Abstract

I analyze a model of interest group influence on legislative voting through information transmission. The model shows how interest groups may craft different messages to target different winning coalitions in order to influence the outcome. If access to legislators is costly then interest groups prefer to coordinate with allied legislators by providing them with information that helps them to persuade less sympathetic legislators. The model reconciles informational theories of lobbying with empirical evidence suggesting that interest groups predominantly lobby those who already agree with them. The model also makes new predictions about the welfare effects of interest group influence: from an ex ante perspective, informational lobbying negatively effects the welfare of legislators. The results highlight the need for more theories of persuasion that take collective choice institutions into account.

Words in text: 8094
Words in headers: 66
Words outside text (captions, etc.): 1417
Number of headers: 17
Number of math inlines: 410
Number of math displayed: 22
Interest group influence is commonly seen as a consequence of strategic information transmission from lobbyists to legislators. Legislators lack information about the electoral or policy consequences of their decisions. Interest group lobbyists specialize in acquiring relevant information and presenting it in a way that paints their preferred policies in a positive light. This informational view of interest group lobbying originated from classic accounts of interest group behavior\(^1\) and gained new life from formal models of communication under asymmetric information.\(^2\)

The most significant challenge to informational theories of lobbying comes from Hall and Deardorff (2006). The puzzle is the following: If we believe informational theories of lobbying then we should predict that interest groups will concentrate on lobbying the legislators that they need to persuade. In contrast, real interest group lobbyists mostly interact with legislators who already agree with them. Therefore, Hall and Deardorff conclude that most lobbying must not be about changing legislators’ minds. Instead, lobbying is budget-based rather than preference-based: lobbyists subsidize the work of like-minded legislators in order to make them more effective champions of their mutual goals.

Should we conclude that lobbying has little to do with persuasion? I argue that this conclusion would be misguided. In fact, data from case studies, surveys, and in-depth interviews suggest that interest group lobbyists devote a great deal of their time to persuasion. Interest group scholars therefore face a pressing challenge: we must develop theories of lobbying that can explain the prevalence of persuasive efforts by interest groups as well as which politicians they choose to lobby.

This study illustrates one way that informational accounts of lobbying can be reconciled with the empirical evidence. Many of the apparent limitations of informational lobbying theories do not stem from the idea of lobbying as persuasion but from other auxiliary simplifying assumptions. Most notably, nearly all informational models involve a legislature consisting of only one person.\(^3\)

\(^1\)See, for instance, Truman (1953, p. 332-335), Bauer, Pool and Dexter (1972, Ch. 10-12), and Milbrath (1963, Ch. 9-13).

\(^2\)These will be reviewed in more detail below. See Grossman and Helpman (2001) and Wright (1996) for detailed reviews of these models.

\(^3\)A notable exception is Bennedsen and Feldmann (2002) who consider a model in which an interest group may search for information about demand for a public good in several districts prior to a legislative session. However, since expected demand for the public good is completely symmetric in their model, it is not set up to answer the question of
This is limiting in two ways. First, interest groups do not lobby a single legislator in a vacuum but must instead build coalitions in favor of their preferred policy. Second, though one-legislator models depict the legislator as a passive recipient of information, legislators are active participants in the lobbying process and can often be counted on to champion the interest group’s cause to other legislators.

I consider a series of models that show how predictions about informational lobbying can be dramatically different for multimember legislatures. First, the conditions under which persuasion can be successful are considerably different in legislatures. Though it may seem obvious that persuading one member of Congress is easier than persuading 218, the need for coalition building in a multimember legislature actually opens doors for persuasion when persuading a single policy-maker would not have been possible. The mechanism exploits the fact that information can have asymmetric effects on legislators. Since the interest group only needs a winning coalition to support its preferred policy, its welfare is not affected when legislators outside that winning coalition receive negative information about the policy. Therefore, an interest group can influence policies by designing its messaging strategy to target different winning coalitions at different times. Unfortunately, this may also mean that interest group lobbying is bad for legislators’ welfare: most legislators expect to be outside of the winning coalition often enough that they would prefer to bar the interest group from offering any advice.

I also show that informational lobbying may be most often directed at legislators who were already inclined to support the interest group’s preferred outcome. This result rests on two facts: access to legislators is costly and legislators can actively lobby for their preferred position. Given this, interest groups prefer to gain access to allied legislators and provide them with information that helps them persuade opponents. This strategy shares some similarities to both informational and budget-based lobbying: the ultimate goal is persuasion through information transmission, but the mechanism is one in which lobbyists gain influence by supporting the efforts of like-minded legislators.

whether interest groups should lobby allies or opponents. I compare my model to that of Bennedsen and Feldmann in Section 5.
1 Existing Theories

Early models of informational lobbying formalized the intuition that interest groups gain influence over legislators by gaining policy expertise and using it to communicate with policymakers. Potters and Van Winden (1990) formalized the idea of political pressure as information transmission in a dynamic game between an interest group and a legislator. Another two-player model by Potters and Van Winden (1992) showed that conflicts of interest between interest groups and legislators can prevent credible informational lobbying and that the imposition of lobbying costs restores credibility when conflicts of interest are not too severe. Austen-Smith and Wright (1992) analyzed a model in which two opposing interest groups transmit information to a single legislator in order to influence her vote and showed that informational lobbying can improve the legislator’s policy decisions.

Scholars quickly recognized a limitation of informational lobbying theories: they could not explain why interest groups predominately lobby policymakers who are already convinced of their positions. Austen-Smith and Wright (1994) offered the first potential solution to this problem in the form of counteractive lobbying: interest groups may sometimes lobby allies in order to prevent them from being influenced by opposing lobbyists. However, as Hall and Deardorff (2006) note, this theory does not fully account for the empirical patterns: the counteractive lobbying model predicts that “groups do lobby their allies, but they lobby only their weak allies, do so no more than their weak enemies, and do so less than undecided legislators” (p. 71).

4 As Hall and Deardorff (2006) note, theories of lobbying generally fall into three camps: models of lobbying as exchange which are typified by the formal literature on vote buying, models of informational lobbying, and finally budget-based models of lobbying. Given the aim of this paper, my review of the literature focuses on the latter two traditions. However, it is worth noting that the vote buying literature relies more often on multiple-legislator models than does work on informational lobbying (e.g. Groseclose and Snyder (1996); Denzau and Munger (1986)).

5 This relates to a more general point, due to Crawford and Sobel (1982), that cheap talk is less informative the more the preferences of the sender and receiver diverge.

6 The fact that interest groups predominately lobby allies is well known. See, for example, Bauer, Pool and Dexter (1972, p. 353) and Hojnacki and Kimball (1998, 1999), though see Kollman (1997) for an alternative explanation for this fact.

7 This debate has arguably been driven by a misinterpretation of the Austen-Smith and Wright (1992, 1994) models. These models actually do not make a prediction about decisions over whom to lobby since they feature only one legislator. Instead, these models tell us the parameters under which an interest group should engage in lobbying at all given that there is only one policymaker. However, the broader point that lobbying allies seems inconsistent with lobbying as persuasion is relevant beyond the discussion of any particular model.
An alternative theory, suggested by Bauer, Pool and Dexter (1972, p. 353) and more fully articulated in Hall and Deardorff (2006) is that interest group lobbyists provide labor and expertise to subsidize the work of legislators who already agree with them. In this theory, persuasion has little to do with most lobbying, since “the proximate objective of this strategy is not to change legislators’ minds” (p. 69). Lobbying as persuasion is possible, according to Hall and Deardorff, but should be expected only under relatively rare circumstances.

Hall and Deardorff’s explanation solves one puzzle but creates another: if lobbyists are simply a subsidy to like-minded legislators, why do they not spend all their time drafting legislation, helping with constituent service, and otherwise conducting the business of the legislature? Surveys of interest group representatives seem to suggest that persuasion is an important component of influence. In Schlozman and Tierney’s (1986) survey, for instance, the top three activities that consume time and resources for organizations are contacting government officials to present their point of view (35%), testifying at hearings (27%), and presenting research results (27%). More recent evidence paints a similar picture. In Baumgartner et al. (2009), 61% of organizations relied on disseminating in-house research to policymakers and 46% relied on disseminating external research, while only 39% helped draft legislative language.

Prominent case studies also lend support to the idea that lobbyists engage in persuasion. For instance, Hansen (1991) argued that the farm lobby gained influence by providing information to legislators about how constituents would react to policy choices. Wright’s (1996) analysis of lobbying efforts surrounding Robert Bork’s nomination to the Supreme Court showed that lobbyists used a combination of persuasion and grassroots lobbying to achieve their goals (p. 97-103). In another example, Drutman and Hopkins (2013) analyzed the corpus of emails sent by Enron em-

8This information is found in Table 7.2 (p. 151). Subsidy-like activities were also common in these data: Consulting with officials to plan legislative strategy (19%) was the seventh-ranked activity consuming time and resources, helping draft legislation (11%) was the eleventh-ranked activity, drafting regulations (7%) was sixteenth, contributing personnel to campaigns (2%) and doing favors for officials who need assistance (2%) also consumed time and resources for a small number of organizations.

9This information comes from Table 8.1 of Baumgartner et al. (2009). There were some notable differences from Schlozman and Tierney’s (1986) data: for instance, testifying at hearings was relatively less common (14.8%). As in Schlozman and Tierney’s survey, personal contact with members of Congress was the most commonly used tactic (81%), though the question wording made it less clear whether personal contact was related to persuasion rather than conducting day-to-day business.
ployees. The Enron emails revealed that using their “monopoly on policy-relevant information” to persuade legislators was a central part of their lobbying efforts (p. 20). All of this evidence suggests that a significant proportion of lobbyists’ time is spent on activities more clearly associated with informational lobbying.

2 Legislators and Interest Groups as Partners in Advocacy

One mechanism for persuasion by lobbyists, which has been noted but not explored systematically in previous theoretical models, is that lobbyists use their allies as intermediaries to persuade less sympathetic legislators. For instance, Austen-Smith and Wright (1994) recognize this possibility in relation to their own model of counteractive lobbying.

We define lobbying very specifically, and somewhat narrowly, as the transmission of information directly to legislators in an effort to reinforce or change their policy positions. Organizations that filled out the questionnaires, however, may have had somewhat different notions of lobbying in mind. Groups may, for example, consider lobbying to involve consultations with their legislative friends in order to have them indirectly lobby other less sympathetic legislators (p. 36).

Hall and Deardorff (2006) point to the same possibility as a way that their theory may complement informational lobbying theories, noting that “[...][lobbyists] should also provide political intelligence to their legislative allies so that the latter might employ preference-centered strategies with their uncommitted colleagues” (p. 79). Similarly, Ainsworth (1997) notes that “...when lobbying enterprises exist, lobbyists are most apt to concentrate their activities on their congressional allies, insuring that their allies have sufficient means to mobilize other legislators” (p. 526).

Empirical work also documents lobbyists using allies as intermediaries to persuade unsympathetic legislators. For instance, in a sweeping study of lobbyists involving over 300 in-depth interviews with policy advocates and structured data on over 2,000 advocates over a large number of years...

\[\text{[Emails sent by Enron employees were acquired by the Federal Energy Regulatory Commission during its investigation of the company, and were later made public by researchers.]}\]
of issue areas, Mahoney and Baumgartner (2015) conclude that “Outsiders and insiders together decide who might be the most effective contact for a given target, what argument might be most compelling to that individual, and they all share information such as vote tallies.” The authors cite several examples from their in-depth interviews, including advocates working on the issues of public utilities, water reform, trade relations with China, and abortion rights. The advocates indicated that they worked closely with legislative allies to discuss how to approach messaging to other legislators in order to broaden the coalition in favor of their side. For instance, Mahoney and Baumgartner (2015) quote an advocate for Permanent Normalized Trade Relations with China recalling meetings in which lobbyists would meet with legislative allies and solicit volunteers to meet with other legislators to advocate for their cause.

Though scholars of interest groups appear to share a casual understanding that lobbyists use allied legislators as intermediaries for persuasion, this phenomenon is mostly absent from formal theories of lobbying to date. The closest exception is a paper by Caillaud and Tirole (2007) which also explores strategies that can be used to persuade a voting body to pass a bill. In that model, the lobbyist11 does not have private information about the effect of the bill on a legislator’s payoff but can provide legislators with a report that allows them to determine this information for themselves. They show that by targeting key legislators the lobbyist can sometimes engineer “persuasion cascades” in which bringing key members on board sways the opinions of others. The mechanism driving the results in their paper is considerably different than in mine, since persuasion cascades are driven not by communication but by correlation between players’ payoffs that lead some voters to support a policy once they learn that another voter benefits.12

11In Caillaud and Tirole (2007) this player is called a “sponsor” and the voting players are called “group members.” I am referring to them as lobbyists and legislators to make clear the relationship of their paper to the current application.

12Another difference between my analysis and that of Caillaud and Tirole (2007) is that the bulk of their analysis focuses on two-member committees operating by unanimity rule (with some extensions for \(N\) voters later in the paper), where my entire analysis focuses on (super)majority rules with three or more legislators. Thus, the coalition-building aspect of legislative policy-making is more central to my analysis.
3 A Theory of Informational Lobbying in a Legislature

The limitations of most informational lobbying models stem from two common assumptions: that the targets of interest groups’ lobbying efforts can be reduced to a single representative policy-maker and that role of the legislator is limited to receiving information and voting rather than actively lobbying. In this section I argue that relaxing both assumptions allows us to construct models of informational lobbying that are more in line with existing empirical findings.

3.1 Model One: Lobbying with Unlimited Access

I relax the two traditional assumptions one at a time in order to help build intuition. Thus, I begin by characterizing informational lobbying in an environment with multiple legislators but where an interest group has automatic access to all legislators. The interest group is the only player with private information and is able to communicate directly to every legislator, so the legislators’ roles are simply to receive information and vote.

3.1.1 Game play and payoffs

Consider a legislature N consisting of n legislators who must decide whether or not to pass a proposed policy. An interest group P represents proponents of the new policy and may lobby the legislators on behalf of its members. The interest group’s method of lobbying is to strategically transmit information about the effects of the policy to the legislators.

The legislators are uncertain about some piece of information that affects whether or not they should vote for the proposal. For instance, the legislators may lack information about the effects of the proposed policy or about public opinion in their districts regarding the proposal (Truman, 1953). Following typical game-theoretic conventions, all of the unknown policy-relevant information is represented by a state of the world, labeled ω. Specifically, the state of the world is a vector of n zeros and ones, where element i is equal to one if legislator i ought to vote in favor of the proposal and zero otherwise. For instance, if $n = 3$, the state $\omega = (1, 0, 1)$ means that legislators 1 and 3 will receive higher utility if the proposal passes and legislator 2 will receive higher utility if
the proposal fails. The set $\Omega = \{0, 1\}^n$ represents all feasible states of the world.

Though the legislators are ignorant of the value of ω, they share common prior beliefs. This belief is represented by a function f, according to which each legislator $i \in N$ is associated with a probability $p_i \in (0, 1)$ of benefiting from the proposal and these probabilities are independent across legislators. Formally, if $p = (p_1, \ldots, p_n)$, the prior probability distribution for each $\omega = (\omega_1, \ldots, \omega_n) \in \Omega$ is equal to $f(\omega, p) = \prod_{i \in N} p_i^{\omega_i} (1 - p_i)^{1 - \omega_i}$. The common prior is meant to represent all of the publicly available information that informs what legislators think about the policy prior to the introduction of any private information from interest groups.

The sequence of play is as follows. First, P observes the state of the world. This represents the idea that the interest group has obtained some private information – perhaps through private research or polling, or because it has special expertise on the policy issue – that it can use to try to persuade the legislators of its position. Second, P communicates to the legislators. Communication takes the form of a message m_P which is an element of the set Ω. For example, if $n = 3$, the message $m_P = (0, 1, 1)$ would be taken as a recommendation for legislators 2 and 3 to vote in favor of the proposal and for legislator 1 to vote against. The messages are cheap talk, meaning that their content does not directly affect the payoffs of the players. Finally, the legislators update their beliefs about the probability of benefiting from the policy and take an up-or-down vote over whether or not to implement the new policy. The legislature operates according to a q-majority rule, meaning that the proposal passes if and only if at least q legislators vote in favor, where $\frac{n}{2} < q < n$. The policy outcome is represented by the variable x, where $x = 1$ when the proposal passes and $x = 0$ when the proposal fails.

13Since the messages used in the game are cheap talk (i.e. they are not directly related to payoffs), the labels of the messages are arbitrary and have no intrinsic meaning in the game – the meaning of language in cheap talk games is simply the posterior belief that the players attach to each message. However, the labels of the messages have a natural literal interpretation in this game as recommendations to each legislator. Thus, without loss of generality, I focus on equilibria that are consistent with this interpretation in the sense that the i-th element of m is equal to one for the legislators expected to vote Yes following the message m. This does not affect the proofs of the results but it aids interpretation of the examples presented later.
Each legislator $i \in N$ has preferences represented by the utility function

$$u_i(x, \omega) = \begin{cases} H & \text{if } x = 1 \text{ and } \omega_i = 1 \\ -L & \text{if } x = 1 \text{ and } \omega_i = 0 \\ 0 & \text{if } x = 0. \end{cases}$$

where H and L are both positive numbers. P’s preferences are represented by the utility function $u_P(x) = x$. In other words, P always prefers that the legislature vote to pass the proposal, regardless of the state of the world.

3.1.2 Strategies and equilibrium

The players’ strategies are plans describing how they will play the game at every information set. P’s strategy, denoted σ_P, prescribes a probability distribution over possible messages for each possible state of the world. Thus, $\sigma_P(m|\omega)$ is the probability that P sends the message m after learning that the state of the world is equal to ω. For each $i \in N$, legislator i’s strategy is a function v_i describing how that legislator will vote following every possible message by P.\(^{14}\) The entire profile of legislators’ voting strategies is denoted $v = (v_1, \ldots, v_n)$.

In addition to the players’ strategies, the equilibrium predictions depend on the beliefs of the legislators. Though the legislators’ prior beliefs are part of the definition of the game, the analysis also relies on the legislators’ conditional beliefs following communication with the interest group. Let $\pi_i(m)$ denote the legislators’ beliefs about the probability that $\omega_i = 1$ given that P has sent the message m.\(^{15}\) Legislators’ conditional beliefs are assumed to be correct – that is, consistent with Bayesian updating – following all messages. This ensures that interest group influence results from structural aspects of legislative policymaking rather than from psychological biases that make

\(^{14}\)I allow the interest group to play a mixed strategy but limit the legislators to pure strategies. When it is relevant, I assume that legislators vote in favor of the proposal when they are indifferent, though relaxing this assumption would affect the results only in knife-edge cases.

\(^{15}\) is not a full description of a legislators’ posterior beliefs, but only the decision-relevant component of those beliefs. Let $\Delta(\Omega)$ denote the set of all probability distributions over Ω. The full posterior belief is a function $g: \Omega \to \Delta(\Omega)$ giving the probability of each $\omega \in \Omega$ following any message. Then $\pi_i(m) = \sum_{\omega: \omega_i = 1} g(\omega|m)$. This formulation is used in the appendix but I focus on $\pi_i(m)$ in the main text to simplify the presentation.
legislators easily manipulable.

The analysis characterizes perfect Bayesian equilibria in weakly undominated strategies. An equilibrium to the game is a profile of strategies such that: (a) P’s messaging choices maximize its expected payoff given the legislators’ strategies, (b) legislators vote in favor of the proposal if and only if $\pi_i(m)H - (1 - \pi_i(m))L \geq 0$, and (c) $\pi_i(m)$ is never inconsistent with Bayesian updating given P’s strategy.

Like all cheap talk games, this game admits multiple equilibria some of which involve no information transmission at all. Unless no other equilibria exist, uninformative equilibria are implausible: any interest group should fire a lobbyist who babbles uninformatively when it is possible to influence outcomes instead. Therefore, I will focus on equilibria that are optimal from the perspective of the interest group.

3.1.3 Analysis

My analysis of the model of lobbying with unlimited access seeks answers to three questions: When is it possible for the interest group to influence the outcome? When influence is possible at all, what kinds of messaging strategies help the interest group to be influential? Finally, what are the implications of interest group influence for legislators’ welfare? Proofs of all results are contained in the appendix.

An influential equilibrium is one in which a proposal that would have failed passes with some positive probability due to P’s lobbying efforts. Though this definition allows for different outcomes following different states or messages, the assumptions of the model imply a stronger notion of influence: if P influences the legislature at all, it must be the case that the legislature passes the proposal with probability one. The reason is that P cannot commit to messaging strategies that cause passage following some messages and failure following others. P would deviate from such a strategy by only sending successful messages.

Lemma 1. In any influential equilibrium, the proposal passes with probability one.

It follows from Lemma 1 that if the legislature were replaced with a single policymaker then it
would be impossible for P to influence the outcome. The proof of this statement can be understood from the following exercise: Suppose that P could influence this single policymaker ($N = \{1\}$) whose prior expected utility from passing the proposal is negative. Lemma 1 tells us that the policymaker must always approve the proposal, which means that $\pi_1(m) > p_1$ following every speech m by P. However, the law of total probability tells us that $\sum_{m \in \Omega} \pi_1(m) \Pr[m_p = m] = p_1$, so it can never be true that every posterior belief is more optimistic than the prior.

Why should influence work differently when the target is a legislature rather than a single policymaker? To see the difference, consider an example involving a majority rule committee of three legislators.

Example 1. Let $n = 3$. The committee uses a simple majority rule ($q = 2$). Suppose that a proposed project costs 200 per district and each legislator believes that the project would yield her district a benefit worth 600 with probability $\frac{1}{4}$ (in terms of the model setup, we have $L = 200$, $H = 600 - 200 = 400$, and $p_1 = p_2 = p_3 = \frac{1}{4}$). Without any lobbying, the proposal would fail in a unanimous vote, since every legislators’ expected benefit is -50. A legislator should support the proposal only if the posterior belief that her district will benefit is at least $\frac{1}{3}$.

Consider the following strategy for P. After observing which legislators benefit from the project, P will choose a minimal winning coalition of two legislators and recommend that they vote in favor. P chooses among the three minimal winning coalitions in the following way: If no legislators benefit from the project, P chooses a random coalition. If one legislator benefits from the project, P randomly chooses between the two coalitions that include the true beneficiary (e.g. if $\omega = (1, 0, 0)$ then P will choose randomly between $(1, 1, 0)$ and $(1, 0, 1)$). If exactly two legislators benefit from the project P chooses the coalition consisting of both true beneficiaries with probability one. If all legislators benefit from the project, P chooses a random coalition.

Table 1 depicts the signaling strategy and the prior and posterior probability calculations for this example. For the two legislators in the chosen coalition, the posterior probability of benefiting is now $\frac{47}{128}$ which is greater than $\frac{1}{3}$, so two legislators will always vote “yes.” The posterior probability of benefiting for the remaining legislator is $\frac{1}{64}$ (i.e. the probability of three beneficiaries) so one legislator will always vote “no.”
of the world. The second, third and fourth columns show the probabilities of the messages given the messages each message is and strongly opposed than prior to P the legislature learn that they are even less likely to benefit from the proposal and are even more probability of benefiting from the proposal and vote in favor of passage. The remaining members of Following each message, members of the targeted coalition learn that they have a higher probability even when none of the legislators would have been persuadable on their own. The lobbyist persuades the legislators by targeting different winning coalitions in different states of the world. Proposition 1 provides a comparative statics result and a more easily interpretable sufficient (but not necessary) condition for interest group influence.

The set of posterior distributions for which the proposal passes is the set of all distributions

| ω | $\sigma_p((1,1,0)|\omega)$ | $\sigma_p((1,0,1)|\omega)$ | $\sigma_p((0,1,1)|\omega)$ | $f(\omega,p)$ | $\Pr(\omega|(1,1,0))$ | $\Pr(\omega|(1,0,1))$ | $\Pr(\omega|(0,1,1))$ |
|-----------|-----------------|-----------------|-----------------|--------------|-----------------|-----------------|-----------------|
| $(0,0,0)$ | $\frac{1}{3}$ | $\frac{1}{3}$ | $\frac{1}{3}$ | $\frac{27}{64}$ | $\frac{27}{64}$ | $\frac{27}{64}$ | $\frac{27}{64}$ |
| $(0,0,1)$ | 0 | $\frac{1}{2}$ | $\frac{1}{2}$ | 0 | $\frac{27}{128}$ | $\frac{27}{128}$ | $\frac{27}{128}$ |
| $(0,1,0)$ | $\frac{1}{2}$ | 0 | $\frac{1}{2}$ | $\frac{9}{64}$ | $\frac{27}{128}$ | 0 | $\frac{27}{128}$ |
| $(0,1,1)$ | 0 | 0 | 1 | $\frac{9}{64}$ | 0 | 0 | $\frac{9}{64}$ |
| $(1,0,0)$ | $\frac{1}{2}$ | $\frac{1}{2}$ | 0 | $\frac{9}{64}$ | $\frac{27}{128}$ | 0 | $\frac{27}{128}$ |
| $(1,0,1)$ | 0 | 1 | 0 | $\frac{9}{64}$ | 0 | 0 | $\frac{9}{64}$ |
| $(1,1,0)$ | 1 | 0 | 0 | $\frac{9}{64}$ | 0 | 0 | $\frac{9}{64}$ |
| $(1,1,1)$ | $\frac{1}{3}$ | $\frac{1}{3}$ | $\frac{1}{3}$ | 0 | $\frac{1}{64}$ | $\frac{1}{64}$ | $\frac{1}{64}$ |

$\pi_1(m_P) = \frac{47}{128}$, $\pi_2(m_P) = \frac{47}{128}$, $\pi_3(m_P) = \frac{47}{128}$

Example 1 shows that a lobbyist may persuade a majority of legislators to support her position even when none of the legislators would have been persuadable on their own. The lobbyist persuades the legislators by targeting different winning coalitions in different states of the world. Following each message, members of the targeted coalition learn that they have a higher probability of benefiting from the proposal and vote in favor of passage. The remaining members of the legislature learn that they are even less likely to benefit from the proposal and are even more strongly opposed than prior to P’s lobbying efforts, but this does not affect the payoff of P, who is only interested in whether or not the proposal passes.

The next results establish general conditions under which P may influence the legislature. The result comes in two flavors. Lemma 2 provides a necessary and sufficient condition for existence of an influential equilibrium. Proposition 1 provides a comparative statics result and a more easily interpretable sufficient (but not necessary) condition for interest group influence.

The set of posterior distributions for which the proposal passes is the set of all distributions
over \(\{0, 1\}^n \) such that at least \(q \) voters have a probability of at least \(\frac{L}{H+L} \) of benefiting from the policy.\(^\text{16}\) That is, the approval set is:

\[
W_q = \left\{ g \in \Delta(\{0, 1\}^n) : \left\{ i \in N : \mathbb{E}_{g}[\omega_i] \geq \frac{L}{H+L} \right\} \geq q \right\}
\]

where \(\Delta(S) \) denotes the set of all probability distributions over a set \(S \). Note that elements of \(W_q \) need not be distributions that can be expressed as \(n \) independent probabilities, so each \(g \in W_k \) is a vector of probabilities over all \(2^n \) different combinations of winners. Let \(\text{co}(W_q) \) denote the convex hull of \(W_q \), that is, the set of all probability distributions that can be expressed as convex combinations of distributions in \(W_q \).

Lemma 2. There is an influential equilibrium in Model 1 if and only if \(f(\omega, p) \not\in W_q \) and \(f(\omega, p) \in \text{co}(W_q) \).

The argument for Lemma 2 characterizes the possible messaging strategies in terms of the posterior beliefs generated by each message in its support. By Lemma 1, showing that there exists an influential equilibrium requires verifying that some messaging strategy leads the legislature to pass the proposal with probability one. In other words, we must verify the existence of some messaging strategy such that every message sent by \(P \) leads to a posterior belief in \(W_q \). Fortunately, previous work shows that a set of posterior beliefs can be generated by realizations of a signal if and only if the prior distribution is in their convex hull (Kamenica and Gentzkow, 2011). Thus, an influential equilibrium can be supported if and only if the prior distribution is in the convex hull of the approval set.\(^\text{17}\)

Lemma 2 is informative but does not easily lend itself to empirical predictions. Fortunately, Lemma 2 gives rise to more easily interpretable results that relate the existence of influential equi-

\(^\text{16}\)The equilibrium conditions state that \(v_i = \text{Yes} \) if and only if \(\pi_i(m)H - (1 - \pi_i(m))L \geq 0 \). It follows from simple algebraic manipulations that \(v_i = \text{Yes} \) if and only if \(\pi_i(m) \geq \frac{L}{H+L} \).

\(^\text{17}\)Kamenica and Gentzkow (2011) analyze a model of information control in which the sender does not have private information but can design the content of a public signal. Alonzo and Cámara (2014) apply the same information control framework to a voting setting. A cheap talk model can be seen as a constraint on the information control model that limits attention only to signals that can be credibly disclosed when the sender knows the state of the world. Thus, Lemma 2 could be attained by applying Alonzo and Cámara’s (2014) results and adding the requirement that the proposal passes with probability one. Geometrically, the result relies on the fact that \(W_q \) is not a convex set.
libria to the legislators’ prior probabilities of benefiting from the policy. Proposition 1 has two parts. The first part shows that influential equilibria are monotonic with respect to the prior distribution: if P can influence the legislature under one prior distribution, then P can still guarantee passage if we increase some legislators’ probabilities of benefiting and leave the rest of the game unaltered. The second part of Proposition 1 shows that one sufficient condition for influence can be stated in terms of a simple cutoff, labeled p^*. If all legislators’ prior probabilities of benefiting are above p^*, then there exists an equilibrium in which the proposal always passes. Importantly, p^* is strictly lower than the belief at which legislators would support passage without lobbying, so the cutoff result shows again that P can persuade the legislature to pass a proposal that otherwise would have failed.

Proposition 1. In Model 1:

1. Let $\hat{p} \geq p$ and assume $f(\omega, \hat{p}) \notin W_q$. If there is an influential equilibrium when prior beliefs are $f(\omega, p)$ then there is also an influential equilibrium when prior beliefs are $f(\omega, \hat{p})$, holding everything else equal.

2. There exists $p^* \in (0, \frac{L}{n+L})$ such that if $p_i \geq p^*$ for all $i \in N$ then there exists an equilibrium in which the proposal always passes.

The proof of Proposition 1 involves two steps. First, to prove part (1) I demonstrate that if the prior distribution $f(\omega, p)$ is in the convex hull of W_q then so is any distribution $f(\omega, \hat{p})$ with $\hat{p} \geq p$, which implies (by Lemma 2) that an influential equilibrium still exists for the increased prior distribution. Second, to prove part (2) I first assume that $p_i = p_j = p^*$ for all i and j in N and derive the minimum value of p' for which there exists an influential equilibrium. Part (1) of the Proposition implies that there is also an equilibrium when legislators have different probabilities of benefiting but all probabilities are weakly greater than p^*.

Corollary 1 documents three substantive points about legislator welfare that follow from the previous results. First, any influential equilibrium reduces the *ex ante* expected utility of at least $n - q + 1$ legislators. This point follows directly from Lemma 1. Since the proposal must pass with probability one in an influential equilibrium, the *ex ante* expected utility of each legislator is equal
to her expected benefit from passing the proposal. Since it is assumed that the proposal would have failed in the absence of lobbying and therefore that P’s influence was necessary for passage, this must mean that fewer than q legislators prefer informational lobbying over no lobbying.

Second, there are some parameters under which an influential equilibrium could unanimously reduce the welfare of the legislators. This point follows from the second part of Proposition 1. Since there is an influential equilibrium if $p_i \geq p^*$ for all $i \in N$ and p^* is strictly lower than the probability that would lead a legislator to support passage \emph{ex ante}, an influential equilibrium might exists when no legislators would support passage. In these cases, influential equilibria are bad for the welfare of all legislators. Though the first welfare result is true of all influential equilibria in this paper, unanimously harmful lobbying will be much more difficult to support when access to legislators is costly.

Third, influence is more difficult for higher supermajority rules. This follows immediately from the definition of the equilibria but is substantively useful because it relates to institutional arguments made elsewhere. In fact, a common argument in favor of supermajority rules is that they help prevent capture by special interests (McGinnis and Rappaport, 1998).

\textbf{Corollary 1.} The following facts hold for Model 1:

1. Any influential equilibrium reduces the \emph{ex ante} expected utility of at least $n - q + 1$ legislators compared to the outcome with no information transmission

2. There exist parameters under which an influential equilibrium reduces the \emph{ex ante} expected utility of all legislators compared to the outcome with no information transmission

3. Let $q'' > q'$. If there is an influential equilibrium when $q = q''$, the interest group can also guarantee passage when $q = q'$.

Finally, Lemma 3 sets the stage for the analysis of the game with costly access. Part (3) shows that, if P has at least one ally in the legislature (that is, a legislator who would have approved the proposal without any lobbying) and there is an influential equilibrium to the game, then there must be some equivalent influential equilibrium in which some ally learns nothing about her probability of benefiting from the proposal.
Lemma 3. Assume that \(p_i \geq \frac{L}{H+L} \) for some \(i \). Then any influential equilibrium is outcome-equivalent to one in which \(\pi_i(m) = p_i \) for all \(m \in \Omega \).

Lemma 3 results from the assumption that the prior probabilities of benefits are independent. Since the ally legislator’s benefit does not give any information to the other legislators about their probability of benefiting, \(P \) can eliminate any information about the ally’s benefit without changing the behavior of the remaining legislators.

3.2 Model 2: Lobbying with Limited Access

The preceding model clarifies how influencing a legislature differs from influencing an individual policymaker and spells out the machinery of building coalitions through information transmission. By designing many messages that target different winning coalitions, a lobbyist can influence a legislature when influencing unitary policymakers would have been impossible. However, since the model involves only public messages sent to all legislators, it does not enable us to make predictions about who each interest group should lobby. In this section, I expand the model to include situations in which gaining access to individual legislators is costly. Since lobbying with limited access may create information asymmetries between legislators, the expanded model also allows legislators to actively lobby by passing information along to their peers.

3.2.1 Game play and payoffs

The game with limited access to legislators involves two additional moves. First, before \(P \) learns the state of the world, it must decide whether to invest in access to each legislator. Gaining access to legislators is costly – either in time and effort or in campaign contributions – so \(P \) prefers to gain access to the minimum number of legislators required to influence policy. The communication stage now differs from the previous model in that \(P \)’s messages are perceived only by those legislators to which it has gained access. Second, after \(P \)’s communication effort but prior to voting, legislators are recognized to speak publicly. Since only the legislators lobbied by \(P \) possess information that is unavailable to other legislators, we will focus only on those legislators’ speeches and
they will choose between passing on P’s message or simply remaining silent.

The full sequence of play is as follows. First, P chooses whether or not to invest in access to each legislator. Let A_P denote the set of legislators to whom P has access. Second, P observes the state of the world and chooses a cheap talk message $m_P \in \Omega$ which is revealed only to legislators in A_P. Third, legislators in A_P are recognized to speak at which point they may either reveal m_P to their fellow legislators ($\mu_i = 1$) or reveal no information ($\mu_i = 0$). Finally, legislators update their beliefs and vote as in Model 1.

Legislators’ utility functions are the same as in Model 1. P has the same preferences over policies but now pays a cost for gaining access to legislators. P’s preferences are represented by the utility function $u_P(x,A_P) = x - c|A_P|$ where $|A_P|$ is the total number of legislators in A_P and $c \in [0, 1)$ is the per-legislator cost of access. When $c = 0$, P has unlimited access to the legislature and legislators’ speeches are irrelevant, so Model 1 can be recovered as a special case of this game.

3.2.2 Strategies and equilibrium

P’s strategy in Model 2 has two elements: a set A_P of legislators to which P will invest in access, and a messaging strategy σ_P which now prescribes a probability distribution over possible messages for each possible state of the world and each possible $A_P \subseteq N$. Thus, $\sigma_P(m|\omega,A_P)$ is the probability of sending the message m given that the state is revealed to be ω and that P has gained access to the set A_P of legislators.

Each legislator’s strategy also has two components. Legislator i’s speech strategy is a set $M_i(A)$ such that $\mu_i = 1$ when $m_P \in M_i(A)$ and $i \in A_P = A$. Finally, letting I_i denote all information available to legislator i at the time of voting, legislator i’s voting strategy is a function $v_i(I_i)$ describing how that legislator will vote at any information set.

An equilibrium is a strategy profile such that (a) P’s lobbying and messaging choices maximize its expected payoff given the legislators’ strategies, (b) each legislator’s communication strategy maximizes her expected payoff given the strategies of the other legislators, (c) legislators vote in

18 Allowing partial revelation of information by legislators would not affect the outcomes of the model, since the outcome that matters is simply whether the proposal passes or fails.

19 Specifically, I_i includes A_P and m_P if $i \in A_P$ and $\{\mu_j\}_{j \in A_P}$ otherwise.
favor of the proposal if and only if $\pi_i(I_i)H - (1 - \pi_i(I_i))L \geq 0$ and (d) $\pi_i(I_i)$ is never inconsistent with Bayesian updating using the other players’ strategies.

3.2.3 Analysis

The analysis of Model 2 shows how interest groups may use allies as intermediaries to persuade less sympathetic legislators. Equilibria involving intermediaries share characteristics in common with previous informational and budget-based theories of lobbying. As in other informational theories of lobbying, the goal is to persuade legislators to change their vote by strategically transmitting information. However, as in budget-based theories, interest groups target allies for lobbying to help them achieve their mutual goals. It is important to make the distinction between the targets of lobbying activity and the targets of persuasion: interest groups focus on lobbying allies, but they do so to help persuade their opponents.

To illustrate how an interest group may use allies as intermediaries for informational lobbying, consider another three-legislator example.

Example 2. As in Example 1, there is a committee of $n = 3$ legislators that makes decisions according to a simple majority rule ($q = 2$). Also as in Example 1 the proposed project costs $200 per district and yields a benefit for $600 to some number of districts. In this example, however, the prior probabilities of benefiting are asymmetric: Legislator 1 receives the benefit with probability $p_1 = 9/10$ and the other two legislators receive the benefit with probability one fourth ($p_2 = p_3 = 1/4$). As before, each legislator should support the proposal only if her probability of benefiting is at least $1/3$. Without any lobbying, legislators 2 and 3 would vote against the proposal and legislator 1 would vote in favor, leading to a failure of the proposal. In this example, lobbying is costly for P who pays a cost $c \in (0, 1)$ for every legislator to which it buys access.

Consider the following strategy. First, P will buy access only to legislator 1. In its communication with legislator 1, P will choose between the two messages $\{1, 2\}$ and $\{1, 3\}$ which we will interpret as the set of legislators to which P recommends voting in favor of the proposal. P chooses between these two messages as follows: If both 2 and 3 benefit from the proposal or if neither benefit, P will randomize between the two messages. If legislator 2 benefits but not legislator 3, P
sends the message \(\{1, 2\} \) with probability one. If 3 benefits but not 2, \(P \) sends the message \(\{1, 3\} \) with probability 1.

| \(\omega \) | \(\sigma_P(\{1, 2\} | \omega) \) | \(\sigma_P(\{1, 3\} | \omega) \) | \(f(\omega, p) \) | \(\Pr[\omega | \{1, 2\}] \) | \(\Pr[\omega | \{1, 3\}] \) |
|------------|-----------------|-----------------|--------|-----------------|-----------------|
| \{0, 0, 0\} | \(\frac{1}{2} \) | \(\frac{1}{2} \) | \(\frac{9}{160} \) | \(\frac{9}{160} \) | \(\frac{9}{160} \) |
| \{0, 0, 1\} | 0 | 1 | \(\frac{3}{160} \) | 0 | \(\frac{3}{80} \) |
| \{0, 1, 0\} | 1 | 0 | \(\frac{3}{160} \) | \(\frac{3}{80} \) | 0 |
| \{0, 1, 1\} | \(\frac{1}{2} \) | \(\frac{1}{2} \) | \(\frac{1}{160} \) | \(\frac{1}{160} \) | \(\frac{1}{160} \) |
| \{1, 0, 0\} | \(\frac{1}{2} \) | \(\frac{1}{2} \) | \(\frac{81}{160} \) | \(\frac{81}{160} \) | \(\frac{81}{160} \) |
| \{1, 0, 1\} | 0 | 1 | \(\frac{27}{160} \) | 0 | \(\frac{27}{80} \) |
| \{1, 1, 0\} | 1 | 0 | \(\frac{27}{160} \) | \(\frac{27}{80} \) | 0 |
| \{1, 1, 1\} | \(\frac{1}{2} \) | \(\frac{1}{2} \) | \(\frac{9}{160} \) | \(\frac{9}{160} \) | \(\frac{9}{160} \) |

\[M = \{1, 2\} \quad M = \{1, 3\} \]

\[\pi_1(M) = \frac{9}{10} \quad \pi_2(M) = \frac{7}{16} \quad \pi_3(M) = \frac{1}{16} \]

Table 2: Calculations for Example 2. In the top half of the table: The first column lists each possible state of the world. The second and third columns show the probabilities of the messages \(\{1, 2\} \) and \(\{1, 3\} \) (respectively) given each state of the world. The fourth column shows the prior probability of each state of the world. The fifth and sixth columns show the posterior probability of each state of the world given the messages \(\{1, 2\} \) and \(\{1, 3\} \) (respectively). Since the total probability of each message is \(\frac{1}{2} \), each posterior following each message \(M \) is \(2 \cdot (\sigma_P(M | \omega) f(\omega, p)) \). The bottom half of the table shows each legislators’ posterior probability of benefiting form the policy following each message, calculated for each \(i \) by adding up the posterior probabilities of all states for which \(\omega_i = 1 \). Posterior probabilities that lead the legislator to vote in favor of passage are highlighted in \textbf{bold}.

For this strategy to be effective, it must always be incentive-compatible for legislator 1 to reveal the message to her fellow legislators and for two legislators to vote in favor of the proposal following either message. Table 2 summarizes the probability calculations for this strategy. Legislator 1 learns nothing from \(P \) about her own probability of benefiting from the proposal. However, the information she learns about the other legislators’ benefits is enough to cause the proposal to pass. Since she already supports passage, Legislator 1 has a strict incentive to reveal the message to her fellow legislators. Once she does, the posterior probability of benefiting is raised to \(\frac{7}{16} \) for one legislator and reduced to \(\frac{1}{16} \) for another. As a result, the proposal passes following both messages. ■

Example 2 shows that an interest group may influence a legislature by buying access to one
legislator who acts as an intermediary to other legislators. In the equilibrium in Example 2, the intermediary is an ally to the interest group. Furthermore, the information provided is never informative to the intermediary about whether or not she should vote to pass the proposal – instead, the targets of the interest group’s messages are the legislators who are never directly lobbied. Proposition 2 establishes that these properties always hold for P’s optimal equilibrium. The proof of Proposition 2 also provides a full description of the equilibrium including beliefs and actions off the equilibrium path.

Proposition 2. Assume that \(c > 0 \) and that P has at least one ally (that is, \(p_i > L/(H+L) \) for some \(i \) in \(N \)). Then P’s optimal influential equilibrium has the following properties:

1. P lobbies exactly one legislator and that legislator is an ally, and

2. The lobbied legislator always conveys P’s message to the legislature and always vote in favor of passage.

The fact that an interest group only lobbies allies follows from the assumption that publicizing the group’s information is optional for the lobbied legislator. This means that the chosen legislator must prefer passage of the proposal following every message. Since each player’s expected benefit in the influential equilibrium must be equal to their prior expected benefit from passage, such an arrangement is only feasible when the legislator is already an ally.

In the model with unlimited access, lobbying always decreased the welfare of at least \(n - q + 1 \) legislators and in some cases were unanimously bad for legislator welfare. In equilibria involving an intermediary, lobbying must still decrease the welfare of at least \(n - q + 1 \) legislators but can never decrease the welfare of all legislators. Instead, P’s influence increases the welfare of the intermediary along with any other allies in the legislature.

Corollary 2. In an influential equilibrium with an intermediary the ex ante expected utility increases for P’s allies and decreases for all other legislators relative to the outcome with no information transmission.
It is possible to observe lobbying without intermediaries even when access is limited. If the cost of lobbying is small enough that the interest group can buy access to all or most legislators, lobbying with no intermediaries is feasible. However, as long as some ally is available to serve as an intermediary, the interest group should not pay the extra costs associated with lobbying a large number of legislators. Lobbying without intermediaries should therefore only be observed when lobbying is costless or when the interest group has no allies in the legislature. Since both of these circumstances are rare in practice, the lion’s share of informational lobbying should occur through intermediaries. That is, most informational lobbying should occur through allies.

4 Extensions and Generalizations

In this section I consider several extensions and generalizations of the model. First, I discuss competitive lobbying with multiple opposing interest groups and show when an interest group can remain influential even in the presence of competition. Second, I consider the effects of relaxing the model’s most restrictive assumptions about the informational environment and show that the main insights of the model remain unchanged.

4.1 Competitive lobbying

I have focused on situations in which one interest group attempts to influence a legislature. This was mainly for simplicity but it is also a substantively important case because one common path to lobbyist influence is to gravitate toward narrow issue niches without substantial competition (Browne, 1990; Baumgartner and Leech, 2001; Gray and Lowery, 1997). However, in many situations, interest groups on both sides attempt to influence the outcome. As I discuss below, accounting for competitive lobbying does not substantially change the conclusions. I briefly review the results below. The full details and proofs are included in Supplementary Information.

In the competitive lobbying model, a second interest group in favor of the status quo may also lobby the legislature. I assume that the second group observes P’s decision on whom to lobby before making its lobbying decisions and observes P’s messages before choosing its own messages.
Despite this assumption, there exist circumstances under which P can influence the legislature and
the second group is unable to successfully block this influence.20 Intuitively, however, the set of
parameters under which P is influential shrinks under competition relative to no competition. When
access to legislators is costly, both sides choose to lobby their allies and use them as intermediaries
to the rest of the legislature. Thus, the main predictions of the model remain in tact.21

4.2 Relaxing assumptions about the informational environment

In this section, I briefly consider generalizations to show how the assumptions of the model can
be relaxed without changing the main results of the model. To simplify the interpretation of the
model, I considered a specialized model in which the legislators’ payoffs from passing the proposal
are realizations of independent binary random variables and the amounts to be gained or lost do
not vary between legislators. However, the proofs of most results do not depend on this structure.
The characterizations of existence in Lemma 2 and the welfare implications of influence hold for
any state space, distribution, or utility function for the legislators.

The proofs of Lemma 3 and the resulting Proposition 2 – which establish equilibria in which an
interest group uses ally legislators as intermediaries for persuasion – make use of the assumption
that the legislators’ policy payoffs are independent. However, the role of the independence as-
sumption is only to ensure that the conditions for existence of influential equilibria do not change
except for the added requirement that the legislature contains at least one ally. To demonstrate
that an interest group may use allies as intermediaries, we need only assume that access is costly.

20In Minozzi’s (2011) model of cheap talk with two senders, the senders can generally find a message that “jams”
the other senders’ signal by leaving the receiver uncertain about which sender is being truthful. My model has several
key differences compared to Minozzi’s model of jamming that account for the difference in results with two senders.
First, in the jamming model the senders’ preferences are state-dependent but in my model each interest group prefers
the same alternative regardless of the state. Second, in the jamming model there is uncertainty about the senders’
preferences but in my model the interest groups’ preferences are common knowledge. Third, in the jamming model
the receiver can choose a continuum of policies rather than choosing an alternative from a binary agenda as in my
model. Finally, communication is sequential in my model rather than simultaneous as in the jamming model.

21Another prediction of the model, which also differs from jamming models, is that we should never see both
groups engage in lobbying. Either the second group is unable to block P’s influence in which case we only observe
lobbying by P, or the second group could block P’s influence in which case P chooses not to lobby and the second
group only needs to lobby off the equilibrium path. This prediction is an artifact of the sequence of the game so I do
not take it to be an empirical prediction about lobbying. For instance, if lobbying choices were made simultaneously
(or equivalently, if the interest groups were not aware of each others’ lobbying decisions) then we would observe
two-sided lobbying on the same issue.

23
However, without the independence assumption, deriving interpretable conditions for existence of such an equilibrium is more difficult. Fortunately, previous work has thoroughly examined how group persuasion may be driven by correlation between the potential payoffs of group members (Caillaud and Tirole, 2007).

Finally, Proposition 1 makes use of the binary structure of the payoffs in order to simplify the existence conditions into more interpretable probability cutoffs. These results were the main motivation for focusing on the binary state space since results that depend on the convex hull of the posterior distributions are difficult to interpret in empirical applications. To summarize, though the model deliberately sacrifices generality for interpretability, the main substantive insights extend easily to more general models.

5 Discussion and Conclusions

The model produces several novel implications of relevance to scholars of interest groups and the policy process. First, lobbying activity should most often be directed at allies. The fact that interest groups tend to focus their attention on allies is generally seen as evidence in contradiction of informational theories of lobbying (Hall and Deardorff, 2006). However, as I have shown in this paper, informational lobbying is consistent with the data once we modify our theories in two ways. First, we must analyze models with multiple legislators. Second, we must analyze models in which legislators are active participants in the lobbying process rather than passive recipients of information. In this paper, that is accomplished by allowing legislators the option to pass along information provided by the interest group or simply keep it to themselves. When these elements are incorporated into the model, it follows that interest groups should most often lobby allies.

The results share some features with the old models of informational lobbying but in other ways resemble the legislative subsidy theory of Hall and Deardorff. Though lobbying activity is directed at allies, these allies are not the ultimate targets of the interest groups’ persuasive efforts. In fact, the information provided by the interest groups tends to be uninformative to the ally legislators about whether or not they should support the proposal. Thus, informational lobbying supports
legislators’ efforts to persuade opponents.

Another novel insight of the model is that informational lobbying can be bad for legislators. The informational view of lobbying is often taken to mean that lobbyists provide a service to legislators that increases the quality of representation. For instance, one of the seminal papers on informational lobbying concludes that “a legislator will on average make ‘better’ decisions with lobbying than without” (Austen-Smith and Wright, 1992, p. 229). Similarly, before applying the informational lobbying framework to the analysis of the role of *amici curiae* briefs in the Supreme court, Epstein and Knight (1999) summarize the argument for informational lobbying as follows:

Lobbyists provide information to MCs [Members of Congress] about consequences of alternative courses of action (such as voting for or against a bill). With this information in hand, MCs can then make rational choices, that is, choices designed to maximize their preference for reelection as opposed to electoral ouster. This is one reason why reelection rates for MCs remain so high. Or so the argument goes (p. 215).

My model suggests that the optimistic conclusions in the literature about interest group influence are tied to the one-legislator models on which most of the literature is based. When the models are adjusted to account for multiple legislators interacting in a collective choice environment, the welfare gains from informational lobbying can be reversed. In fact, as I demonstrate, if interest groups’ preferences are independent of the state of the world then the effect of interest group influence on legislator welfare tends to be negative.\(^{22}\)

Finally, the model suggests than persuading a voting body is a substantively different problem than persuading a single policymaker. The need for voting increases opportunities for persuasion because information can affect which coalitions form to pass or block a proposal. This insight is also critical to other work in political economy. For instance, this insight is found in Bennedsen

\(^{22}\)The assumption of state-independent preferences of interest groups is an important qualification of this result. If interest group preferences are state-dependent and sufficiently aligned with legislators’ preferences, then the welfare effects of lobbying may be more positive. However, many interest group lobbyists do act as if they have state-independent preferences. For instance, representatives from lobbying firms may contract with clients to advocate certain policies. In these cases, the firms gather information relevant to the legislators’ support for that policy, but their own advocacy does not depend on that information. Similarly, a manufacturer of textiles may lobby in favor of higher tariffs on foreign textiles on the basis of domestic unemployment or foreign labor rights even though their support for the policy depends only on its effect on their company’s profits.
and Feldmann (2002), one of the few studies other than this one to model informational lobbying with more than one legislator. In their model, an interest group may search for information in each district about demand for a public good, which varies from district to district. Communication is more limited in their model than in this study: for each district, the interest group can either reveal that district’s true payoff or reveal nothing. Thus, partial information revelation is not allowed, which focuses their analysis more on information acquisition than on communication. They find that interest groups have a greater incentive to search for information in legislative settings than in those with a single policymaker. The mechanism supporting this conclusion differs from the one in my model since their result relies in part on the way information affects which policies are proposed. Instead, I fix the policy proposal and focus on how lobbying might affect votes.\(^{23}\)

Alonzo and Câmara (2014) also demonstrate how persuasion may work differently in collective choice institutions. Their model is one in which the sender does not have any private information but is able to control the content of a public signal. Despite this difference, the mechanisms for persuasion in their paper are similar to those in Model 1 of this study, and my Lemma 2 follows almost immediately from their results.

Beyond the application to interest groups, the tractable model presented here demonstrates the potential of incorporating collective choice processes into our theories of communication and information transmission in political institutions. Since asymmetric information models have been central to nearly three decades of work on legislative and electoral institutions, the potential applications of the model are voluminous.

\(^{23}\)The results from Model 2 are suggestive about how lobbying may work in a model like mine but with endogenous proposals. In such circumstances, the case for lobbying allies would be made even stronger, since the interest group must persuade some legislator to propose a favorable policy in addition to passing on information. A full explication of such a model is left for future work.
References

URL: http://dx.doi.org/10.1111/lsq.12001

URL: http://www.loc.gov/catdir/enhancements/fy0608/911012993-t.html

Appendix: Proofs of Results

Lemma 1 In any influential equilibrium, the proposal passes with probability one.

Proof. Assume there is some strategy profile \((\sigma_P, v)\) such that \(x^*(m) = 0\) and \(x^*(m') = 1\) for some \(m\) and \(m'\) in the support of \(\sigma_P\). Since messages are cheap talk and \(P\)'s preferences are independent of \(\omega\), holding \(v\) constant \(P\) strictly prefers to deviate from \(\sigma_P\) to a strategy in which \(m'\) is sent with probability one following any \(\omega \in \Omega\). This shows that such a \((\sigma_P, v)\) is never an equilibrium, which implies that all influential equilibria lead the proposal to pass with probability one. ■

Lemma 2 There is an influential equilibrium in Model 1 if and only if \(f(\omega, p) \not\in W_q\) and \(f(\omega, p) \in \text{co}(W_q)\).

Proof. This result follows indirectly from various previously proven results (e.g. Lemma 2 of Alonzo and Cámara (2014), Proposition 1 of Kamenica and Gentzkow (2011)) but the proof is reproduced here for the sake of completeness.

First, I will prove that \(f(\omega, p) \in W_q\) and \(f(\omega, p) \in \text{co}(W_q)\) implies the existence of an influential equilibrium. By Caratheodory’s theorem, \(f(\omega, p) \in \text{co}(W_q)\) implies that \(f(\omega, p)\) is in the convex hull of some finite subset of \(W_q\) consisting of \(n+1\) or fewer points. Let \(\{g^1, \ldots, g^K\} \subset W_q\) denote a set of posterior distributions such that, for some \((\tau^1, \ldots, \tau^K) \in \mathbb{R}_+^K\) such that \(\sum_{k=1}^K \tau^k = 1\), we have

\[
f(p, \omega) = \sum_{k=1}^K \tau^k g^k(\omega) \tag{3}
\]

for all \(\omega \in \{0, 1\}^n\).

We will define \(\sigma^*_P\) with support on \((m^1, \ldots, m^K)\) as follows:

\[
\sigma^*_P(m^k | \omega) = \frac{g^k(\omega) \tau^k}{f(\omega, p)}. \tag{4}
\]
The posterior probability of a state \(\omega \) following a signal \(m^k \) is then

\[
g(\omega|m^k) = \frac{f(\omega, p)g^k(\omega)\tau^k}{\sum_{\omega' \in \Omega} f(\omega', p)g^k(\omega')\tau^k} = \frac{g^k(\omega)\tau^k}{\sum_{\omega' \in \Omega} g^k(\omega')\tau^k} = \frac{g^k(\omega)\tau^k}{\tau^k} = g^k(\omega) \tag{5}
\]

Thus, the strategy \(\sigma^*_p \) induces the set of posteriors \(\{g^1, \ldots, g^K\} \subset W_q \). By definition of \(W_q \), this implies the proposal passes with probability one, so this is an equilibrium to the game.

It remains to be shown that the existence of an influential equilibrium implies \(f(\omega, p) \in \text{co}(W_q) \).

By way of contraposition, suppose that \(f(\omega, p) \not\in \text{co}(W_q) \). By the law of total probability, we have

\[
f(\omega, p) = \sum_{m \in \text{supp}p} \Pr[m_p = m]g(\omega|m).
\tag{7}
\]

Here, \(\Pr[m_p = m] \) denotes the total probability (over all states) of \(m_p = m \) under the strategy \(\sigma_p \). That is, \(\Pr[m_p = m] = \sum_{\omega} f(\omega, p)\sigma(m|\omega) \). By the properties of probability, we have \(\sum_{m \in \text{supp}p} \Pr[m_p = m] = 1 \). However, since \(f(\omega, p) \not\in \text{co}(W_q) \) there is no way to express \(f(\omega, p) \) as a convex combination of distributions in \(W_q \). Thus, at least one posterior distribution is not an element of \(W_q \). In other words, there is no \(\sigma_p \) that always guarantees passage of the proposal. By Lemma 1, this implies that there is no influential equilibrium. ■

Proposition 1 In Model 1:

1. Let \(\hat{p} \geq p \) and assume \(f(\omega, \hat{p}) \not\in W_q \). If there is an influential equilibrium when prior beliefs are \(f(\omega, p) \) then there is also an influential equilibrium when prior beliefs are \(f(\omega, \hat{p}) \), holding everything else equal.

2. There exists \(p^* \in \left(0, \frac{L}{\prod_i L_i}\right) \) such that if \(p_i \geq p^* \) for all \(i \in N \) then there exists an equilibrium in which the proposal always passes.

Proof. To prove part (1), I must show that \(f(\omega, p) \in \text{co}(W_q) \) and \(\hat{p} \geq p \) implies \(f(\omega, \hat{p}) \in \text{co}(W_q) \). Thus, let \(f(\omega, p) \in \text{co}(W_q) \). By Caratheodory’s theorem, \(f(\omega, p) \) is in the convex hull of some
finite subset of W_q. Let $R = \{g_1, g_2, \ldots, g_{|R|}\} \subset W_q$ be one such finite set. Then there exists $\tau = (\tau_1, \ldots, \tau_{|R|})$ be such that $\tau \geq 0$, $\sum_{j=1}^{|R|} \tau_j = 1$, and $\sum_{j=1}^{|R|} \tau_j g_j(\omega) = f(p, \omega)$ for all $\omega \in \{0, 1\}^n$.

It suffices to show that the result holds for distributions created by increasing only one of the probabilities in p while holding the rest constant, since any $\hat{p} > p$ can be generated by a series of such changes. Without loss of generality we will change only the probability associated with voter 1. Let $p' = (p'_1, p_2, \ldots, p_n)$ be a vector in which voter 1’s probability is increased to $p'_1 > p_1$ and the other probabilities remain the same.

Let $p'' = (1, p_2, \ldots, p_n)$ be a vector in which voter one’s probability is increased to 1 and the other probabilities remain the same. Let $\psi = (1, 0, 0, \ldots, 0)$. Thus, if $\omega_1 = 1$ then $\omega - \psi$ is a state in which $\omega_1 = 0$ and all other elements are unchanged. Define $R' = \{g'_1, g'_2, \ldots, g'_{|R|}\}$ such that

$$g'_j(\omega) = \begin{cases} g_j(\omega) + g_j(\omega - \psi) & \text{if } \omega_1 = 1 \\ 0 & \text{if } \omega_1 = 0 \end{cases}$$

for all $j \in \{1, \ldots, |R|\}$. For all $i \neq 1$ and $j \in \{1, \ldots, |R|\}$, we have

$$\mathbb{E}_{g'_j}[\omega_i] = \sum_{\omega: \omega_i = 1} g'_j(\omega)$$

$$= \sum_{\omega': \omega'_i = 1} \left[g_j(\omega') + g_j(\omega' - \psi) \right]$$

$$= \sum_{\omega': \omega'_i = 1 \land \omega'_1 = 1} g_j(\omega') + \sum_{\omega': \omega'_i = 1 \land \omega'_1 = 0} g_j(\omega')$$

$$= \sum_{\omega: \omega_i = 1} g_j(\omega)$$

$$= \mathbb{E}_{g_j}[\omega_i].$$

Thus, $R \subset W_q$ implies $R' \subset W_q$.

Since

$$\sum_{j=1}^{|R|} \tau_j g_j(\omega) = f(\omega, p) = \prod_{i \in N} p_i^{\omega_i} (1 - p_i)^{1-\omega_i},$$

32
for each \(\omega \) such that \(\omega_1 = 1 \) we have

\[
\sum_{j=1}^{|\mathcal{R}|} \tau_j g_j'(\omega) = \sum_{j=1}^{|\mathcal{R}|} \tau_j (g_j(\omega) + g_j(\omega - \psi))
\]

\[
= f(\omega, p) + f(\omega - \psi, p')
\]

\[
= \prod_{i \in N} p_i^{\alpha_k} (1 - p_i)^{1 - \alpha_k} + \prod_{i \in N} p_i^{\alpha_k - \psi} (1 - p_i)^{1 - \alpha_k - \psi}
\]

\[
= p_1 \prod_{i \in N \setminus \{1\}} p_i^{\alpha_k} (1 - p_i)^{1 - \alpha_k} + (1 - p_1) \prod_{i \in N \setminus \{1\}} p_i^{\alpha_k} (1 - p_i)^{1 - \alpha_k}
\]

\[
= \prod_{i \in N \setminus \{1\}} p_i^{\alpha_k} (1 - p_i)^{1 - \alpha_k}
\]

\[
= f(\omega, p'')
\]

which shows that \(f(\omega, p'') \in \text{co}(\mathcal{R}') \subset \text{co}(\mathcal{W}_q) \). Furthermore, since \(\text{co}(\mathcal{W}_q) \) is a convex set and \(p' \) is a convex combination of \(p \) and \(p'' \), we have \(f(\omega, p') \in \text{co}(\mathcal{W}_q) \). This implies that \(f(\omega, \hat{p}) \in \text{co}(\mathcal{W}_q) \) for all \(\hat{p} > p \), which completes the proof for part (1).

To prove part (2) I will first assume that \(p_i = p_j = \overline{p} \) for all \(i, j \in N \) and find a lower bound on \(\overline{p} \) such that there exists an equilibrium in which the proposal passes with probability one. Part (1) of this proposition then implies that the proposal always passes \(p_i > \overline{p} \) for all \(i \in N \), even when prior probabilities are not assumed to be equal.

For any \(\omega \in \Omega \), let \(B(\omega) = \{ i \in N : \omega_i = 1 \} \). Consider the following strategy for \(P^* \):

\[
\sigma^*_p(m|\omega) = \begin{cases}
\frac{(n-|B(\omega)|)}{(q-|B(\omega)|)}^{-1} & \text{if } |B(m)| = q \text{ and } B(\omega) \subset B(m) \\
\frac{(|B(\omega)|)}{q}^{-1} & \text{if } |B(m)| = q \text{ and } B(\omega) \supset B(m) \\
0 & \text{otherwise.}
\end{cases}
\]

In words, Equation 21 means that \(P^* \) always recommends approval to a minimal winning coalition, and does so in the following way:

- When the number of true beneficiaries is weakly smaller than \(q \), \(P^* \) randomizes uniformly among all minimal winning coalitions containing the set of true beneficiaries.
• When the number of true beneficiares is strictly larger than \(q \), \(P \) randomizes uniformly among all minimal winning coalitions that are subsets of the set of true beneficiaries.

The prior distribution over the number of true beneficiaries is the binomial distribution:

\[
\Pr[|B(\omega)| = k] \equiv b(k, \bar{p}) = \binom{n}{k} \bar{p}^k (1 - \bar{p})^{n-k}.
\]

Note that \(\sigma^*_P \) provides no information about the size of the set of true beneficiares. The posterior distribution following each \(m \) in the support of \(\sigma^*_P \) is

\[
g(\omega|m) = \begin{cases}
 b(|B(\omega)|, \bar{p}) \left(\binom{q}{|B(\omega)|} \right)^{-1} & \text{if } B(\omega) \subseteq B(m) \\
 b(|B(\omega)|, \bar{p}) \left(\binom{q}{|B(\omega)|} \right)^{-1} & \text{if } B(\omega) \supset B(m) \\
 0 & \text{otherwise.} \end{cases}
\]

Therefore, the probability that \(\omega_i = 1 \) given \(i \in B(m) \) is

\[
\Pr[\omega_i = 1 | i \in B(m)] = \sum_{k=0}^{q} b(k, \bar{p}) \binom{q-1}{k-1} \binom{q}{k}^{-1} + \sum_{k=q+1}^{n} b(k, \bar{p}) \]

\[
= \sum_{k=0}^{q} b(k, \bar{p}) \frac{k}{q} + \sum_{k=q+1}^{n} b(k, \bar{p}) \]

\[
= \sum_{k=0}^{n} b(k, \bar{p}) \min\left\{ \frac{k}{q}, 1 \right\}. \]

Let \(\varphi(\bar{p}) = \sum_{k=0}^{n} b(k, \bar{p}) \min\left\{ \frac{k}{q}, 1 \right\} \). Let \(p^* \) be the probability solving

\[
\varphi(p^*) = \frac{L}{H+L}.
\]

Such a \(p^* \) exists and is unique since \(\varphi \) is continuous and monotone increasing with \(\varphi(0) = 0 \) and \(\varphi(1) = 1 \). Thus, when \(\bar{p} \geq p^* \), we have \(\pi_i(M) > \frac{L}{H+L} \) for all \(i \in B(m) \) following every message \(m \) in the support of this strategy. Since each \(m \) targets \(q \) legislators, this implies that the proposal always passes. Thus, there is a persuasive equilibrium when \(p_i = p_j = \bar{p} \geq p^* \) for all \(i, j \in N \). Furthermore,
part (1) of the proposition implies that this holds for any distribution such that \(p_i \geq p^* \) for all \(i \in N \).

\[\square \]

Lemma 3 Assume that \(p_i \geq L/(H + L) \) for some \(i \). Then any influential equilibrium is outcome-equivalent to one in which \(\pi_i(m) = p_i \) for all \(m \in \Omega \).

Proof. Assume there exists an influential equilibrium and that \(p_1 \geq L/(H + L) \). Then by Lemma 2 there are a set of posteriors \(R = (g_1, \ldots, g_{|R|}) \subset W_q \) and \((\tau_1, \ldots, \tau_{|R|}) \) in the \((|R| - 1)\)-dimensional simplex such that

\[f(\omega, p) = \sum_{j=1}^{\lfloor R/|R| \rfloor} \tau_j g_j(\omega). \quad (27) \]

Let \(\psi = (1, 0, 0, \ldots, 0) \). So, if \(\omega_1 = 1 \) then \(\omega - \psi \) is a state with \(\omega_1 = 0 \) and all other elements unchanged and if \(\omega_1 = 0 \) then \(\omega + \psi \) is a state with \(\omega_1 = 1 \) and all other elements unchanged. For each \(j \in \{1, \ldots, |R|\} \), we will construct a new posterior distribution \(g'_j \) as follows

\[g'_j(\omega) = \begin{cases}
\frac{(g_j(\omega) + g_j(\omega - \psi))p_1}{p_1} & \text{if } \omega_1 = 1 \\
\frac{(g_j(\omega) + g_j(\omega + \psi))(1 - p_1)}{1 - p_1} & \text{if } \omega_1 = 0.
\end{cases} \quad (28) \]

We need to verify that

(a) legislator 1’s probability of benefiting in each posterior is equal to \(p_1 \),

(b) \(\{g'_1, \ldots, g'_{|R|}\} \subset W_q \), and

(c) \(f(\omega, p) \in \text{co}(\{g'_1, \ldots, g'_{|R|}\}) \).

Part (a) is easily verified – since \(\sum_{\omega \in \Omega : \omega_1 = 1} (g_j(\omega) + g_j(\omega - \psi)) = 1 \), we have \(\sum_{\omega \in \Omega : \omega_1 = 1} (g_j(\omega) + g_j(\omega - \psi))p_1 = p_1 \). To prove part (b) note that, for all \(i \neq 1 \), the probability of benefiting according
where line 35 follows from that fact that
\[f(\omega, p) = \sum_{j=1}^{R} \tau_j g_j(\omega), \]
for all \(\omega \in \Omega \). Similarly, for

\[
\sum_{\omega \in \Omega : \omega_1 = 1} g'_j(\omega) = p_1 \sum_{\omega' \in \Omega : \omega'_1 = 1} \sum_{\omega'' = 0} g_j(\omega') + (1 - p_1) \sum_{\omega'' = 1} g_j(\omega'') + (1 - p_1) \sum_{\omega'' = 1} g_j(\omega')
\]

(29)

\[
= p_1 \sum_{\omega' \in \Omega : \omega'_1 = 1} \sum_{\omega'' = 0} g_j(\omega') + (1 - p_1) \sum_{\omega'' = 1} g_j(\omega'') + (1 - p_1) \sum_{\omega'' = 1} g_j(\omega')
\]

(30)

\[
= [p_1 + (1 - p_1)] \sum_{\omega' \in \Omega : \omega'_1 = 1} g_j(\omega') + [p_1 + (1 - p_1)] \sum_{\omega'' = 1} g_j(\omega'')
\]

(31)

\[
= \sum_{\omega \in \Omega : \omega_1 = 1} g_j(\omega).
\]

(32)

Thus, since legislator 1 is always incentivized to vote in favor and the expected benefits to all other legislators in each posterior are the same as under the distributions in \(R \), we have \(\{g'_1, \ldots, g'_{|R|}\} \subset W_q \).

Finally, we must verify part (c), that the prior distribution is in the convex hull of \(\{g'_1, \ldots, g'_{|R|}\} \).

For all \(\omega \in \Omega \), we have for each \(\omega' \in \Omega \) such that \(\omega_1 = 1 \):

\[
\sum_{j=1}^{R} \tau_j g'_j(\omega) = \sum_{j=1}^{R} \tau_j [g_j(\omega) + g_j(\omega - \psi)] p_1
\]

(33)

\[
= p_1 \left[\sum_{j=1}^{R} \tau_j g_j(\omega) + \sum_{j=1}^{R} \tau_j g_j(\omega - \psi) \right]
\]

(34)

\[
= p_1 [f(\omega, p) - f(\omega - \psi, p)]
\]

(35)

\[
= p_1 p_1 \prod_{i \in N \setminus \{1\}} p^\omega_i (1 - p_i)^{1 - \omega_i} + (1 - p_1) p_1 \prod_{i \in N \setminus \{1\}} p^\omega_i (1 - p_i)^{1 - \omega_i}
\]

(36)

\[
= p_1 \prod_{i \in N \setminus \{1\}} p^\omega_i (1 - p_i)^{1 - \omega_i}
\]

(37)

\[
= f(\omega, p).
\]

(38)
each \(\omega \in \Omega \) such that \(\omega_1 = 0 \):

\[
\sum_{j=1}^{|R|} \tau_j g'_j(\omega) = \sum_{j=1}^{|R|} \tau_j [g_j(\omega) + g_j(\omega + \psi)](1 - p_1) \\
= (1 - p_1) \left[\sum_{j=1}^{|R|} \tau_j g_j(\omega) + \sum_{j=1}^{|R|} \tau_j g_j(\omega + \psi) \right] \\
= (1 - p_1) \left[f(\omega, p) + f(\omega + \psi, p) \right] \\
= (1 - p_1)(1 - p_1) \prod_{i \in N\setminus\{1\}} p_i^{\alpha_i} (1 - p_i)^{1-\alpha_i} + (1 - p_1)p_1 \prod_{i \in N\setminus\{1\}} p_i^{\alpha_i} (1 - p_i)^{1-\alpha_i} \\
= (1 - p_1) \prod_{i \in N\setminus\{1\}} p_i^{\alpha_i} (1 - p_i)^{1-\alpha_i} \\
= f(\omega, p).
\]

Thus, we have \(f(\omega, p) \in \text{co}(\{g'_1, \ldots, g'_{|R|}\}) \). ■

Proposition 2 Assume that \(c > 0 \) and that \(P \) has at least one ally (that is, \(p_i > L/(H + L) \) for some \(i \) in \(N \)). Then \(P \)'s optimal influential equilibrium has the following properties:

1. \(P \) lobbies exactly one legislator and that legislator is an ally, and
2. The lobbied legislator always conveys \(P \)'s message to the legislature and always vote in favor of passage.

Proof. For some \(i \), assume that \(p_i > L/(H + L) \). Let \(A_P = \{i\} \) and assume that \(\sigma_p^\ast \) is such that \(\pi_i(m) = p_i \) following any message and \(\{g(\omega|m)\}_{m \in \text{supp}(\sigma_p^\ast)} \subset W_q \). By Lemma 3, such a messaging strategy exists whenever there is an influential equilibrium. Since \(i \) strictly prefers passing the proposal at each information set, \(i \) should choose to convey each message to the legislature. Thus, an influential equilibrium can be supported by only lobbying only \(i \), which is strictly preferable to lobbying more than one legislator. Since \(P \) is assumed to choose the payoff-maximizing strategy, this is true of any influential equilibrium. Furthermore, this arrangement cannot be an equilibrium if \(A_P = \{j\} \) where \(j \) is such that \(p_j < L/(H + L) \), since \(j \) will have an incentive to conceal \(P \)'s message at some information sets for any distribution of posteriors with \(f(\omega, p) \) in their convex hull.
To complete the equilibrium characterization, I will conclude by describing a full strategy profile with off-path beliefs. Let v^f_j denote legislator j’s optimal vote under the prior. That is $v^f_j = "Yes"$ if $p_i \geq L/(H + L)$ and “No” otherwise. Without loss of generality, we will label the messages in the support of σ^*_p such that $\pi_j(m) \geq L/(H + L)$ if and only if j’th element of m is equal to 1. The following is a full strategy profile for P’s optimal equilibrium:

- $A_P = \{i\}$, $\sigma_p = \sigma^*_p$ (from above)
- $M_i(A) = \text{supp}(\sigma^*_p)$ for all $A \subset N$
- $v_j(0) = v^f_j$ and
 \[
 v_j(1) = \begin{cases}
 \text{Yes} & \text{if } m_j = 1 \\
 \text{No} & \text{if } m_j = 0
 \end{cases}
 \]
 for all $j \in N \setminus \{i\}$
- $v_i(m) = \begin{cases}
 \text{Yes} & \text{if } m_i = 1 \\
 \text{No} & \text{if } m_i = 0
 \end{cases}$
- All off-path beliefs are equal to $f(\omega, \mathbf{p})$.

This specification of off-path beliefs and actions is only one example of an equilibrium construction that supports σ^*_p and M_i. Other payoff-equivalent specifications are possible. ■