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Abstract

Recent empirical studies have underlined the existence of large reallocation flows

across firms. In this paper, we study how factors that hinder this reallocation process

influence aggregate productivity growth. We extend Hopenhayn and Rogerson’s (1993)

general equilibrium firm dynamics model to allow for endogenous innovation. We cali-

brate the model using U.S. data on firms’ entry, exit, job creation, and job destruction.

We then evaluate the effects of firing taxes on reallocation, innovation, and aggregate

productivity growth.
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1 Introduction

Recent empirical studies have underlined the existence of large flows of productive resources

across firms and their important role for aggregate productivity. Production inputs are con-

stantly being reallocated as firms adjust to changing market environments and new products

and techniques are developed. As documented recently by Micco and Pagés (2007) and Halti-

wanger et al. (2014), labor market regulations may dampen this reallocation of resources.

Using cross-country industry-level data, they show that restrictions on hiring and firing re-

duce the pace of job creation and job destruction. In the U.S., Davis and Haltiwanger (2014)

find that the introduction of common-law exceptions that limit the firms’ ability to fire their

employees at will has a negative impact on job reallocation. The objective of the paper is to

study the implications of this reduced job reallocation for aggregate productivity growth.

We investigate the consequences of employment protection on job reallocation and pro-

ductivity growth using a model of innovation-based economic growth. We extend Hopenhayn

and Rogerson’s (1993) model of firm dynamics by introducing an innovation decision. Firms

can invest in research and development (R&D) to improve the quality of products. Hence,

by contrast with Hopenhayn and Rogerson (1993), job creation and job destruction are the

result of both idiosyncratic productivity shocks and endogenous innovation. Following the

seminal work of Grossman and Helpman (1991) and Aghion and Howitt (1992), we model

innovation as a process of creative destruction: by innovating on existing products, entrants

displace the incumbent producers. In addition to this Schumpeterian feature, we also con-

sider the innovations developed by incumbent firms. We allow incumbent firms to invest in

R&D to improve the quality of their own product.1 In the model, productivity growth thus

results from the R&D of both entering and incumbent firms. The model highlights the crucial

role of reallocation for economic growth. As products of higher quality are introduced into

the market, labor is reallocated towards the firms producing the higher quality products.2

1The importance of incumbents’ innovation is emphasized in recent papers, such as Acemoglu and Cao

(2015), Akcigit and Kerr (2015), and Garcia-Macia et al. (2015). Earlier papers that analyze incumbents’

innovations in the quality-ladder framework include Segerstrom and Zolnierek (1999), Aghion et al. (2001),

and Mukoyama (2003).
2Aghion and Howitt (1994) is an earlier study that highlight this aspect of the Schumpeterian growth
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By limiting the reallocation of labor across firms, employment protection may modify the

firms’ incentives to innovate.

We model employment protection as a firing tax. We find that the effects of the firing

tax on aggregate productivity growth depends on the interaction between the innovation of

entrants and incumbents. Our results indicate that imposing a firing tax can have opposite

effects on the entrants’ and the incumbents’ innovation. While the firing tax reduces the

entrants’ innovation, it may raise the incentives for incumbent firms to innovate. The firing

tax reduces the entrants’ innovation because it represents an additional cost that reduces

the expected profits from entry. Moreover, the misallocation of labor further reduces the

operational profit. For incumbents, the consequences of the firing tax is less clear-cut. In

particular, the misallocation of labor has an ambiguous impact on the incumbents’ incentive

to innovate. Firms which are larger than their optimal size, that is firms that had a succession

of negative transitory shocks or that were unsuccessful at innovating, have stronger incentives

to invest in R&D in the presence of firing costs. For those firms, innovation has the added

benefit of allowing them to avoid paying the firing tax. Conversely, firms that are smaller

than their optimal size have weaker incentives to invest in R&D in the presence of firing

costs. In addition, the incumbents’ incentive to innovate is affected by the rate at which

entrants innovate. By reducing the entry rate, firing costs lower the risk for incumbents of

being taken over by an entrant. This decline in the rate of creative destruction tends to

raise the incumbents’ innovation. Overall, we find that the firing tax may raise the aggregate

growth rate if the incumbents’ innovation is sufficiently sensitive to the entry rate.

Past theoretical studies have shown that firing costs can have adverse consequences on

macroeconomic performance. Using a general equilibrium model of firm dynamics, Hopen-

hayn and Rogerson (1993) have shown that employment protection hinders job reallocation

and reduces allocative efficiency and aggregate productivity. They find that a firing cost that

amounts to one year of wages reduces aggregate total factor productivity by 2%. In a more

recent paper, Moscoso Boedo and Mukoyama (2012) consider a wider range of countries,

models in their analysis of unemployment.
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and show that firing costs calibrated to match the level observed in low income countries

can reduce aggregate total factor productivity by 7%. The existing literature, however, has

mainly focused on the effects of employment protection on the level of aggregate productiv-

ity. This paper instead analyzes the effect on aggregate productivity growth. In focusing on

the effects of barriers to labor reallocation on aggregate productivity growth, our analysis

also goes one step beyond the recent literature on misallocation that follows the seminal

work of Restuccia and Rogerson (2008) and Hsieh and Klenow (2009). We highlight the fact

barriers to reallocation affect not only the allocation of resources across firms with different

productivity levels, but also the productivity process itself as it modifies the firms’ incentives

to innovate. Empirical studies that evaluate the contribution of reallocation on productivity,

such as Foster et al. (2001) and Osotimehin (2013), are designed to analyze the sources of

productivity growth, rather than the level; in that sense, our analysis is more comparable to

that literature. Poschke (2009) is one of the few exceptions that studies the effects of firing

costs on aggregate productivity growth. In Poschke (2009), firing costs act as an exit tax

which lowers the exit rate of low productivity firms. We focus on a different channel and

show that firing costs may also affect aggregate productivity growth through their effects on

R&D and innovation.

Our paper is also related to firm-dynamics models with endogenous innovation, such

as Klette and Kortum (2004), Lentz and Mortensen (2008), and Acemoglu et al. (2013).

Our focus, however, is different. While our objective is to study the effects of employment

protection, Lentz and Mortensen (2008) mainly focus on the structural estimation of the

model, and Acemoglu et al. (2013) study the consequences of subsidies to R&D spending

and the allocation of R&D workers across firms. Models by Akcigit and Kerr (2015) and

Acemoglu and Cao (2015) extend the Klette-Kortum model and allow incumbents to innovate

on their own products. Our model also exhibit that feature. Compared to these models, one

important difference of our study is that we use labor market data to discipline the model

parameters, consistently with our focus on labor market reallocation and labor market policy.

The paper is organized as follows. The next section sets up the model. Section 3 outlines
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our computational method and details of calibration. Section 4 describes the results. Section

5 concludes.

2 Model

We build a model of firm dynamics in the spirit of Hopenhayn and Rogerson (1993). We

extend their framework to allow for endogenous productivity at the firm level. The innovation

process of our model is built on the classic quality-ladder models of Grossman and Helpman

(1991) and Aghion and Howitt (1992), and also on the recent models of Acemoglu and Cao

(2015) and Akcigit and Kerr (2015).

There is a continuum of differentiated intermediate goods on the unit interval [0, 1] and

firms innovate by improving the quality of the intermediate goods. Final goods are produced

from the intermediate goods in a competitive final good sector. We first describe the optimal

aggregate consumption choice. We then turn to the firms, first describing the final goods

sector and the demand for each intermediate good, and then the decisions of the intermediate

goods firms. Finally, we present the potential entrants’ decision in the intermediate goods

sector and the aggregate innovation in general equilibrium.

2.1 Consumers

The utility function of the representative consumer has the following form:

U =

∞∑
t=0

βt[log(Ct)− ξLt],

where Ct is consumption at time t, Lt is labor supply at time t, β ∈ (0, 1) is the discount

factor, and ξ > 0 is the parameter of the disutility of labor. Similarly to Hopenhayn and

Rogerson (1993), we adopt the indivisible-labor formulation of Rogerson (1988).

The consumer’s budget constraint is

At+1 + Ct = (1 + rt)At + wtLt + Tt,

where

At =

∫
Nt
V j
t dj
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is the asset holding. The asset in this economy is the ownership of firms.3 Here, V j
t indicates

the value of a firm that produces product j at time t, and Nt is the set of products that are

actively produced at time t. In the budget constraint, rt is the net return of the asset, wt is

wage rate, and Tt is the lump-sum transfer of the firing tax to the consumer.

The consumer’s optimization results in two first-order conditions. The first is the Euler

equation:

1

Ct
= β(1 + rt+1)

1

Ct+1
, (1)

and the second is the optimal labor-leisure choice:

wt
Ct

= ξ. (2)

2.2 Final-good firms

The final good Yt is produced by the technology

Yt =

(∫
Nt

qjt
ψyjt

1−ψdj

) 1
1−ψ

.

The price of Yt is normalized to one, yjt is the use of intermediate product j at time t, qjt

is the realized quality of intermediate product j.4 The realized quality is the combination of

the potential quality qt and the transitory shock αjt:

qjt = αjtqjt.

We assume that αjt is i.i.d. across time and products. We also assume that the transitory

shock realizes at the product level, rather than at the firm level, so that the value of αjt does

not alter the ranking of the realized quality compared to the potential quality5

Let the average potential quality of intermediate goods be

q̄t ≡
1

Nt

(∫
Nt
qjtdj

)
3We do not distinguish firms and establishments in this paper. Later we use establishment-level dataset

in our calibration. Using the firm-level data yields similar results.
4Similar formulations are used by Luttmer (2007), Acemoglu and Cao (2015), and Akcigit and Kerr (2015),

among others.
5If the shock is at the firm level, it is possible that the incumbent firm i’s realized quality αitqit is larger

than the new firm j’s realized quality αjtqjt even if qjt > qit.
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and the quality index Qt be

Qt ≡ q̄
ψ

1−ψ
t .

Note that the quality index grows at the same rate as the aggregate output Yt along the

balanced-growth path.

The final goods sector is perfectly competitive, and the problem for the representative

final good firm is

max
yjt

(∫
Nt

qjt
ψyjt

1−ψdj

) 1
1−ψ
−
∫
Nt
pjtyjtdj.

The first-order condition leads to the inverse demand function for yjt:

pjt = qjt
ψyjt

−ψYt
ψ. (3)

Final-good firms are introduced for ease of exposition; as in the standard R&D-based growth

models, one can easily transform this formulation into a model without final goods, assuming

that the consumers (and firms engaging in R&D activities) combine the intermediate goods

on their own.6 In this sense, the final-good sector is a veil in the model, and we ignore

final-good firms when we map the model to the firm-dynamics data.

2.3 Intermediate-good firms

Each intermediate-good firm produces one differentiated product. The core of the model is

the dynamics of the heterogeneous intermediate-good firms. Intermediate-good firms enter

the market, hire workers, and produce. Depending on their productivity changes, they expand

or contract over time, and they may be forced to exit. Compared to standard firm-dynamics

models, the novelty of our model is that these dynamics are largely driven by endogenous

innovations.

The intermediate firms conduct R&D activities to innovate. We consider two sources of

innovations. One is the innovation by incumbents: an incumbent can invest in R&D in order

to improve the potential quality of its own product. The other is the innovation by entrants:

an entrant can invest in R&D to innovate a product that is either (i) not currently produced,

6See, for example, Barro and Sala-i-Martin (2004).
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or (ii) currently produced by another firm. If the product in not currently produced, the

entrant becomes a new monopolist in the industry. If the product is currently produced by

another firm, the entrant displaces the incumbent monopolist. The previous producer is, as

a result, forced to exit.7

Our main policy experiment is imposing a firing tax on intermediate-good firms. We

assume that the firm has to pay the tax τwt on each worker it fires,8 including when it exits.9

2.3.1 Production of intermediate goods

Each product j is produced by the leading-edge monopolist who produces the highest quality

for that particular product. The firm’s production follows a linear technology

yjt = `jt,

where `jt is the labor input of production workers. The monopolist decides on the production

quantity given the inverse demand function, given by equation (3).

2.3.2 Innovation by incumbents

An incumbent producer can innovate on its own product. The probability for an incumbent

to innovate on its product at time t is denoted xIt. A successful innovation increases the

quality of the product from qt to (1 + λI)qt, where λI > 0, in the following period. The cost

of innovation, rIt, is assumed to be

rIt = θIQt
qjt
q̄t
xIt

γ ,

where γ > 1 and θI are parameters.

7Instead of assuming that the lower-quality producer automatically exits, we can resort to a market par-

ticipation game with price competition as in Akcigit and Kerr (2015).
8Following the literature (e.g. Hopenhayn and Rogerson (1993)), we assume that the firing costs are in-

curred only when the firm contracts or exits (that is, only when job destruction occurs). As is well documented

(see, for example, Burgess et al. (2000)), worker flows are typically larger than job flows. The implicit as-

sumption here is that all worker separations that are not counted as job destruction are voluntary quits that

are not subject to the firing tax.
9An alternative specification is to assume that the firm does not need to incur firing costs when it exits.

See Samaniego (2006) and Moscoso Boedo and Mukoyama (2012) for discussions.
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2.3.3 Innovation by entrants

A new firm can enter after having successfully innovated on either an intermediate good

currently produced by an incumbent or on a good that is not currently produced. In order

to innovate, a potential entrant has to spend a fixed cost φQt and a variable cost

rEt = θEQtxEt
γ

to innovate with probability xEt. Here, ψ and θE are parameters. As for the incumbents’

innovation, a successful innovation increases the quality of product from qt to (1 + λE)qt in

the following period. Here, we are allowing the innovation step for the entrants, λE , to be

different from the incumbents’ innovation step λI . We assume that the entrants’ innovation

is not targeted: each entrant innovates on a product that is randomly selected.

We assume free entry, that is, anyone can become a potential entrant by spending these

costs. The free entry condition for potential entrants is

max
xEt

{
−θEQtxEtγ − φQt +

1

1 + rt
xEtV̄E,t+1

}
= 0, (4)

where V̄E,t+1 is the expected value of an entrant at time t + 1. The optimal value of xEt,

x∗Et, is determined by

1

1 + rt
V̄E,t+1 − γθEQtxEtγ−1 = 0 (5)

and the value of aggregate innovation by entrants is XEt = mtx
∗
Et, where mt is the number

of potential entrants at time t. From (4) and (5), x∗Et satisfies

−θEx∗Et
γ − φ+ γθEx

∗
Et
γ = 0

and thus x∗Et is a constant number x∗E that can easily be solved as a function of parameters.

The solution is

x∗E =

(
φ

θE(γ − 1)

) 1
γ

.

Note that x∗E is not affected by the firing tax. Thus all adjustments for entry in response to

the changes in firing tax occur at the margin of mt.
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2.3.4 Exit

We assume that the firm can exit for two reasons: (i) the product line is taken over by

another firm with a better quality; (ii) the firm is hit by an exogenous exit shock. In both

cases, exit is not the results of an endogenous decision.

The exogenous exit shock, assumed to be constant, is denoted by δ > 0. After this shock,

the product that the firm has been producing becomes inactive until a new entrant picks it

up.

2.4 Timing of events and value functions

The timing of events in the model is the following. Below, we omit the firm subscript j when

there is no risk of confusion.

1. At the beginning of period t, all innovations that were paid last period realize. In-

cumbent firms have to exit from the product lines on which entrants have innovated,

including when both the incumbent and the entrant innovate at the same time.

2. The transitory productivity shock realizes.

3. The firms (including the newly-entered firms) receive the exit shock with probability δ.

4. Exiting firms pay the firing cost.

5. Let us express the distribution of the firm size at this point by the stationary mea-

sure over the individual state (qt, αt, `t−1), where qt is the potential quality, αt is the

transitory shock, and `t−1 is the size in the previous period.

6. Firms decide on hiring, firing and innovation (this include the potential entrants’ in-

novation), then the labor market clears and the production takes place. The consumer

decides on consumption and saving.

Now we express the firm’s optimization problem as a dynamic programming problem.

The expected value for the firm at the beginning of the period (after stage 2 of the timing)
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is

Zt(qt, αt, `t−1) = (1− δ)V s
t (qt, αt, `t−1) + δV o

t (`t−1).

The first term in the right-hand side is the value from surviving and the second term is the

value from exiting due to the exogenous exit shock. The value of exiting is

V o
t (`t−1) = −τwt`t−1.

The value of staying is

V s
t (qt, αt, `t−1)

= max
`t,xIt

Πt(qt, αt, `t−1, `t, xIt) +
1

1 + rt+1
((1− µt)St+1(xIt, qt, `t)− µtτwt+1`t) .

Here, the St+1(xIt, qt, `t) is the value of survival into the next period and µt is the probability

that the incumbent firm is forced to exit because of the entrant innovation. The value of

survival is

St+1(xIt, qt, `t) = (1− xIt)Eαt+1 [Zt+1(qt, αt+1, `t)] + xItEαt+1 [Zt+1((1 + λI)qt, αt+1, `t)],

where the period profit is

Πt(qt, αt, `t−1, `t, xIt) = ([αtqt]
ψ`t
−ψYt

ψ − wt)`t − θIQt
qt
q̄t
xIt

γ − τwt max〈0, `t−1 − `t〉.

Because the economy exhibits perpetual growth, we first need to transform the problem

into a stationary one before applying usual dynamic programming techniques.

3 Balanced-growth equilibrium

From this section, we focus on the balanced-growth path of the economy, where wt, Ct, Yt, Qt

grow at a common rate g. Our specification implies that q̄t grows at a rate gq = (1+g)
1−ψ
ψ −1

along this path. Let us normalize all variables except qt by dividing Qt. For qt, we normalize

with q̄t. Denote all normalized variables with a hat (̂ ): for example, Ŷt = Yt/Qt, Ĉt = Ct/Qt,

q̂t = qt/q̄t, and so on.
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3.1 Normalized Bellman equations

From the consumer’s Euler equation (1),

β(1 + rt+1) =
Ct+1

Ct
= 1 + g

holds. Therefore (1+g)/(1+r) = β holds along the stationary growth path. This can be used

to rewrite the firm’s value functions as the following. (We use the hat notation for the value

functions, in order to distinguish from the previous section.) The value at the beginning of

the period is (given the stationarity, time subscripts are dropped)

Ẑ(q̂, α, `) = (1− δ)V̂ s(q̂, α, `) + δV̂ o(`), (6)

where

V̂ o(`) = −τŵ`.

The value of staying is

V̂ s(q̂, `) = max
`′≥0,xI

Π̂(q̂, α, `, `′, xI) + β

(
(1− µ)Ŝ

(
xI ,

q̂

1 + gq
, `′
)
− µτŵ`′

)
, (7)

where

Ŝ

(
xI ,

q̂

1 + gq
, `′
)

= (1− xI)Eα′
[
Ẑ

(
q̂

1 + gq
, α′, `′

)]
+ xIEα′

[
Ẑ

(
(1 + λI)q̂

1 + gq
, α′, `′

)]
.

Note that in (7), ` is the previous period employment and `′ is the current period employment.

The period profit can be rewritten as

Π̂(q, α, `, `′, xI) = ([αq̂]ψ`′
−ψ
Ŷ ψ − ŵ)`′ − θI q̂xIγ − τŵmax〈0, `− `′〉. (8)

Note that the Bellman equation, Equation (7), can be solved for given Ŷ , ŵ, g, and µ.

For the entrants, the free entry condition can be rewritten as:

max
xE

{
−θExEγ − φ+ βxE

ˆ̄VE

}
= 0,

where xE satisfies the optimality condition

β ˆ̄VE = γθExE
γ−1.
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3.2 General equilibrium under balanced growth

Let the decision rule for xI be XI(q̂, α, `), and the decision rule for `′ be L′(q̂, α, `). Denote

the stationary measure of the (normalized) individual state variables as f(q̂, α, `) at the point

of decision for innovation and hiring. Assume that innovating over a vacant line improves

the quality of the product over a quality drawn from a given distribution h(q̂). Let Ω denote

the cumulative distribution function of α and ω denote the corresponding density function.

The stationary measure has to be the fixed point of the mapping f → Tf , where T is

defined by ∫ α′
0

∫ `′
0

∫ q̂′
0 Tf(q̂, α, `)dq̂dαd` =

Ω(α′)

[
(1− µ)Ms(q̂

′, `′)

+µ(1−N)

∫
(1+λE)q̂/(1+gq)≤q̂′

(1− δ)h(q̂)dq̂

+µ

∫
(1+λE)q̂/(1+gq)≤q̂′

∫ ∫
(1− δ)f(q̂, α, `)dq̂dαd`

]
The first term of right hand side is the mass of surviving firms (defined below). The second

line is the entry into inactive products. The last line refers to the products whose ownership

changes because of entry. The mass of surviving firms is

Ms(q̂
′, `′) =∫
q̂/(1+gq)≤q̂′

∫
L′(q̂,α,`)≤`′

(1−XI(q̂, α, `))(1− δ)f(q̂, α, `)dq̂dαd`

+

∫
(1+λI)q̂/(1+gq)

∫
L′(q̂,α,`)≤`′

XI(q̂, α, `)(1− δ)f(q̂, α, `)dq̂dαd`.

The total mass of actively produced products is

N ≡
∫ ∫ ∫

f(q̂, α, `)dq̂dαd`.

From the steady-state condition (inflow equals outflow)

δN = µ(1− δ)(1−N),

this can be computed easily as

N =
µ(1− δ)

δ + µ(1− δ)
. (9)
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The aggregate innovation by incumbents is

XI =

∫ ∫ ∫
XI(q̂, α, `)f(q̂, α, `)dq̂dαd`,

and the aggregate innovation by entrants is

XE = mx∗E .

The probability for an incumbent to lose a product, µ, is equal to entrants’ innovation rate:

µ = XE .

The growth rate of q̄ is given by

1 + gq =
q̄′

q̄
.

Let

f̄(q̂) ≡
∫ ∫

f(q̂, α, `)dαd`.

Then the normalized value of entry in the stationary equilibrium can be calculated as:

ˆ̄VE =

∫ [∫
Ẑ

(
(1 + λE)q̂

1 + gq
, α, 0

)
(f̄(q̂) + (1−N)h(q̂))dq̂

]
ω(α)dα.

In the goods market, the final goods are used for consumption and R&D, and therefore

Ŷ = Ĉ + R̂,

holds, where R̂ is the normalized R&D spending which includes the potential entrants’ fixed

cost. In the labor market, the consumer’s first-order condition for labor-leisure decision (2)

is

ŵ

Ĉ
= ξ,

and thus

ŵ

Ŷ − R̂
= ξ

holds. Since Ŷ is a function of intermediate-good production which utilizes labor, this equa-

tion (implicitly) clears the labor market.
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4 Characterization of the model

The case without firing tax can easily be characterized analytically. It provides a useful

benchmark and give intuitions for the determinants of innovation and growth in the model.

Also, the economy without firing costs is later used for the purpose of calibration in the

quantitative analysis. The case with firing tax is less straightforward to characterize. We

provide a partial characterization of the model, that facilitates the numerical computation

of the equilibrium.

4.1 Analytical characterization of the frictionless economy

The solution to the economy without firing tax can be boiled down to a system of nonlinear

equations. The full characterization is in Appendix B. Here, we present several key results.

The first is the value function for the incumbents and the decision for the internal inno-

vation.

Proposition 1 Given Ŷ , µ, and gq, the value function for the incumbents is of the form

Ẑ(q̂, α) = Aαq̂ + Bq̂,

and the optimal decision for xI is

xI =

(
β(1− µ)λI(A+ B)

(1 + gq)γθI

) 1
γ−1

where

A = (1− δ)ψ Ŷ
N

and B solves

B = (1− δ)β(1− µ)

(
1 +

γ − 1

γ
λIxI

)
A+ B
1 + gq

.

Proof. See Appendix B. Note that N solves (9) for a given µ.

This result shows that xI is constant across different firms regardless of the values of α

and q̂. This is consistent with Gibrat’s law : the expected growth of a firm is independent of

its size.
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This property implies that the process for the firm productivity is a stochastic multiplica-

tive process with reset events.10 This process allows us to characterize the right tail of the

firm productivity distribution as follows.

Proposition 2 Suppose that the distribution of the quality for a innovation on vacant line,

h(q̂), is bounded. Then the right tail of the relative firm productivity q̂ follows a Pareto

distribution with the shape parameter ξ (that is, the density has a form of F q̂ξ+1) which

solves

1 = (1− δ)
[
(1− µ)xIγ

κ
i + µγξe + (1− µ− (1− µ)xI)γ

κ
n

]
.

where γi ≡ (1 + λI)/(1 + gq), γe ≡ (1 + λE)/(1 + gq), and (1− δ)(1− µ− (1− µ)xI).

Proof. See Appendix B.

Because the firm size (in terms of employment) is log-linear in q̂ for a given α, the right-tail

of the firm size also follows the Pareto distribution with the same shape parameter κ.

Finally, the growth rate of the aggregate productivity is given by the following expression.

Proposition 3 The growth rate of the aggregate productivity is given by

gq = (1− δ)[(1 + λIxI)(1− µ) + (1 + λE)µ] + δ(1 + λE)q̄h − 1,

where q̄h is the average value of the distribution h(q̂).

Proof. This can be shown by a simple accounting relation. Let the measure of qt (without

normalization) for active products be z(qt). The fraction (1 − µ)xI(1 − δ) of active lines

experiences innovation by incumbents, and the fraction (1 − µ − (1 − µ)xI)(1 − δ) do not

experience any innovation (but stay in the market). The fraction µ(1− δ) of active products

experiences innovation by entrants. Among the inactive products, the fraction µ(1 − δ)

experiences innovation by entrants, but it is an upgrade from distribution h(qt/q̄t) rather

than z(qt)/N . Thus gq can be calculated from

1 + gq = (1− δ)
[
(1 + λIxI)(1− µ) + (1 + λE)µ+ (1 + λ)µ

1−N
N

q̄h

q̄z

]
.

10See, for example, ?.
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Here, q̄h and q̄z are averages of qt with respect to distributions h and z. Thus q̄h/q̄z =∫
qth(qt/q̄t)dqt/

∫
qt[z(qt)/N ]dqt =

∫
q̂h(q̂)dq̂/

∫
q̂[ẑ(q̂)/N ]dq̂. Combining this with the ex-

pression for N in (9) and the fact that q̄z = 1 yields the above result.

Once the firing tax is introduced, xI is no longer constant across firms, and therefore this

formula is not valid. However, it is still useful to think of the effect of the policy on growth

in these three components: the incumbents’ innovation, the entrants’ innovation on active

products, and the entrants’ innovation on non-active products.

4.2 Some characterization of the economy with firing tax

With firing tax, the employment decision by a firm is no longer static, and therefore the

characterization is not as easy as in the case without firing tax. However, we can still make

some progress so that the computational burden in the quantitative analysis can be eased.

The main idea is to formulate the model in terms of the deviations from the frictionless

outcome.

First, define the frictionless level of employment without temporary shock as

`∗(q̂; ŵ, Ŷ ) ≡ arg max
`′

([αq̂]ψ`′
−ψ
Ŷ ψ − ŵ)`′

with α = 1; that is,

`∗(q̂; ŵ, Ŷ ) =

(
1− ψ
ŵ

) 1
ψ

q̂Ŷ .

Also define Ω(ŵ, Ŷ ) by

Ω(ŵ, Ŷ ) ≡ `∗(q̂; ŵ, Ŷ )

q̂
.

In addition, define deviation of employment from frictionless level by

˜̀≡ `

`∗(q̂; ŵ, Ŷ )
.

Similarly, let

˜̀′ ≡ `′

`∗(q̂; ŵ, Ŷ )
.
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Then, the period profit (8) can be rewritten as

Π̂(q̂, α, `, `′, xI) =[ α

Ω(ŵ, Ŷ )

]ψ
˜̀′−ψŶ ψ − ŵ

 q̂Ω(ŵ, Ŷ )˜̀′ − θI q̂xIγ − τŵmax〈0, q̂Ω(ŵ, Ŷ )˜̀− q̂Ω(ŵ, Ŷ )˜̀′〉.

Thus this is linear in q̂, and can be rewritten as q̂Π̃(α, ˜̀, ˜̀′, xI), where

Π̃(α, ˜̀, ˜̀′, xI) ≡

[ α

Ω(ŵ, Ŷ )

]ψ
˜̀′−ψŶ ψ − ŵ

Ω(ŵ, Ŷ )˜̀′ − θIxIγ − τΩ(ŵ, Ŷ )ŵmax〈0, ˜̀− ˜̀′〉.

Because the period return function is linear in q̂, it is straightforward to show that all value

functions are linear in q̂. Defining Z̃(α, ˜̀) from Ẑ(q̂, α, `) = q̂Z̃(α, ˜̀), (6) can be rewritten as

Z̃(α, ˜̀) = (1− δ)Ṽ s(α, ˜̀) + δṼ o(˜̀),

where Ṽ o(˜̀) is from V̂ o(`) = q̂Ṽ o(˜̀) and thus

Ṽ o(˜̀) = −τŵΩ(ŵ, Ŷ )˜̀

and Ṽ s(˜̀) is from V̂ s(q̂, `) = q̂Ṽ s(˜̀) with

Ṽ s(˜̀) = max
˜̀′≥0,xI

Π̃(α, ˜̀, ˜̀′, xI) + β

(
(1− µ)

S̃(xI , ˜̀′)

1 + gq
− µτŵΩ(ŵ, Ŷ )˜̀′

)
(10)

Here, the expression S̃(xI , ˜̀′)/(1 + gq) comes from Ŝ(xI , q̂/(1 + gq), `
′) = q̂S̃(xI , ˜̀′)/(1 + gq).

The linearity of the value functions implies that

S̃(xI , ˜̀′)

1 + gq
= (1− xI)Eα′

[
Z̃
(
α′, (1 + gq)˜̀′

)] 1

1 + gq
+ xIEα′

[
Z̃

(
α′,

(1 + gq)˜̀′

1 + λI

)]
1 + λI
1 + gq

also holds. Here we used that

Ẑ(q̂′, α′, `′) = q̂′Z̃

(
α′,

`′

`∗(q̂′; ŵ′, Ŷ ′)

)
= q̂′Z̃

(
α′,

`∗(q̂; ŵ, Ŷ )

`∗(q̂′; ŵ′, Ŷ ′)

`′

`∗(q̂; ŵ, Ŷ )

)

with ŵ′ = ŵ, Ŷ ′ = Ŷ ; and that `∗(q̂; ŵ, Ŷ )/`∗(q̂′; ŵ′, Ŷ ′) = q̂/q̂′ yields

Ẑ(q̂′, α′, `′) = q̂′Z̃

(
α′,

q̂

q̂′
˜̀′
)

for q̂′ = q̂/(1 + gq) and q̂′ = (1 + λI)q̂/(1 + gq).
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The optimization problem in (10) has two choice variables, ˜̀′ and xI . The first-order

condition for xI is

γθIx
γ−1
I = ΓI

and thus xI can be computed from

xI =

(
ΓI
γθI

)1/(γ−1)
,

where ΓI ≡ β(1−µ)Eα′
[
Z̃(α′, (1 + gq)˜̀′/(1 + λI))(1 + λI)− Z̃(α′, (1 + gq)˜̀′)

]
/(1+gq). From

here, it is easy to see that xI is uniquely determined once we know ˜̀′. Let the decision rule

for ˜̀′ in the right-hand side of (10) be L′(α, ˜̀). Then the optimal xI can be expressed as

xI = XI(α, ˜̀). This implies that xI is independent of q̂.

5 Computation and calibration

The details of the computational methods are described in Appendix A. Our method involves

similar steps to the standard general-equilibrium firm dynamics model. Similarly to Hopen-

hayn and Rogerson (1993) and Lee and Mukoyama (2008), we first make a guess on relevant

aggregate variables (in our case ŵ, µ, g, and Ŷ ), solve the optimization problems given these

variables, and then update the guess using the equilibrium conditions. This procedure is also

similar to how the standard Bewley-Huggett-Aiyagari models of heterogeneous consumers are

typically computed. This separates our work from recent models of innovation and growth,

such as Klette and Kortum (2004), Acemoglu et al. (2013), and Akcigit and Kerr (2015), as

these models heavily rely on analytical characterization in continuous-time setting.

Following a strategy similar to Hopenhayn and Rogerson (1993), we calibrate the pa-

rameters of the model under the assumption that firing costs are equal to zero and use

US data to compute our targets.11 All firm dynamics data used are computed from the

establishment-level statistics of the U.S. Census Business Dynamics Statistics (BDS) data.12

11See Appendix B for the analytical characterization of the model without firing costs.
12The data are publicly available at “http://www.census.gov/ces/dataproducts/bds/data.html”.
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[The calibration is preliminary] The model period is one year. The discount rate β is set

to 0.947 in line with Cooley and Prescott (1995). The value of ψ is set to 0.2 which implies

an elasticity of substitution across goods of 5. This value is in the range of Broda and

Weinstein’s (2006) estimates. Our value of 0.2 implies a markup of 25% which is in line with

the estimates of de Loecker and Warzynski (2012). We set the curvature of the innovation

cost γ to 2. As noted by Acemoglu et al. (2013), 1/γ can be related to the elasticity of patents

to R&D spending, which has been found to be between 0.3 and 0.6.13 These estimates imply

that γ is between 1.66 and 3.33.

We set the value of disutility of labor ξ so that the employment to population ratio is

equal to 0.6. The parameters of the innovation and productivity processes are pinned down

from the job flows data. We assume that the transitory shock α is uniformly distributed,

and can take three values exp(−ε), 1 and exp(ε), with probability 1/3 for each value. The

cost of innovating is assumed to be identical for entrants and incumbents: θE = θI ≡ θ.

We then set, θ, ε, and φ to match the growth rate of output of 2%, the job creation rates

of entering and that of incumbent establishments. For now, we assume that the size of the

innovation of entrant and incumbent is equal λE = λI ≡ λ. [In the future, we will also

consider the case where they differ.] The innovation size λ is pinned down by the ratio

of the number of expanding establishments over the number of contracting establishments.

For given values of the growth rate of the economy and the job creation by entrants, a

higher λ implies a lower innovation rate for incumbents and therefore a smaller proportion of

expanding establishments. Finally, we assume that the distributions of productivity q̂ and α

on inactive product lines are independent. When they innovate on an inactive product line,

the entrants draw the productivity upon which they innovate from a uniform distribution

over [0, 2 ×q̄h]. We set the mean q̄h together with the exogenous exit rate δ to match

the proportion of establishment with 0-5 employees and the tail index κ of the productivity

distribution14. The parameter values are summarized in Table 1.

13See for example Griliches (1990).
14See Section 4.1 for the expression of the tail index.
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Table 1: Calibration
Parameter New Calib

Discount rate β 0.947

Disutility of labor ξ 1.55

Demand elasticity ψ 1/5

Innovation step λ 0.20

Innovation curvature γ 2.00

Innovation cost θI ,θE 0.16

Entry cost φ 1.06

Exogenous exit rate δ 0.021

Transitory shock ε 0.20

Inactive lines h mean 0.25

Firing tax τ 0

Table 2: Comparison between the U.S. data and the model outcome

Data Model

growth rate g 2.12

R&D ratio R/Y 13.47

L 60 59.65

JC rate 17.0 16.68

JC from entry 6.4 6.23

JD rate 15.0 16.25

JD from exit 5.3 7.22

nb estab. exp./contract. 1.01 1.03

Tail index 1.06 1.064

Table 2 compares the baseline outcome and the targets. The growth rate of output is

about 2.1%; this is also the growth rate of the quality indexQt. The table shows that the other

targets – the job creation and job destruction rates, the share of expanding establishments

and the tail index of the productivity distribution – roughly match the data magnitude.

We also report the R&D expenditures as a share of aggregate output though we do not

use it as a target in the calibration. The R&D ratio, at about 14%, is larger than what

we typically see from conventional measures of R&D spending. However, because our model

intends to capture innovation in a broad sense and to include various methods of product and

technology improvements that are not necessarily included in formal R&D measurements, it

is more appropriate the compare the model amount of R&D to a broader statistics than the
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Table 3: Size distribution of firms
Data Model

1-5 0.495 0.425

5-10 0.223 0.236

10-20 0.138 0.168

20-50 0.089 0.103

50-100 0.030 0.036

100+ 0.024 0.032

conventional measure of R&D. The output share of R&D spending is in line with Corrado

et al.’s (2009) estimate of the U.S. intangible investments in the 1990s.

Table 3 compares the size distribution of firms in the data and in the model. The two

match well. The model hence captures the salient features of the U.S. establishment dynamics

and size distribution.

6 Quantitative results

[Results are preliminary]

Table 4: The effects of firing costs

baseline fixed entry no exit tax

τ = 0 τ = 0.3 τ = 0.3 τ = 0.3

growth rate g 2.12 2.37 2.11 2.33

R&D ratio R/Y 13.47 13.02 13.68 13.06

innov rate entry µ 5.23 4.00 5.23 4.28

innov rate inc. xI 52.00 58.49 52.10 57.50

Employment L 59.65 58.60 58.84 0.597

Average productivity Ŷ /L 100 97.43 99.6 97.96

JC rate 16.68 6.50 7.72 6.78

JC from entry 6.23 4.27 5.47 4.54

JD rate 16.25 6.14 7.35 6.41

JD from exit 7.22 6.01 7.22 6.29

Note: the average productivity Ŷ /L is normalized to 100 in the benchmark with no firing

costs.

We now turn to the effects of employment protection. Table 4 compares the baseline

result with the firing tax of τ = 0.3; that is, the cost of dismissal per worker amounts to 3.6
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months of wages. [We plan to evaluate the effects of cross-country differences in firing costs].

The second column of the table gives the results of the baseline experiment. Imposing the

firing tax leads to a decline in labor demand and hence to a reduction in employment. The

firing cost also substantially reduces the labor market reallocation, measured by job creation

and job destruction. The implications of the reduction in labor market flows for misallocation

and the level of aggregate productivity have been emphasized by Hopenhayn and Rogerson

(1993). Similarly, we find that the firing tax reduces the average level of productivity, Ŷ /L,

by 2.6 percents.

In addition to this effect on the level of productivity, our model shows that firing costs

also affect the growth rate of productivity. Firing costs reduce the entrants’ incentives to

innovate. The innovation rate by entrants falls by about 1.3 percentage points. The incentive

for entrants’ to innovate is reduced because of two factors. First, the firing tax has a direct

effect on expected profits as it raises the cost of operating a firm. Second, firing costs prevent

firms from reaching their optimal scale and this misallocation reduces the entrants’ expected

profits.

By contrast, the incumbents’ innovation increases by about 6 percentage points as a

result of the firing tax. The consequences of the firing tax on the incumbents’ incentive to

innovate are theoretically ambiguous. The misallocation of labor may reduce the incumbents’

incentives to innovate since it prevents the firm from reaching its optimal size. But this only

holds for firms that are below their optimal size. On the other hand, firms that are larger than

their optimal size, either because of a negative transitory shock or because they have been

unsuccessful at innovating, have now stronger incentives to invest in R&D. By innovating,

firms also avoid paying the firing cost. In addition, the incumbents’ incentives to innovate

also depend on the entry rate. A lower entry rate reduces the risk for incumbents of being

taken over by an entrant, which raises the return of the firm’s R&D investment. Firing

costs, by reducing the rate of creative destruction may therefore lead to an increase in the

incumbents’ innovation rate. In our baseline calibration, the effect of the reduction of the

entry rate and the positive effect of misallocation dominate and firing costs lead to an increase
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in the incumbents’ innovation.

To assess the importance of the entry rate for the incumbents’ innovation, we consider

an alternative experiment in which we maintain the entry rate to the level of the economy

without firing costs. The results are reported in the third column of Table 4. When the entry

rate is held constant, the incumbents’ innovation only slightly increases. This result indicates

that the decline in the entry rate is key to understanding the increase in the incumbents’

innovation. Without the decline in entry, the effects of the firing costs would have limited

consequences on the incumbents’ innovation as the positive and negative consequences of

misallocation seem to roughly offset each other.

In the last experiment, we assume that incumbents do not have to pay the firing costs

when they exit. As shown in the fourth column of the table, this assumption mainly affects

the entrants’ innovation. Compared to the baseline experiment, the value of entry declines

less as firing costs do not increase the cost of operating a firm as much if firms do not have

to pay the firing costs when they exit. As a result, entry falls less, which leads to a smaller

increase in the incumbents’ innovation.

All in all, our results illustrate the importance of including the incumbents’ innovation

in the analysis. We find that firing costs are likely to affect the innovation of entrants

and incumbents in opposite directions. The aggregate growth rate could therefore increase

or decrease as a result. In our baseline experiment, the positive effect on the incumbents

dominates quantitatively and the growth rate is higher when firms face firing costs.

7 Conclusion

In this paper, we constructed a general equilibrium model of firm dynamics with endoge-

nous innovation. The firms not only decide on production and employment, but also entry

and expansion through innovation. Therefore, the productivity shocks that firms face are

endogenous in our framework, and they react to economic incentives.

Our framework allows us to examine how barriers to reallocation affect firm dynamics and

aggregate economic growth. This paper examined a particular type of barriers: a firing tax.
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We found that a firing tax can have opposite effects on entrants’ innovation and incumbents’

innovation. A firing tax reduces job reallocation and entrants’ innovation, while it may

enhance incumbents’ innovation.

Because the process of innovation inherently involves randomness, the incentive to inno-

vate affects the risks that each firm faces from their own innovation. It also affects the risks

that firms face from other firms’ innovation, in the form of creative destruction. When there

are barriers to reallocating productive resources, there is a natural feedback process between

the misallocation of resources and innovation: misallocation affects incentive to innovate, and

this in turn changes the process of shocks that affects misallocation. It is a promising future

research topic to further investigate this interaction both theoretically and empirically.
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Appendix

A Details of computation

The computation is done by first guessing the relevant aggregate variables, perform opti-

mization and derive the value function trough iteration, and then updating the guess.

The procedure is as follows.

1. Before finding the iteration, several variables can be computed from parameters. First,

calculate x∗E from

x∗E =

(
φ

θE(γ − 1)

) 1
γ

.

2. Then ˆ̄VE can be computed from

ˆ̄VE =
γθE
β
xE

γ−1.

3. Start the iteration. Guess Ŷ , ŵ, m, and g. We use the following guess:

0 ≤ Ŷ ≤ 2× target(L),

0 ≤ ŵ ≤ 2× (1− ψ),

0 ≤ g ≤ 2× λ((1− µ)xI + µ),

Given m, we can calculate the value of µ by µ = XE = mx∗E . Now we are ready to

solve the Bellman equation for the incumbents.

We have two choice variables, ˜̀′ and xI . The first-order condition for xI is

γθIx
γ−1
I = ΓI

and thus xI can be computed from

xI =

(
ΓI
γθI

)1/(γ−1)
,

where ΓI ≡ β(1−µ)Eα′
[
Z̃(α′, (1 + gq)˜̀′/(1 + λI))(1 + λI)− Z̃(α′, (1 + gq)˜̀′)

]
/(1+gq).

We can see that xI is uniquely determined once we know ˜̀′. Let the decision rule for

˜̀′ be L′(α, ˜̀). Then xI = XI(α, ˜̀).
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4. Once all decision rules are computed, with iterative procedure we can find f(q̂, α, ˜̀) by

iterating over density.

5. Now, we check if the first guesses are consistent with the solution from the optimization.

The values of ŵ and

Ŷ =

(∫ ∫ ∫
[αq̂]ψ[`∗(q̂; ŵ, Ŷ )L′(α, ˜̀)]

1−ψ
f(q̂, α, ˜̀)dq̂dαd˜̀

) 1
1−ψ

=

(∫ ∫
αψ[Ω(ŵ, Ŷ )L′(α, ˜̀)]

1−ψ
∫
q̂f(q̂, α, ˜̀)dq̂dαd˜̀

) 1
1−ψ

and

ŵ

Ŷ − R̂
= ξ,

where

R̂ =

∫ ∫ ∫
θI q̂XI(α, ˜̀)γf(q̂, α, ˜̀)dq̂dαd˜̀+m(φ+ θEx

γ
E)

= θI

∫ ∫
XI(α, ˜̀)γ

∫
q̂f(q̂, α, ˜̀)dq̂dαd˜̀+m(φ+ θEx

γ
E)

In order to check the value of gq, the condition 1
N

∫ ∫ ∫
q̂f(q̂, α, ˜̀)dαd`dq = 1 is used.

Intuitively, when gq is too small, the stationary density f(q̂, α, ˜̀) implies the values of

q̂ that are too large.

For m, because a large m implies a large µ, which in turn lowers Z̃. Thus it affects the

computed value of ˆ̄VE , through Z̃. Recall that

ˆ̄VE =
γθE
β
xE

γ−1

has to be satisfied, and this has to be equal to

ˆ̄VE =

∫ [∫
Ẑ((1 + λE)q̂/(1 + gq), α, 0)(f̄(q̂) + (1−N)h(q̂))dq̂

]
ω(α)dα

=

∫ [∫
q̂Z̃(α, 0)(1 + λE)/(1 + gq)(f̄(q̂) + (1−N)h(q̂))dq̂

]
ω(α)dα

=

∫
Z̃(α, 0)ω(α)dα

[
N + (1−N)

∫
h(q̂)dq̂

]
(1 + λE)/(1 + gq)

because
∫
q̂f̄(q̂)dq̂ = N .

6. Go back to Step 3, until convergence.

30



B Analytical characterization of the case without firing tax

This section characterizes the model without firing tax and boils it down to a system of

nonlinear equations. The derivations also serve as proofs for Propositions 1 and 2.

B.1 Model solution

Note first that for a given µ, the number of actively produced product, N , is calculated by

(9). Recall that µ is an endogenous variable, and it is determined by the entrants’ innovation:

µ = mxE
∗.

As we have seen, xE
∗ is a function of parameters

x∗E =

(
φ

θE(γ − 1)

) 1
γ

,

and thus µ (and also N) is a function of m. In particular, note that N is an increasing

function of m.

Because there are no firing taxes, the previous period employment, `, is not a state variable

anymore. The measure of individual states can be written as f(q̂, α), and because q̂ and α

are independent, we can write f(q̂, α) = ẑ(q̂)ω(α). In particular, note that
∫
q̂ẑ(q̂)dq̂ = N ,

because q̂ is the value of qt normalized by its average. We also assume that ω(α) is such that∫
αω(α)dα = 1.

Without firing costs, the labor can be adjusted freely. Thus the intermediate-good firm’s

decision for `′ is essentially static:

max
`′

π̂ ≡ ([αq̂]ψ`′
−ψ
Ŷ ψ − ŵ)`′. (11)

From the first-order condition,

`′ =

(
1− ψ
ŵ

) 1
ψ

αq̂Ŷ (12)

holds. Because y = `′, we can plug this into the definition of Ŷ :

Ŷ =

(∫ ∫
[αq̂]ψy1−ψ ẑ(q̂)ω(α)dq̂dα

) 1
1−ψ

.
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This yields

Ŷ = Ŷ

(
1− ψ
ŵ

) 1
ψ

N
1

1−ψ

and therefore

ŵ = (1− ψ)N
ψ

1−ψ . (13)

Recall that N is a function of the endogenous variable m. Thus ŵ is also a function of m.

The equations (12) and (13) can also be combined to

`′ = αq̂Ŷ N
− 1

1−ψ . (14)

Integrating this across all active firms yield∫ ∫
`′ẑ(q̂)ω(α)dq̂dα = N

− 1
1−ψ Ŷ

∫ ∫
αq̂ẑ(q̂)ω(α)dq̂dα = N

− ψ
1−ψ Ŷ .

The left-hand side is the aggregate employment L. Thus,

L = N
− ψ

1−ψ Ŷ .

One way of looking at this equation is that Ŷ can be pinned down once we know L and N

(and thus L and m). Plugging (13) and (14) into (11) yields

π̂ = ψαq̂
Ŷ

N
.

Now, let us characterize the innovation decision of a intermediate-good firm. Recall that

the value functions are (with our simplifications)

Ẑ(q̂, α) = (1− δ)V̂ s(q̂, α),

where

V̂ s(q̂, α) = max
xI

ψαq̂
Ŷ

N
− θI q̂xIγ + β(1− µ)Ŝ(xI , q̂/(1 + gq)) (15)

and

Ŝ(xI , q̂/(1+gq)) = (1−xI)
∫
Ẑ(q̂/(1+gq), α

′)ω(α′)dα′+xI

∫
Ẑ((1+λI)q̂/(1+gq), α

′)ω(α′)dα′.

We start from making a guess that Ẑ(q̂, α) takes the form

Ẑ(q̂, α) = Aαq̂ + Bq̂,
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where A and B are constants. With this guess, the first-order condition in (15) for xI is

γθI q̂xI
γ−1 =

β(1− µ)λI(A+ B)q̂

1 + gq
.

Thus

xI =

(
β(1− µ)λI(A+ B)

(1 + gq)γθI

) 1
γ−1

(16)

and xI is constant across q̂ and α. Using this xI ,

Ẑ(q̂, α) = (1− δ)

(
ψαq̂

Ŷ

N
− θI q̂xIγ + β(1− µ)

1 + xIλI
1 + gq

(A+ B)q̂

)
.

Thus, the guess is verified with

A = (1− δ)ψ Ŷ
N

and B is a value that solves

B = (1−δ)
(
−θIxIγ + β(1− µ)

1 + xIλI
1 + gq

(A+ B)

)
= (1−δ)β(1−µ)

(
1 +

γ − 1

γ
λIxI

)
A+ B
1 + gq

,

where xI is given by (16). Therefore, we found that xI (and the coefficients of Ẑ(q̂, α)

function) is a function of endogenous aggregate variables µ, gq, Ŷ , and N . We have already

seen that we can pin down µ and N if we know m, and Ŷ can be pinned down if we know m

and L. How about gq?

To calculate gq, let us start from the measure of qt (without normalization) for active

products, z(qt). As we have seen above, the transitory shock α does not affect the innovation

decision, and thus can be ignored when calculating the transition of qt. The fraction (1 −

µ)xI(1−δ) of active lines experiences innovation by incumbents, and the fraction (1−µ−(1−

µ)xI)(1−δ) do not experience any innovation (but stay in the market). The fraction µ(1−δ)

of active products experiences innovation by entrants. Among the inactive products, the

fraction µ(1 − δ) experiences innovation by entrants, but it is an upgrade from distribution

h(qt/q̄t) rather than z(qt)/N . Thus gq can be calculated from

1 + gq = (1− δ)
[
(1 + λIxI)(1− µ) + (1 + λE)µ+ (1 + λE)µ

1−N
N

q̄h

q̄z

]
.

The first term is the productivity increase of the surviving incumbents, the second term is the

entry into active products, and the last is the entry into inactive products. Here, q̄h and q̄z are
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averages of qt with respect to distributions h and z. Thus q̄h/q̄z =
∫
qth(qt/q̄t)dqt/

∫
qt[z(qt)/N ]dqt =∫

q̂h(q̂)dq̂/
∫
q̂[ẑ(q̂)/N ]dq̂. Using the expression for N in (9) and the fact that q̄z = 1,

gq = (1− δ)[(1 + λIxI)(1− µ) + (1 + λE)µ] + δ(1 + λE)q̄h − 1.

Thus, gq can be written as a function of µ and xI , and therefore m and L.

From above procedure, we found that once we pin down m and L, we can determine all

endogenous variables in the economy. The values of m and L can be pinned down by two

additional conditions: the labor-market equilibrium condition and the free-entry condition.

To see this, let us first be explicit about each variable’s (and each coefficient’s) dependence

on m and L: ŵ(m), N(m), Ŷ (m,L), xI(m,L), gq(m,L), A(m,L), and B(m,L). Also note

that the total R&D, R̂, can be written as

R̂ =

∫
θI q̂xI(m,L)γ ẑ(q̂)dq̂ +m(φ+ θExE

γ) = θIN(m)xI(m,L)γ +m(φ+ θExE
γ)

and therefore we can write R̂(m,L).

The labor-market equilibrium condition is

ŵ(m)

Ŷ (m,L)− R̂(m,L)
= ξ

and the free-entry condition is

γθExE
γ−1

β
= ˆ̄VE =

∫ [∫
Ẑ((1 + λE)q̂/(1 + gq), α)(ẑ(q̂) + (1−N)h(q̂))dq̂

]
ω(α)dα

=

∫
A(m,L) + B(m,L)

1 + gq(m,L)
(1 + λE)q̂(ẑ(q̂) + (1−N)h(q̂))dq̂

=
A(m,L) + B(m,L)

1 + gq(m,L)
(1 + λE)[N(m) + (1−N(m))q̄h].

These two equations pin down the values of m and L.

B.2 Productivity distribution

The invariant distribution ẑ(q̂) can easily be computed. The next-period mass at relative

quality q̂ is (i) upgrade by incumbents’ innovation: (1− δ)(1− µ)xI ẑ((1 + gq)q̂/(1 + λI))dq̂,

(ii) upgrade by entrants’ innovation: (1− δ)µẑ((1 + gq)q̂/(1 +λE))dq̂, (ii) natural downgrade

from non-innovating products: ((1− δ)(1−µ− (1−µ)xI)ẑ((1 + gq)q̂)dq̂, and (iii) entry from
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inactive products, (1 − δ)µ(1 − N)h(q̂/(1 + λE))dq. The sum of these has to be equal to

ẑ(q̂)dq̂ along the stationary growth path.

In fact, it is possible to characterize the right tail of the distribution analytically, when

the distribution h(q̂) is bounded. Let the density function of the stationary distribution be

s(q̂) ≡ ẑ(q̂)/N . Because h(q̂) is bounded, there is no direct inflow from the inactive product

lines at the right tail.

Take the point q̂ and interval ∆ around that point. The outflow from that interval is

s(q̂)∆, as entire firms there will either move up, move down, or exit.

The inflow is from two sources. First is the mass of firms who innovated. Innovation is

either done by incumbents or entrants. Let γi ≡ (1 + λI)/(1 + gq) > 1 be the (adjusted)

improvement of q̂ upon innovation by incumbents. The probability of innovation by either

incumbents is (1− δ)(1−µ)xI . Thus the mass of inflow into the above interval is (1− δ)(1−

µ)xIs(q̂/γi)∆/γi. Similarly, letting γe ≡ (1 +λE)/(1 +gq) > 1 be the improvement of q̂ upon

innovation by entrants, the mass of inflow due to entrants’ innovation is (1−δ)µs(q̂/γe)∆/γe.

.

The second inflow is the firms that didn’t innovate or exit. With probability (1− δ)(1−

µ− (1−µ)xI), there are no innovations (nor exit). Let γn ≡ 1/(1 + gq) < 1 be the (adjusted)

improvement (in this case the “negative improvement”) when there is no innovation. Then

the mass of inflow into above interval is (1− δ)(1− µ− (1− µ)xI)s(q̂/γn)∆/γn.

In the stationary distribution, inflow equals outflow, and therefore

s(q̂)∆ = (1− δ)
[
(1− µ)xIs

(
q̂

γi

)
∆

γi
+ µs

(
q̂

γe

)
∆

γe
+ (1− µ− (1− µ)xI)s

(
q̂

γn

)
∆

γn

]
,

or

s(q̂) = (1− δ)
[
(1− µ)xIs

(
q̂

γi

)
1

γi
+ µs

(
q̂

γe

)
1

γe
+ (1− µ− (1− µ)xI)s

(
q̂

γn

)
1

γn

]
,

Guess that the right-tail of the density function is Pareto and has the form s(x) =

Fx−(κ+1). ξ is the shape parameter and the expected value of x exists only if κ > 1.
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Plugging this guess into the above yields

F q̂−(κ+1) =

(1− δ)

[
(1− µ)xIF

(
q̂

γi

)−(κ+1) 1

γi
+ µF

(
q̂

γe

)−(κ+1) 1

γe

+(1− µ− (1− µ)xI)F

(
q̂

γn

)−(κ+1) 1

γn

]
,

or

1 = (1− δ) [(1− µ)xIγ
κ
i + µγκe + (1− µ− (1− µ)xI)γ

κ
n] .

Thus, κ is the solution of this equation.
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