution with
regards to the implementation theory.

Recall that, as proved by Moulin [1980], any peak-only social choice function is efficient,
anonymous and strategy-proof if and only if it is a generalized median rule (GMR) with
n − 1 phantoms.7 It is among the few general positive results in social choice theory. Its
interpretation is not very intuitive since the meaning of the phantoms or fixed ballots is at
first sight far from clear. In order to clarify ideas, let us now briefly explain how these rules
work. We assume throughout that the outcome space A is the interval [0,1]. A GMR f is
characterized by the phantom vector (p1, . . . ,pn−1) : given the peaks (t1, . . . , tn) of the voters,
it selects f (t1, t2, . . . , tn) as an outcome with

f (t1, t2, . . . , tn) =med(t1, t2, . . . , tn,p1,p2, . . . ,pn−1),

such that each phantom pi is in the interval [0,1].8 Note that each phantom is not required
to be in the interior of A and that plays a key role. Indeed, if pi = 0 for any i = 1, . . . ,n − 1,
then

f (t1, t2, . . . , tn) =min(t1, t2, . . . , tn),

whereas if pi = 1 for any i = 1, . . . ,n− 1, then

f (t1, t2, . . . , tn) =max(t1, t2, . . . , tn).

More interestingly, when n is odd, letting pi = 0 for any i ≤ n−1
2 and pi = 1 for any i ≥ n−1

2 + 1
and when n is even setting pi = 0 for any i ≤ n

2 and pi = 1 for any i ≥ n
2 + 1, leads to

f (t1, t2, . . . , tn) =med(t1, t2, . . . , tn),

experimental ones). In environments with a large number of voters, this rule seems to be a natural candidate
as it is the unique one satisfying a weakening of strategy-proofness (see Ehlers et al. [2004]). While the latter
feature is quite desirable, the former violates the usual desiderata of voting theory: a voter drops his most
preferred policy to announce an extremist policy that maximizes his impact on the final outcome. This extreme
polarization of the voters’ positions seems to posit a fundamental problem with the average method.
7One may wonder how restrictive is the peak-only assumption. Arguably, a lot of information is neglected by
restricting attention from the preference relations to just their peaks. However, this intuition turns out to be
false: when preferences are single-peaked, it turns out that every strategyproof rule whose range is an interval
must be peak-only. See Ching [1997] and Sprumont [1995] for a direct proof and Barberà et al. [1993] for an
extension in a multidimensional discrete model.
8Moulin’s original work assumes that the outcome space is the set of real numbers. Our results can be extended
to such a framework.
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and hence coincides with the Condorcet Winner alternative. A similar reasoning shows that,
carefully tuning the phantoms, leads to the implementation of the kth ranked type.

While these rules are obviously anonymous, it is less evident that they are also efficient
and strategy-proof. Efficiency arises from having not more than n − 1 phantoms and hence
ensuring that the final outcome lies in the interval defined by the lowest and the highest
type. Strategy-proofness holds since no agent strictly prefers to misreport his type indepen-
dently of the announcements of the rest of the players. Indeed, if a voter’s peak is to the left
of the chosen alternative, any announcement different than his peak has two possible con-
sequences: either it makes the final decision greater than the chosen alternative or it does
not affect the decision (see Border and Jordan [1983] regarding the notion of uncopromis-
ingness). This naturally implies that the game generated by each GMR has a very appealing
(Nash) equilibrium in which every voter sincerely reveals his true peak.

However, one should note that the game generated by each GMR need not lead to the
generalized median of the true peaks. In this respect, the GMRs share a common flaw with
other strategy-proof mechanisms: they admit a large multiplicity of Nash equilibria, some
of which produce the wrong outcome. For instance, the game triggered by the pure median
rule exhibits a large set of equilibria: as long as every player announces the same alternative
x, this constitutes an equilibrium that implements x since no unilateral deviation affects the
aggregate outcome.9 This leads to the following conclusion: the direct game associated to a
GMR does not Nash implement the GMR (see Repullo [1985] ) for similar results).

When presented with the previous observation, two main questions appear: (i) why would
one care about implementing GMRs? and (ii) how should we implement them?

As far as the first question is concerned, a careful examination of the literature shows
that these rules are essentially the only Nash implementable ones in this environment. To
see why, consider the following line of reasoning. First, Maskin [1999] proves that any
Nash implementable social choice function must be Maskin monotonic (for any domain of
preferences). Second, Berga and Moreno [2009] prove that with single peaked preferences,
a rule is Maskin monotonic if and only if it is strategy proof and (weakly) non-bossy10.
Moreover, they prove that non-bossiness is equivalent to convex range in this preference
domain (note that the GMRs have convex range). If f is implementable but f is not a GMR,
then it is strategy proof rule but without a convex range. If a rule has a non-convex range,
then it fails unanimity in the sense that an alternative need not be implemented even if
it is the most preferred one of all voters. This constitutes a strong argument against the
use of rules without a convex range. As Sprumont [1995] puts it, the GMRs are the only
rules which are not ”too bizarre” in this environment. In other words, if the social planner’s

9Experimental evidence shows that strategy-proof mechanisms need not lead a large share of the agents to
reveal their true type: see Attiyeh et al. [2000] , Kawagoe and Mori [2001], Kagel and Levin [1993] and Cason
et al. [2006] among others.
10The relation between strategy-proofness and Maskin monotonicity has produced a rich literature. Muller
and Satterthwaite [1977] show that Maskin monotonicity and strategy-proofness are equivalent when prefer-
ences are the unrestricted. Dasgupta et al. [1979] obtains strategy-proofness as necessary condition for Maskin
monotonicity under some restricted preferences. For recent contributions, see also Takamiya [2007] and Klaus
and Bochet [2013].
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objective is to implement an efficient, unanimous and anonymous social choice function, he
must opt to implement a GMR.

In order to answer the second question, the natural answer would be the use of the integer
game. In this game, the players send messages to the social planner; to ensure efficiency, the
players name integers, and when their messages contradict each other, the one announcing
the largest integer is rewarded. Yet, the integer games were built to be applicable in very
general settings rather than for their plausibility. For this reason, these mechanisms are
often quite complex and this has stimulated researchers to investigate the implementation
problem using different approaches as argued by Jackson [2001].

The literature on designing appealing indirect mechanisms is rather huge. Yet, it often
lacks general results but succeeds in tailoring interesting mechanisms for particular situa-
tions. In this literature, the most closely related contributions are, on the one hand, the ones
by Yamamura and Kawasaki [2013] and Gershkov et al. [2015] and on the other hand the
one by Saijo et al. [2007].

Yamamura and Kawasaki [2013] proves how to implement the GMRs through a class of
simple direct mechanisms: the average rules. As they show, the agents tend to adopt an
extremist behavior (either 0 or 1) in equilibrium. Moreover, the equilibrium outcome co-
incides with the GMR of the true peaks with an important restriction: all phantoms must
be interior (i.e. different from 0 or 1). Hence, one cannot implement the Condorcet winner
using the average rules. Gershkov et al. [2015] show how to implement the GMRs through
sequential quota mechanisms. More precisely, their sequential mechanisms are obtained by
modifying a sequential voting scheme suggested by Bowen [1943]. Our approach is orthogo-
nal to theirs since our Approval mechanisms are simultaneous. In short, the implementation
results that these papers obtain are related to ours: yet, our main contribution is to show
that Approval mechanisms give incentives for reaching unanimous agreements.

Once we have commented on these closely related works, we state some final remarks on
two literatures to which this paper is connected.

The first one is the one focusing on strategic voting and more precisely on the unanim-
ity rule (see Feddersen and Pesendorfer [1996, 1997, 1998] for classical references in the
area and Koriyama and Szentes [2009] and Bouton et al. [2014] for recent contributions).
The comparison between the current results and the ones in such a literature seems to be
far from pertinent. Indeed, in broad terms, these works often evaluate the consequences
of honest and strategic behavior of voters when confronted with the unanimity rule. They
tend to perform a welfare analysis of this rule in several settings: private/common values,
complete/incomplete information, optimal size of the jury, etc.. Their main message is that
the unanimity rule tends to be inefficient whenever strategic voting is present: that is voters
do not reveal their true information if the collective decision is to be made by unanimity.
Our objective is different: we posit incentives to endogenously achieve unanimity assuming
from the outset that voters are strategic. Having said so, our paper is also related to the liter-
ature on Approval Voting (see Brams and Fishburn [1983] and Laslier and Sanver [2010] for
a recent account), to which Approval mechanisms borrow both its name and its flexibility.
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Laslier et al. [2015] design a bargaining device over lotteries based on Approval voting and
derive conditions for consensus reaching in equilibrium with just two agents.

Finally, this work is of course related to implementation theory (see Maskin [1999] and
Jackson [2001] for a review). Our notion of implementation refines the one of Nash im-
plementation in the sense that it requires that all equilibria of the game form implement
the desired social choice rule.11 It is stronger since it requires the existence of unanimous
equilibrium in which all voters agree on the implemented policy. Our objective is hence two-
fold: to reduce the multiplicity of equilibria associated to strategy-proof mechanisms while
ensuring a unanimous agreement. The former requirement is hence closely related to the
nice contribution by Saijo et al. [2007] which proposes a novel concept of implementation
named secure implementation. This implementation notion12 aims to get rid of the mul-
tiplicity of equilibria inherent to the direct mechanisms associated to strategy-proof rules
previously described by coarsening the notion of implementation. Their proposal manages
to derive securely implementable functions in some situations (such as quasi-linear prefer-
ences) but fails to do so in our framework. Our contribution is hence hinting at a possible
manner of overcoming this theoretical objection: in order to implement a strategy-proof so-
cial choice function, rather than using its associated direct mechanism one could make use
of indirect (approval) mechanisms that foster unanimity while ensuring the uniqueness of
the equilibrium outcome.

3. The setting

Let A := [0,1] denote the set of alternatives and N := {1, . . . ,n} with n ≥ 2 stand for the
finite set of players. Each player is endowed with preferences over A. The utility for player
i when x ∈ A is the implemented policy equals ui(x) with ui : A→ R where each ui ∈ U , the
set of single-peaked preferences. Note that each player i has a unique peak denoted ti so
that ui(x′) < ui(x′′) when x′ < x′′ ≤ ti and when ti ≤ x′′ < x′.13 We let (t1, . . . , tn) stand for a
distribution of the players’ peaks and u = (u1, . . . ,un) ∈U :=

∏n
j=1Ui .

A social choice function is a function f : U → A that associates to every u ∈ U , a unique
alternative f (u) in A. A mechanism is a function θ : S → A that assigns to every s ∈ S, a
unique element θ(s) in A, where S :=

∏n
i=1Si and Si is the strategy space of agent i. The

mechanism θ is the direct revelation mechanism associated to a SCF f if Si =Ui for all i ∈N
and θ(u) = f (u) for every u ∈ U . A SCF f is strategy-proof if for all i ∈ N , all ui , ũi ∈ Ui ,
and all u−i ∈ U−i , ui(f (ui ,u−i)) ≥ ui(f (ũi ,u−i)). As shown by Moulin [1980], these rules
admit a simple characterization: they implement as an outcome the median of the peaks

11There is a large literature on implementation and different notions have been proposed. While Nash im-
plementation is arguably the most well-known, scholars have focused on other concepts such that Bayesian
implementation (Jackson [1991]), virtual implementation (Abreu and Sen [1991],?), implementation in mixed
strategies (Mezzetti and Renou [2012]) and implementation with partial honesty (Dutta and Sen [2012]) among
others.
12More specifically, they focus on a dual notion of implementation that requires dominant strategy implemen-
tation and Nash implementation simultaneously. The notion of secure implementation is equivalent to the one
of robust implementation (see Bergemann and Morris [2009] among others) in any private values setting, as
ours, as shown by Adachi [2014].
13For simplicity, we assume that ti , tj for any i, j ∈ N . Our results are not affected when relaxing this con-
straint.
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of the players plus (n − 1) exogenous parameters (phantoms). More formally, for any finite
collection of points x1, . . . ,xm in [0,1], we let m(x1, . . . ,xm) denote their median, that is the
smallest number m(x1, . . . ,xm) ∈ x1, . . . ,xm, which satisfies: 1

m#{xi | xi ≤ m(x1, . . . ,xm)} ≥ 1
2 and

1
m#{xi | xi ≥ m(x1, . . . ,xm)} ≥ 1

2 . In the domain U and assuming that each agent’s message is
one element of A, a SCF f is anonymous, efficient and strategy-proof if and only if there
exist (n− 1) real numbers, κ1, . . . ,κn−1 such that f (t1, . . . , tn) =m(t1, . . . , tn,κ1, . . . ,κn−1).

We let B denote the collection of closed intervals of A and define an approval mechanism
as a mechanism such that Si = B for every i ∈ N .14 We write bi = minbi and bi = maxbi for
each bi ∈ B. Note that the strategy set B allows elements of different dimensions: singletons
and positive length intervals. To accommodate this fact, we let λd denote the Lebesgue
measure on R

d with d = 0,1. Since each bi is a convex set, its dimension is well-defined so
that for each approval profile b = (bi ,b−i), we let dim(b) = maxi∈N dim(bi).

Given a mechanism θ : S → A, the strategy profile s ∈ S is a Nash equilibrium of θ at
u ∈ U , if ui(θ(si , s−i)) ≥ ui(θ(s′i , s−i) for all i ∈ N and any s′i ∈ Si . Let Nθ(u) be the set of
Nash equilibria of θ at u. The mechanism θ implements the SCF f in Nash equilibria if
for each u ∈ U , (i) there exists s ∈ Nθ(u) such that θ(s) = f (u) and (ii) for any s ∈ Nθ(u),
θ(s) = f (u). The SCF f is implementable if there exists a mechanism that implements f
in Nash equilibria. An Approval Mechanism θ unanimously implements the SCF f if (i)
θ implements f in Nash equilibria and (ii) there exists s ∈ Nθ(u) such that ∩ni=1si , ∅ with
θ(s) = ∩ni=1si . Our focus is on the unanimous implementation of strategy-proof rules.

4. An Example: the Median Approval Mechanism

In order to clarify the main ideas behind unanimous implementation, this section presents
an example that illustrates how an approval mechanism works. We are concerned here with
the median approval mechanism that associates, to any distribution of approvals, its median.
Therefore, we assume that the median approval mechanism associates to every strategy pro-
file b (i.e. any announcement of intervals), the median θ(b) of these intervals with

θ(b) := min{x ∈ [0,1] |
∫ x

0
fb(t)dt =

1
2
},

with fb(t) =
#{i ∈N | t ∈ bi}∑
i∈N λdim(b)(bi)

for any t ∈ [0,1].

In order to understand the definition of θ, it suffices to understand that fb(t) stands for the
“score” of alternative t normalized by the size of the intervals in b and therefore

∫ x
0
fb(t)dt

counts the share of “approvals” located between 0 and x. It is hence a cumulative distribu-
tion in the usual sense15 and therefore θ implements the median θ(b) as the value in which
the share of approvals located below and above it is equal to 1/2, the lowest value being
chosen in case of ties.
14This assumption can be relaxed by allowing as a pure strategy any finite union of closed and convex subsets
of A. Relaxing it however would imply more cumbersome notation and proofs since then two strategies that
differ by a zero-measure set can have equivalent consequences. Moreover, it will not affect much the result so
that we prefer to stick to the simpler definition of strategy to keep the main message as simple as possible.
15A formal proof of this statement is provided by Lemma 1.
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Summarizing, the median approval mechanism works as follows:

(1) Every player simultaneously and independently announces a closed interval bi in A
and

(2) The mechanism implements θ(b) with b = (b1, . . . , bn).

As will be shown, with n players, the median approval mechanism unanimously imple-
ments the generalized median rule m(t1, t2, . . . , tn,

1
n ,

2
n , . . . ,

n−1
n ). In the particular situation in

which N = {1,2,3} and (t1, t2, t3) with t1 < t2 <
1
3 <

2
3 < t3,16 it follows that the unique equi-

librium outcome should equal 1
3 . This outcome can be thought as a compromise between

the extreme types of the players. Moreover, such an outcome is supported by a unique
equilibrium b∗ = (b∗1,b

∗
2,b
∗
3) such that

b∗1 = b∗2 =
[
0,

1
3

]
and b∗3 =

[1
3
,1

]
.

It follows that
∑
i∈N λdim(b∗)(b∗i ) = 4

3 and hence that fb∗(t) = 3
2 whenever 0 ≤ t ≤ 1

3 and fb∗(t) =
3
4 otherwise. One can hence easily check that θ(b∗) = 1

3 . Figure 1 depicts the distribution of
approvals generated by b∗. The alternatives lower than 1

3 are selected by two players whereas
the rest of them just by one. Hence it is graphically simple to understand that θ(b∗) = 1

3 since
it splits the area below the curve in two exact halfs.

To explain why b∗ is an equilibrium, we now describe the consequences of a possible
deviation of player 1. Asume that 1 deviates to b′1 = [0,x]. The size of b′ = (b′1,b

∗
2,b
∗
3) is equal

to 1 + x so that fb′ (t) = 2
1+x whenever 0 ≤ t ≤ x and fb∗(t) = 1

1+x otherwise. When x is larger
than 1

3 , the total size of b′ is higher than the one of b∗; hence the median must be located to
the right of 1

3 since it is the value that divides the area below fb in two exact halfs. On the
contrary, when x is lower than 1

3 , the total size of b′ is smaller than the one of b∗. However,

the area located to the left of 1
3 now equals 2x

1+x +
1
3−x
1+x and hence represents less than half of

the approvals. This leads again to a median larger than 1
3 . 17

A similar reasoning proves the claim for the different deviation of this player and the
different players.

If the distribution becomes less polarized and (t1, t2, t3) with t1 <
1
3 < t2 <

2
3 < t3, it follows

that the unique equilibrium outcome should equal t2. By similar reasonings as before, one
can show that this outcome can be supported by an equilibrium b+ with, for some pair
0 < δ1,δ2 <min{t2,1− t2}

b+
1 =

[
0, t2

]
, b+

2 =
[
t2 − δ1, t2 + δ2

]
and b+

3 =
[
t2,1

]
16A similar example is analyzed in Austen-Smith and Banks [2005], chapter 6, p.233. In their model, the three
players also reach a consensus over an interior policy in the interval [0,1]. The reasons for consensus depend
on the discount factors, which is to define the no-delay equilibrium. See also Banks and Duggan [2000] for a
bargaining model of collective choice.
17More generally, assume by contradiction that player 1 has a best response b′1 such that b′1∩ [ 1

3 ,1] has positive
Lebesgue measure. Then, take the strategy b”

1 := b′1\{b
′
1∩[ 1

3 ,1]}. It is simple to see that θ(b”
1,b
∗
2,b
∗
3) < θ(b′1,b

∗
2,b
∗
3)

so that b”
1 leads to a median closer to player 1’ s ideal policy than b′1, a contradiction. Similarly, assume again

by contradiction that there is some best response b′1 with b∗1 \ b
′
1 having positive Lebesgue measure. Then,

θ(b∗1,b
∗
2,b
∗
3) < θ(b′1,b

∗
2,b
∗
3) since all these points are located to the left of θ(b∗).
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Two features of the equilibria b∗ and b+ deserve to be highlighted. The first one is that all
players include the implemented alternative in their interval. The second one is that the vot-
ers’ strategies are divided in tree blocks: the ones with a peak to the left of the implemented
alternative, the ones to the right and the one in which it coincides. Both characteristics are
present in any equilibrium of any approval mechanism discussed in this work.

θ(b) =
1

3

0
1

3

2

3
1

3

4

3

2

Figure 1. Distribution of approvals associated to b∗.

5. Conditions for Unanimous Implementation

This section presents the main results of this work. After describing some axioms for
the Approval mechanisms to satisfy, it proves that these axioms are enough to characterize
unanimous implementation under Approval mechanisms.

5.1. Axioms on Approval Mechanisms . We restrict ourselves to anonymous Approval
mechanisms18 such that for each x ∈ A, there is some b ∈ Bn with θ(b) = x. We now introduce
the axioms that will suffice to identify the Approval mechanism that induce unanimous im-
plementation.

The first axiom deals with the two sort of strategies allowed in an Approval mechanism.
Indeed, either a strategy contains finitely many alternatives (zero-dimensional strategy) or
infinitely many (one-dimensional strategy). One might argue that zero-dimensional strate-
gies are stubborn in the sense that the player is approving of a zero-measure set of the set of
available alternatives. Similarly, a one-dimensional strategy is a compromise one by opposi-
tion to stubborn strategies. The set of stubborn and compromise strategies are respectively
labeled by S(B) and C(B) with B = S(B)∪C(B). The Approval Mechanisms in which we will
focus give incentives to players to select one-dimensional strategies, in the following sense:

18The mechanism θ : Bn→ A satisfies Anonymity if for any permutation σ :N →N , θ(σ (b)) = θ(b).
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Incentives for Compromise (IC): The mechanism θ : Bn→ A satisfies Incentives for Compro-
mise if, for any i ∈N and for any bi ∈ S(B), ∃ci ∈ C(B) with ui(θ(ci ,b−i)) > ui(θ(b)), whenever
θ(b) , ti .

This axiom ensures that each player has an incentive to submit a compromise strategy
rather than a stubborn one, as long as the mechanism does not select his most preferred
alternative. The main implication of IC is that there is no equilibrium in which each player
announces a singleton as long as the axiom IC holds.

In order to define our second axiom, we introduce the following piece of notation. For
each i ∈ N and any b−i ∈ Bn−1, θ(B,b−i) denotes the attainable set of player i at b−i ; it rep-
resents the set of available alternatives that player i can induce when the rest of the players
select b−i . Since B is not finite, the set θ(B,b−i) need not have a maximum or a minimum.
Monotonicity gives precise conditions to characterize the maximum and the minimum of
the attainable set when they exist.

Monotonicity (MON ): The mechanism θ : Bn→ A satisfies Monotonicity if for any i ∈N and
any b−i ∈ Bn−1, then :

bmi ∈ argminθ(B,b−i) if and only if∃ bmi = [0,xmi ] with xmi = θ([0,xm],b−i),and (1)

bMi ∈ argmaxθ(B,b−i) if and only if∃ bMi = [xMi ,1] with xMi = θ([xM ,1],b−i). (2)

That is, when a player attempts to draw the implemented outcome as left as possible it
should not be the case that he approves of outcomes to its right and it should not be the case
that he does not approve of outcomes to its left, and vice versa.

To define our final two axioms, we consider the following class of strategy profiles. For
any j = 0,1, . . . ,n, we define the strategy profile bj(x) ∈ Bn as the strategy profile in which
n− j players use the strategy [0,x] and j players use the strategy [x,1]. We let

κj := {x ∈ A | θ(bj(x − ε)) > θ(bj(x)) = x > θ(bj(x+ ε)) for any ε > 0}

for any j ∈ {0,1, . . . ,n}.

For simplicity, we say that κj denotes the fixed points of θ(bj(x)) but, more accurately, κj
is the set of points at which θ(bj(x)) intersects with x.

For any b ∈ Bn, we let Supp(b) =
⋃
bi denote the support of profile b. The support denotes

the set of alternatives that are selected by at least some player. When the support is convex,
all alternatives located between the minimum and the maximum of the support are selected.
Approval mechanisms are restricted to be continuous in the following sense, as long as they
have a convex support.

Continuity (C). The mechanism θ : Bn→ A satisfies Continuity if for any i ∈ N , any b,bm ∈
Bn with bm = (bmi ,b−i) such that Supp(b),Supp(bm) are convex,

lim
m→∞

bmi = bi =⇒ lim
m→∞

θ(bm) = θ(b).
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This technical axiom introduces a nice property of our mechanism, it should be continu-
ous in each component. This is quite mild since it just applies to the strategy profiles such
that ∪j∈N\{i}bj ∈ C(B).

The final axiom characterizes properties of the fixed points of the Approval mechanisms.
We let h(n) := n

2 when n is even and h(n) := n+1
2 when n is odd, and Gg,n = {g, ..,n − g} when

g ≤ n
2 and Gg,n = ∅ otherwise.

Fixed-Point Monotonicity (FP ). The mechanism θ : Bn→ A satisfies Fixed-Point Monotonic-
ity if there exists g ∈ {1, ...,h(n)} such that: a) κj is uniquely defined, interior and strictly
increasing in j ∈ Gg,n, and b) for any j <min{g, n2 } (resp. j >max{n− g, n2 }), θ(bj(x)) < x (resp.
θ(bj(x)) > x) when x ∈ (0,1).

This axiom clearly restricts the class of Approval mechanisms. It is essential to ensure the
existence of pure strategy equilibrium and is also behind the uniqueness of the equilibrium
outcome.

In order to illustrate which Approval mechanisms satisfy these axioms, we now present
two leading examples that will be useful to understand the main intuitions behind our re-
sults. Given an approval profile b and an alternative x, we let sx(b) denote the score of alter-
native x with sx(b) = #{i ∈ N | x ∈ bi}. Thus, any approval profile b generates the function fb
with fb(x) = sx(b)∑

i∈N λdim(b)(bi )
for any x ∈ [0,1]. As shown by the next lemma, fb is a well-defined

density function for any approval profile b.

Lemma 1. For any approval profile b = (bi ,b−i), fb is a well-defined density function.

Proof. : For each profile b, let V (b, j) ⊆ [0,1] be the set such that V (b, j) = {x ∈ [0,1] | sx(b) = j}.
Moreover,∫

[0,1]
fb(x)dx =

1∑
i∈N λdim(b)(bi)

∫
[0,1]

sx(b)dx =
1∑

i∈N λdim(b)(bi)

n∑
j=1

∫
V (b,j)

jdx.

Since
∫
V (b,j)

jdx = jλd(V (b, j)), it follows that
∫

[0,1]
fb(x)dx = 1 as wanted. The previous equal-

ity combined with the function fb(x) being non-negative for any x ∈ [0,1] concludes the
proof. Q.E.D..

The next two Approval mechanisms satisfy the axioms of Continuity, Monotonicity, Fixed
Point Coherence and Incentives for Compromise.

Average Approval Mechanism: We let µb stand for the mean of the approval profile b with
µb =

∫
[0,1]

xfb(x)dx. Note that µb ∈ [0,1] and hence it always coincides with an alternative.
The Average Approval Mechanism associates µb to each approval profile b so that θ(b) = µb.

Quantile Approval Mechanism: The cumulative distribution of approvals, F(x), is then given
by F(x) =

∫ x
0
fb(t)dt. The α-Quantile Approval Mechanism associates to each approval pro-

file b the lowest x∗ such that F(x∗) = α for some 0 < α < 1. The median approval mechanism
employed in the previous example is a quantile mechanism with α = 1

2 .
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5.2. Sufficiency. Equipped with the previous results we are now ready to state the sufficient
conditions for unanimous implementation.

Theorem 1. If an Approval Mechanism θ satisfies C, FP , MON and IC, then:

(1) there is an equilibrium in pure strategies for every admissible preference profile
(2) if g ≤ n

2 , then in every equilibrium b of θ we have θ(b) = m(t1, t2, . . . , tn,κg , . . . ,κn−g) and
if g = n+1

2 , then in every equilibrium b of θ we have θ(b) =m(t1, t2, . . . , tn),
(3) there is an equilibrium b of θ with ∩ni=1bi = θ(b).

Proof. Take some θ : Bn → [0,1] satisfying C, FP , MON and IC. We first notice that there
should exist a unique g ∈ {1, ...,h(n)} for which FP is satisfied. Throughout the proof we
consider that g ≤ n

2 and in the end we comment why all developed arguments extend to the
case in which g = n+1

2 . For short, we write (t,κ) rather than (t1, t2, . . . , tn,κg , . . . ,κn−g). The
proof first states the existence of equilibrium (Step A.), uniqueness of equilibrium outcome
(Step B.) and finally the existence of a unanimous equilibrium (Step C.).
Step A.: There is some equilibrium b of θ with θ(b) =m(t,κ).

Step A. is divided in two cases: either there is no th with th =m(t,κ) (Step A.I.) or there is
such th to be developed in Step A.II.

Step A.I. @ : th with th = m(t,κ). Since there is no th with th = m(t,κ), there must exist
j ∈ {g, ...,n− g} such that κj = m(t,κ). Therefore, the number of elements located below and
above κj in (t,κ) is equal to n− g, which is equivalent to:

#{i ∈N | ti < κj}+ (j − g)︸                         ︷︷                         ︸
elements lower thanκj

= #{i ∈N | ti > κj }+ (n− j − g)︸                              ︷︷                              ︸
elements higher thanκj

= n− g.

The previous equalities jointly imply that #{i ∈N | ti < κj} = n− j and#{i ∈N | ti > κj } = j. Let
b ∈ Bn be an approval profile with:

bi =

[0,κj] if ti < κj ,

[κj ,1] if ti > κj .

Since θ is anonymous by assumption, then θ(b) = θ(bj(κj)) so that θ(b) = κj due to FP ,
and hence that θ(b) = m(t,κ). In order to prove that b is an equilibrium, assume that there
is some i ∈ N with a profitable unilateral deviation b′i , so that θ(b′i ,b−i) , θ(b). Assume
first that θ(b′i ,b−i) < θ(b). If ti > κj and given that preferences are single-peaked, it follows
that ui(θ(b′i ,b−i)) < ui(θ(bi ,b−i)). In other words, b

′
i is not a profitable deviation, entailing a

contradiction. If ti < κj , then by definition bi = [0,κj]. However, due toMON , bi is player i’s
unique best response, which proves that there is no profitable deviation. The same argument
applies if θ(b′i ,b−i) > θ(b), which proves that b is an equilibrium of the game and concludes
Step A.I.

Step A.II. ∃ : th with th = m(t,κ). If there exists j ∈ {g, ...,n − g} such that κj = th, then
j = n − h or j = n − h + 1. Using the same line of reasoning as in A.I., one can show that: a)
when j = n− h+ 1, bn−h+1(th) is an equilibrium with θ(bn−h+1(th)) = th and b) when j = n− h,
bn−h(th) is an equilibrium with θ(bn−h(th)) = th.
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If th =m(t,κ) and th , κj , there are n−g values smaller than th in (t,κ). There are essentially
two cases here: a) th ∈ (κg ,κn−g) and b) th < κg (the proof for the case th > κn−g is symmetric).

a) One can choose j, such that g < j < n − g, with κj < th = m(t,κ) < κj+1. Moreover
#{κl | κl < th} = j −g +1 and #{i ∈N | ti < th} = h−1 so that: j −g +1+h−1 = n−g =⇒ j = n−h.
Therefore, κn−h < th < κn−h+1.

For each A ∈ B, we define bA as the approval profile with:

bAi =


[0, th] if ti < th,

A if ti = th,

[th,1] if ti > th.

Our objective is to prove that there is at least one bA
∗

with θ(bA
∗
) = th. Since θ is con-

tinuous on a player’s strategy, the result immediately follows from the Intermediate Value
Theorem provided that there are some C and D with

θ(C,b−h) < th < θ(D,b−h).

Let φn−h(x) = θ(bn−h(x)) and φn−h+1(x) = θ(bn−h+1(x)) for any x ∈ [0,1]. It follows that
φn−h(κn−h) = κn−h < th and φn−h+1(κn−h+1) = κn−h+1 > th. Moreover, since θ satisfies FP , it
follows that κt is a fixed point of φt with φt(κt) = κt whenever t = n− h,n− h+ 1. We know
that (i) φt : [0,1] → [0,1] and 0 < κt < 1. Therefore, since κt is a fixed point of φt and φt
is continuous on (0,1), it must be the case that for any x ∈ (0,κt), φt(x) > x and for any
x ∈ (κt,1), φt(x) < x whenever t = n−h,n−h+ 1. Now, take C = [0, th]. Then bC = bn−h(th) and
θ(bC) = φn−h(th). Similarly, take D = [th,1] so that bD = bn−h+1(th) and θ(bD) = φn−h+1(th).
Therefore, since κn−h < th and th < κn−h+1 it must be respectively the case that th > φn−h(th) =
θ(bC) and th < φn−h+1(tn−h+1) = θ(bD). We can hence conclude that there exists some A∗ with
θ(bA

∗
) = th.

In order to prove that bA
∗

(b for short) is an equilibrium, suppose by contradiction that
there exists some i ∈N with a profitable deviation b

′
i . Then, it cannot be the player with type

th since θ(b) = th. Suppose then that θ(b′i ,b−i) < θ(b). Then, ti < th; otherwise, if ti > th then
ui(b′j ,b−j) < ui(bi ,b−i), a contradiction with b

′
i being a profitable deviation. However, any

voter with ti < th is playing his unique best response [0, th], entailing again a contradiction.
A symmetric argument applies when θ(b′i ,b−i) > θ(b). Therefore b must be an equilibrium
concluding a) in Step A.

b) In this case th = m(t,κ) < κg and hence h = n − g + 1. According to FP we have that
θ(bn−h(x)) < x for every x ∈ (0,1) (because n−h = g −1 < g) and θ(bn−h+1(x)) = x if and only if
x = κg (because n− h+ 1 = g). Therefore, θ([0, th],b−h) < th and θ([th,1],b−h) > th and, hence,
the continuity arguments used in case a) guarantee here the existence of an interval A∗ such
that θ(bA

∗
) = th, which ensures the existence of an equilibrium as the one described in a),

which concludes the proof of step A. .
Step B.: Any equilibrium b of θ satisfies θ(b) = m(t,κ). Suppose that, there is some θ
that admits an equilibrium b with θ(b) > m(t,κ). We let Lm := {i ∈ N | ti ≤ m(t,κ)} and
Fm := {j ∈ {g, . . . ,n − g} | κj ≤ m(t,κ)} with #Lm = i′ and #Fm = j ′. However, by definition, it
must be the case that i′ + j ′ ≥ n − (g − 1) so that n − (g − 1) − i′ ≤ j ′. Thus, κn−(g−1)−i′ ≤ κj ′ =
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m(t,κ) (i). By Monotonicity, the unique best response for any player in S equals [0,θ(b)]
so that θ(b) ≤ κn−(g−1)−i′ (ii). Combining both (i) and (ii), it follows that θ(b) ≤ m(t,κ) a
contradiction with θ(b) > m(t,κ). A symmetric claim delivers also a contradiction whenever
θ(b) < m(t,κ), proving that θ(b) =m(t,κ) as wanted.
Step C.: There exists some equilibrium b of θ with ∩ni=1bi = θ(b). Note that by construc-
tion, the equilibrium built in Step A.I satisfies this claim. In Step A.II, n−1 players announce
th in their equilibrium strategy. Hence it suffices to show that there is some A∗ with th ∈ A∗.
If player h plays [0, th], the outcome is lower than th whereas if he plays [th,1] then the out-
come is higher than th as proved in Step A.II. Observe that if h plays [c,c] and we start from
c = 0 and c = th and first we start increasing b from th to 1 and then c from 0 to th, we should
have i) always th is included in the interval [c,c] and ii) at some point due to the continuity
of outcome in c and c we should have the outcome being equal to th.

To see why all these steps hold for the case in which g = n+1
2 , notice first that in such a case

a) n must be odd and b) th =m(t1, t2, . . . , tn) if and only if h = n+1
2 . Then observe that from FP

we know that θ(b
n−1

2 (th)) < th and θ(b
n+1

2 (th)) > th. That is, if players behave according to the
profile bA as presented in step A.II. for h = n+1

2 , there must exist a strategyA ∈ C(B) such that
θ(bA) = th. This establishes existence of an equilibrium b of θ with θ(b) =m(t1, t2, . . . , tn). The
arguments that establish uniqueness of equilibrium outcome and existence of a unanimous
equilibrium are trivial extensions of steps B and C respectively. Q.E.D.

As a by-product of the previous Theorem and the continuity axiom, we can establish the
following interesting property of Approval mechanisms: these mechanisms are partially
revealing in the sense that any player always has a best response in which he approves of his
peak ti .

Lemma 2 (Partially Revealing). Let θ : Bn→ A satisfy C, FP , MON and IC. For any approval
profile b and any i ∈N , there is some best response bi ∈ B with ti ∈ bi .

The proof is an immediate consequence of Monotonicity whenever θ(b) , ti . If θ(b) = ti ,
the claim is a consequence of θ being a deterministic mechanism and of the different axioms.

5.3. Feasibility. We now state feasible conditions for unanimous implementation. As we
now show the axioms defined in the necessity part are not vacuous in the sense that for any
strategy-proof direct mechanism, there exists some Approval mechanism that unanimously
implements it.

Let Z : [0,1] → [0,1] be a differentiable and strictly increasing function and q a non-
negative real number with Z(0) = 0 and Z(1) = 1. For any b ∈ Bn, consider the approval
mechanism θq,Z such that:

a) if all voters submit singletons then the median report of the singletons is implemented
so that

θq,Z(b) =m(b1, . . . , bn) if bi ∈ S(B) ∀i ∈N,

b) otherwise, there arem ≥ 1 voters who submit a positive length interval. In this case, we
let the density function f q,Zb be such that:
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f
q,Z
b (x) =

∑
bi∈C(b,x)

(
q

bi−bi
+Z ′(x)

)
q×m+

∑
i∈N

(
Z(bi )−Z(bi )

) , for every x ∈ [0,1],

where C(b,x) := {bi ∈ b | bi ∈ C(B) and x ∈ bi}. For each such b,

θq,Z(b) := min{x ∈ [0,1] |
∫ x

0
f
q,Z
b (t)dt =

1
2
},

so that θq,Z selects as an outcome the median of the distribution function generated by

f
q,Z
b . Each mechanism θq,Z is characterized by the distribution function fq,Z and is called a

Generalized Median Approval Mechanism (GMAM).
To see which sort of aggregators are included within this family, we let, for instance, q = 0

and Z(x) = x, so that

f
q,Z
b (x) = #C(b,x)∑

i∈N

(
bi−bi

) for every x ∈ [0,1].

This density function just differs from the one associated with the Median Approval
mechanism, described in Section 4, in zero-measure sets, i.e. the singleton strategies used
by the players in N \C(b,x). To see why, notice that for any approval profile b and any alter-
native x, #C(b,x) = sx(b) whenever any bi ∈ C(B). Thus, it leads to the same outcome as the
Median Approval mechanism.

As in Lemma 1, one can prove that any f q,Zb is a well-defined density function.

Lemma 3. For any approval profile b = (bi ,b−i), any non-negative q and any Z : [0,1]→ [0,1],
f
q,Z
b is a well-defined density function.

Proof. Take any f q,Zb and note first that f q,Zb (x) ≥ 0 for any x ∈ [0,1]. It suffices to show that
its integral over [0,1] equals 1, which is equivalent to∫ 1

0
f
q,Z
b (x)dx =

∫ 1

0

∑
bi∈C(b,x)

(
q

bi−bi
+Z ′(x)

)
q ×m+

∑
i∈N

(
Z(bi)−Z(bi)

)dx = 1.

Since f q,Zb (x) ≥ 0 for any x ∈ [0,1], we can express the integral of the sums as the sums of the
integrals so that

∫ 1

0
f
q,Z
b (x)dx =

∑
bi∈C(b,x)

∫ bi

bi

(
q

bi−bi
+Z ′(x)

)
q ×m+

∑
i∈N

(
Z(bi)−Z(bi)

)dx
=

∑
bi∈C(b,x)

1

q ×m+
∑
i∈N

(
Z(bi)−Z(bi)

) ∫ bi

bi

( q

bi − bi
+Z ′(x)

)
dx = 1,

which concludes the proof.
Q.E.D..

The vector of fixed points of each mechanism θq,Z is denoted by κq,Z and is defined as
follows. Recall that for any j = 0,1, . . . ,n the strategy profile bj(x) ∈ Bn is the one in which
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n− j players use the strategy [0,x] and j players use the strategy [x,1]. We let

κ
q,Z
j := {x ∈ A | θq,Z(bj(x − ε)) > θq,Z(bj(x)) = x > θq,Z(bj(x+ ε)) for any ε > 0}

for any j ∈ {0,1, . . . ,n}.

Therefore, we have for any j,
(n−j)Z(κq,Zj )+(n−j)q

qn+(n−j)Z(κq,Zj )+j[1−Z(κq,Zj )]
= 1/2⇔ Z(κq,Zj ) = j+q(2j−n)

n .

Proposition 1. Any GMAM satisfies IC, MON , C and FP .

While the formal proof of this proposition is relegated to the appendix, we not briefly
mention the intuition for these axioms to be satisfied by any GMAM. IC holds since a
player submitting a singleton has no weight in the final decision. MON is satisfied since
the maximal influence on the outcome of the mechanism is to include all the alternatives
located to the left (to minimize it) or the right of the outcome (to maximize it). C holds
since as long as one has convex support, the mechanism is implementing the median of a
cumulative distribution. Finally, FP holds almost by construction: indeed, the GMAMs are
designed to exhibit trackable phantoms.

We are now ready to state the main result of this section.

Theorem 2. If the number of voters is even (resp. odd), for any strategy proof mechanism m(t,κ)
with p different phantoms for any odd p (resp. even), there exists some GMAM that unanimously
implements it.

Proof. By definition, each GMAM θq,Z is characterized by a function Z and some non-
negative number q. Moreover, since every θq,Z satisfies our four axioms, each θq,Z unan-
imously implements a strategy-proof rule f as stated by Theorem 1. Again due to Theorem
1, the game associated to θq,Z has a unique equilibrium outcome characterized his vector

of fixed points κq,Z = (κq,Z1 , . . . ,κ
q,Z
n−1). The equilibrium outcome is hence equal to m(t,κq,Z).

Note that each strategy-proof rule f = m(t,κ) is uniquely determined by κ = (κ1, . . . ,κn−1).
Therefore, in order to establish validity of this theorem, it is sufficient to show that for each
κ, there exists an admissible θZ with a corresponding κZ = κ. As previously argued the
fixed points of θq,Z satisfy the following equation:

Z(κq,Zj ) = j+q(2j−n)
n .

Note that Z is invertible since, by definition, Z(x) is differentiable and strictly increasing on
[0,1] with Z(0) = 0 and Z(1) = 1. Thus, for each κ with n− 1 distinct weights, there exists at
least one GMAM θq,Z with

κq,Z = (κq,Z1 , . . . ,κ
q,Z
n−1) such thatκq,Zj = Z−1(

j + q(2j −n)
n

),

for each j ∈ {1, . . . ,n − 1}. In other words, for each κ, there exists an admissible θq,Z with a
corresponding κq,Z = κ.

Concerning the fixed points vector κ with less than n− 1 points, note that if j < n/2 then
j+q(2j−n)

n ≤ 0 if and only if q ≥ j
n−2j and if j > n/2 then j+q(2j−n)

n ≥ 1 if and only if q ≥ n−j
2j−n . By
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increasing the q, one can trim any arbitrary number of extreme κq,Zs and then by appropri-
ately choosing Z, one can give to each of the non-trimmed κq,Zs any value in [0,1], which
concludes the proof. Q.E.D.

As an illustration of the previous result, consider the GMAM triggered by setting q = 1
and Z(x) = x. In this case, the density function equals

f
q,Z
b (x) =

#C(b,x)+
∑
bi∈C(b,x)

(
1

bi−bi

)
m+

∑
i∈N

(
bi−bi

) for every x ∈ [0,1].

In the particular situation in whichN = {1,2,3} (so that n = 3) and the voters’ types satisfy
t1 < t2 < t3, this Approval mechanism implements the pure median rule since:

Z(κq,Zj ) = j+q(2j−n)
n ⇔ κ

q,Z
j = 3j−3

3 ⇔ κ
q,Z
1 = 0 and κq,Z2 = 1.

To see why this is true, consider the strategy profile b with b1 = b2 = [0, t2] and b3 = [t2,1].
Then:

θq,Z(b) = 2t2+2
3+2t2+1−t2 >

1
2 for every t2 ∈ (0,1).

If player 2 deviates to b′2 = [t2,1], then the outcome of b′ = (b1,b
′
2,b3) equals:

θq,Z(b′) = t2+1
3+t2+2(1−t2) <

1
2 for every t2 ∈ (0,1).

That is, if the t1-voter plays [0, t2] and the t3-voter plays [t2,1] then the t2-voter by smoothly
changing her strategy from [0, t2] to [t2,1] can find a strategy that contains t2 and which leads
to Fq,Z(t2) = 1/2, that is, to the unanimous implementation of her ideal policy.
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Appendix A. The class of GMAM

To describe the class of GMAMs , we start by describing the cumulative distribution of
the median approval mechanism described in Section 4.

Suppose that there is just one player in the society os that n = 1. If he selects the interval
bi = [minbi ,maxbi], the share of approvals lower than x equals F(bi ,x)

maxbi−minbi
with

F(bi ,x) =


0, if x <minbi .

x −minbi , if maxbi ≤ x ≤minbi .

maxbi −minbi , if x >maxbi .

For any b = (bi ,b−i), the share of approvals until x equals

F(b,x) =
∑
i∈N F(bi ,x)∑

i∈N (maxbi −minbi)
,

http://www.lrb.co.uk/v30/n18/donald-mackenzie/whats- in-a-number
http://www.lrb.co.uk/v30/n18/donald-mackenzie/whats- in-a-number
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and since θ is the Median Approval mechanism,

θ(b) := min{x ∈ [0,1] | F(b,x) =
1
2
}.

The same logic applies to a Generalized Median Approval Mechanism. Let q be a non-
negative real number and Z : [0,1] → [0,1] a continuous and strictly increasing fuction
with Z(0) = 0 and Z(1) = 1. If there is just one player (n = 1) and he selects the inter-
val bi = [minbi ,maxbi], so that the share of approvals lower than x given q and Z equals

Fq,Z (bi ,x)
Z(maxbi )−Z(minbi )+q

with

Fq,Z(bi ,x) =


0, if x <minbi .

Z(x)−Z(minbi) + (x−minbi )
(maxbi−minbi )

q, if maxbi ≤ x ≤minbi .

Z(maxbi)−Z(minbi) + q, if x >maxbi .

For any b = (bi ,b−i) with bi ∈ C(B) for every i ∈ N , the share of approvals lower than x

equals

Fq,Z(b,x) =

∑
i∈N Fq,Z(bi ,x)

n× q+
∑
i∈N (Z(maxbi)−Z(minbi))

.

The outcome θq,Z is the median of this cumulative distribution.
For ease of exposition, we introduce the following notation and focus on profiles with

bi ∈ C(B) for every i ∈N . The similar argument applies if some player(s) select singletons.
For any b with convex support, we let η−i(b,q,Z) := (n − 1) × q +

∑
j∈N\{i}(Z(maxbj) −

Z(minbj)). Note that

Fq,Z(b,x) =
Z(x)−Z(minbi) + (x−minbi )

(maxbi−minbi )
q+

∑
j,i Fq,Z(bj ,x)

Z(maxbi)−Z(minbi) + q+ η−i(b,q,Z)
.

Since Fq,Z(bj ,x) is a cumulative distribution, note that∑
j,i

Fq,Z(bj ,x) < η−i(b,q,Z)

for any b,q,Z and any i ∈ N . The next proposition show how the outcome varies when a
player varies the lower and upper bound of his strategy.

Lemma 4. Consider any profile b = (bi ,b−i) with convex support. Then,

(1) if minbi <maxbi < θ(b), then

∂
∂minbi

θ(bi ,b−i) > 0 and
∂

∂maxbi
θ(bi ,b−i) < 0.

(2) if minbi < θ(b) <maxbi , then

∂
∂minbi

θ(bi ,b−i) > 0 and
∂

∂maxbi
θ(bi ,b−i) > 0.

(3) if θ(b) <minbi <maxbi , then

∂
∂minbi

θ(bi ,b−i) < 0 and
∂

∂maxbi
θ(bi ,b−i) > 0.
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Proof. Consider first the case with minbi < maxbi < θ(b). Consider x such that Fq,Z(b,x) =
1/2. Note that

∂
∂maxbi

Fq,Z(bi ,x) =

(
η−i(b,q,Z)−

∑
j,i Fq,Z(bj ,x))

)
Z ′(maxbi)

(Z(maxbi)−Z(minbi) + η−i(b,q,Z) + q)2 > 0.

That is as maxbi increases θ(b) has to decrease for the median to be still equal to 1
2 so that

∂
∂maxbi

θ(bi ,b−i) < 0, as wanted. As far as varying the lower bound of bi , notice that

∂
∂minbi

Fq,Z(bi ,x) =

(∑
j,iGq,Z(bj ,x)− η−i(b,q,Z)

)
Z ′(minbi)

(Z(maxbi)−Z(minbi) + η−i(b,q,Z) + q)2 < 0.

Again, since minbi increases θ(b) has to increase for the median to be still equal to 1
2 so

that ∂
∂minbi

θ(bi ,b−i) > 0, as wanted. The case in which θ(b) < minbi < maxbi is symmetric
and hence is omitted.

Consider now the case with minbi < θ(b) <maxbi . One can check that

∂
∂maxbi

(
Z(x)−Z(minbi) + q

x −minbi
maxbI −minbi

+
∑
j,i

Fq,Z(bi ,x)
)

=

q(minbi − x)
(minbi −maxbi)2 < 0,

whereas

∂
∂maxbi

(
Z(maxbi)−Z(minbi) + q+ η−i(b,q,Z)

)
=

Z ′(maxbi) > 0.

Thus,

∂
∂maxbi

Fq,Z(bi ,x) < 0,

so that as maxbi increases x has to increase, showing that so that ∂
∂maxbi

θ(bi ,b−i) > 0, as
wanted. Symmetrically one can show that as minbi increases θ(b) has to increase for Fq,Z(b,x)
to be still equal to 1

2 . Q.E.D.

Once we have proved this key property of GMAM, we prove that each GMAM satisfies
the different axioms used in the characterization.

Lemma 5. Any GMAM satisfies IC.

Proof. Take some b with θ(b) , ti and bi ∈ C(B). Let ti < θ(b) w.l.o.g. Applying Lemma 4, it
is simple to see that θ([ti , ti + δ],b−i) < θ(b) so that ∃ ci ∈ C(B) with ui(θ(ci ,b−i)) > ui(θ(b)), as
desired. Q.E.D.

Lemma 6. Any GMAM satisfies MON .
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Proof. We now prove that for any GMAM θ, the equivalence (1) holds. A similar proof
applies to the characterization of the maximum of the attainable set.

1. Sufficiency. Take some i ∈ N and assume that there is some b∗i ∈ argminθ(B,b−i)
with b∗i , b

m
i . Let x∗ = θ(b∗i ,b−i). Since b∗i , b

m
i , this means that either b∗i ∩ [0,x∗] , ∅ (1.a.)

or b∗i ∩ [x∗,1] , ∅ (1.b) or both (1.c). In each of these cases, Lemma 4 directly implies that
θ([0,x∗],b−i) < θ(b∗i ,b−i), a contradiction with b∗i ∈ argminθ(B,b−i).

2. Necessity. Take some i ∈ N and assume that there is some bmi with bmi = [0,xmi ]
and xmi = θ([0,xm],b−i). Assume that bmi < argminθ(B,b−i), so that there is some b∗i with
θ(b∗i ,b−i) < θ([0,xm],b−i). By definition, it must be the case that this means that either b∗i ∩
[0,xmi ] , ∅ or b∗i∩[xmi ,1] , ∅ or that both inequalities hold simultaneously. However, Lemma 4
again directly. proves that for any b∗i ∈ B, θ(b∗i ,b−i) ≥ θ([0,xm],b−i), entailing a contradiction.

Q.E.D.

Lemma 7. Any GMAM satisfies C.

Proof. : Take anyGMAM θ with density function fb. Take some i ∈N and any pair b,bm ∈ Bn

with bm = (bmi ,b−i) such that Supp(b),Supp(bm) ∈ C(B) Assume moreover that limm→∞ b
m
i =

bi . It follows that
lim
m→∞

fbm(x) = fb(x) for any x ∈ Supp(b).

We let Fb(x) and Fbm(x) respectively denote the cumulative distribution of fb and fbm . Since
Supp(b),Supp(bm) ∈ C(B), Fb(x) and Fbm(x) are strictly increasing and continuous (hence
invertible) on Supp(b) and Supp(bm). The respective inverse functions are denoted by F−1

b :
[0,1]→ Supp(b) and F−1

bm : [0,1]→ Supp(bm). Therefore,

lim
m→∞

F−1
bm (x) = F−1

b (x) for any x ∈ Supp(b).

Since for any b with invertible Fb, θ(b) = F−1
b (1

2 ), it follows that limm→∞θ(bm) = θ(b), as
wanted. Q.E.D.

Lemma 8. Any GMAM satisfies FP .

Proof. The vector of fixed points of each mechanism θq,Z is denoted by κq,Z and is defined
as follows. Recall that for any j = 0,1, . . . ,n the strategy profile bj(x) ∈ Bn is the one in which
n− j players use the strategy [0,x] and j players use the strategy [x,1]. We let

κ
q,Z
j := {x ∈ A | θq,Z(bj(x − ε)) > θq,Z(bj(x)) = x > θq,Z(bj(x+ ε))

for any ε > 0} for any j ∈ {0,1, . . . ,n}.

Each such κq,Z must satisfy for any j ∈ {1, ...,n− 1}, κq,Zj the following equivalence:

Z(κq,Zj )×(n−j)+(n−j)×q

q×n+Z(κq,Zj )×(n−j)+[1−Z(κq,Zj )]×j
= 1/2⇔ Z(κq,Zj ) = j+q(2j−n)

n .

Note that by assumption Z is continuous and strictly increasing. It is hence invertible so
that for any j

κ
q,Z
j = Z−1(

j + q(2j −n)
n

).
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If j < n/2 then j+q(2j−n)
n ≤ 0 if and only if q ≥ j

n−2j and if j > n/2 then j+q(2j−n)
n ≥ 1 if and

only if q ≥ n−j
2j−n . By increasing the q we can ”trim” any arbitrary number of extreme κq,Zs.

Moreover, by appropriately choosing Z, we can give to each of the non-trimmed κq,Zs any
value between zero and one as required. Q.E.D.
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