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Abstract

Economic agents decide often under different price conditions, and moreover the
individual price systems may depend on their previous choices. Such a situation
appears for instance for consumers’ choices under constraints or whenever a non-
monetary constraint is added to the monetary budget constraint. In case where no
market exist which regulates these prices and make them converge toward a common
price for all agents, observed differences appear between the social distribution of
consumer expenditures and their change over time which is modelled here using
Riemannian geometry. Social distribution is measured along the geodesics of Rieman-
nian surfaces, while changes over time correspond to movements along the tangents
of these Riemannian surfaces. The Riemannian curvature of the consumption space
is shown to be non-null for the Polish consumers surveyed in a four years Polish panel.
This implies that usual econometric methods based on a unique metric over the
whole consumption space are inadequate to estimate geodesics on the Riemannian
surface. In order to propose an alternative, we define a synthetic time axis in the
space of the variables which are observed in cross-section. Considering the relative
position of two individuals along this time dimension allows us to estimate equations
of geodesics. Also, an instrumentation using this synthetic time axis is proved to be
very efficient compared to usual instrumentation for dynamic models on panel data.

Introduction

The difference between cross-section and time-series estimates, recognized early in the
literature, is not well accepted by the profession, as it implies abstaining from making
dynamic inferences from cross-section estimation (differences between agents observed
in the same period does not provide the same information as changes over time for the
same individual or the same population). This difference has been suggested to result
from aggregation biases, from the time when panels of individuals were not available.
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Specification biases (whenever the estimates performed on surveys do not take into
account dynamic behaviour, such as habits or addiction in consumption functions) and
different effects of errors in variables in the two dimensions have also been advanced
as potential explanations. With panel data, it is possible to take these difficulties into
account and to show that differences still appear between estimates in the temporal and
spatial dimensions (Gardes et al., 2005). Whence cross-section estimates differ from
time-series, the first one can be biased by the existence of endogenous permanent latent
variables, the effect of which disappear in the time dimension. For instance, the relative
position of a household in the income distribution, supposed to remain constant through
time, may imply specific constraints or social interaction which determine its economic
choices. Comparing two households with different relative incomes thus imply different
effects of this permanent latent variable while the observation of the same household
between two periods reveals only the effect of a change of its current income conditional
to a constant relative income.

This article considers the intrinsic geometric properties of a dataset, such as a survey of
family budgets, as a tool to get some information on the hidden effect of latent variables on
the model. Indeed, consider a curve on a surface (𝑥, 𝑧) in𝑅𝑛+1, with x a set n explanatory
variables and z the explained variable. The curve 𝑥 = 𝑔(𝑧) can be considered as immersed
in the smooth surface in 𝑅𝑛+1 corresponding to all observation of (𝑥, 𝑧) given by the
dataset. This surface is thus a hypersurface of dimension n in the space of dimension
(n+1) which corresponds to an economic model defined by the equation relating x to z.
The intrinsic geometry of the surface contains all geometric characteristics which could
be observed from within the surface – thus without any information which is not given
by the dataset, such as the influence of latent variables. For instance, Gauss proved
in his Theorema Egrenium, that, for n-dimensional hypersurface in𝑅𝑛+1, the product
of the largest and the smallest among the principal curvature of the surface (named
Gaussian curvature) can be measured from within the surface: this Gaussian curvature is
an intrinsic property of the surface. Therefore, although the principal curvatures are not
intrinsic, a particular combination of them is intrinsic.

In this article, surfaces corresponding to a dataset are considered as Riemannian
manifolds and the tangent planes at each point of the surface are linked to the model
conditional to a fixed value of all latent variables which determine z at this point (i.e.
for the corresponding values of variables x at this point). In a 3-dimensional space (for
instance consumption 𝑥 determined by income per unit of consumption𝑧1 and age of
the family head 𝑧2), tangent space at a point (𝑥, 𝑧) are defined as corresponding to the
variation of (𝑥, 𝑧) conditional to a normal to the tangent plane equipollent to the normal
at the surface in M (conditional in a (n+1)-dimensional space, to the fixity of the basis
over the tangent plane). Subsequently, this normal vector will be assimilated to a vector
of shadow prices of 𝑥1 and 𝑥2, including the influence of (potentially endogenous) latent
variables for each x. Therefore, the tangent plane indicates changes in z unrelated to the
influence of latent variables (at least independently from the influence of latent variables
for a move from point M over the surface). For instance, consider panel data and the
difference between the estimate obtained on cross-section (by a between transform for
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instance) and the estimate in the time-series dimension (by a within transform). This last
estimate can be considered as the one corresponding to changes in x conditionally to no
change permanent latent variables W (such as cohort or education effects which can be
supposed to be constant over time). The time-series estimate thus indicates the gradient
of z over x conditionally to constant W and are no more biased by potential endogeneity
of these variables.

Note that in a Riemannian space all variables play the same role as concerns the
curvature of the space. The method in this article measures the particular curvature
which is created by the effect of a correlation between the residual in a model and the
explanatory variables, this correlation being due to endogenous latent variables which
explain part of the residual. It differs from the curvature of the algebraic structure of
the model 𝑥 = 𝑔(𝑧) which can be calculated by usual method for a 2 or 3-dimensional
space (and tensor analysis for larger dimensions, see for instance Jeanperrin, 2000) and
which has for instance been analyzed in the calculation of the rank of a demand system
(Lewbel, 1990). The Riemannian curvature adresses to the particular model g which is
analysed and indicates the remaining change in the hypersurface corresponding to this
model, which makes it non-euclidian (meaning that a unique distance cannot be applied
to the whole surface).

I consider that spatial relationships correspond to geodesics in a Riemannian space,
while temporal relationships are modelled as movements along tangents to these surfaces.
Surprisingly, Riemannian geometry has been only little applied to economic problems
(it has, however, recently appeared in theoretical statistics). I show that tensor algebra
allows us to analyze the difference in estimations in both dimensions, and to compute
the curvature of the Riemannian space. When this curvature is non-zero (i. e. when the
integrability conditions, which make it possible to define a common Euclidean metric for all
points of the space, do not hold), the space is no longer Euclidean, and the shortest route
between two points are not lines but geodesics, which may bring about new econometric
problems. Agents situated on a Riemannian space are supposed to follow optimal pathes
(along their life-cycle) which are geodesics over the surface. Thus observing the geodesics
gives some information on the time structure of cross-sectional data. Geodesics are defined
by a system of differential equations the estimation of which allows to recover some of
the geometric properties of the Riemannian space. Therefore, considering these equations
may permit to estimate dynamic models using only cross-sectional data, as shown in the
last section.

Section 1 presents the Riemannian specification of the economic model. Section 2
proposes a method to evaluate the Riemannian curvature of Family Budget surveys,
with an application to a Polish panel which leads us to discuss the application of usual
econometric methods on cross-sections. Section 3 presents various economic situations to
which such a Riemannian analysis can be applied . Section 4 discusses the estimation of
an economic model in the cross-section dimension while taking into account the effect of
permanent latent variables. All of these models are derived for households expenditures
data but can easily be applied to other types of statistics.
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1 The Riemannian Geometry of consumption

1.1 Metric and tangent surfaces

Consider the set of 𝑛 variables consisting of the 𝑛1 variables at choice (for instance
expenditures) 𝑥ℎ𝑖 and the 𝑛2 characteristics 𝑧ℎ𝑘 of an economic agent ℎ. This set is at
least of dimension 𝑛2 whenever the 𝑥𝑖 depend on the 𝑧𝑘. The variables 𝑥 and 𝑧 define
a point 𝑀 in R𝑛, with 𝑛 = 𝑛1 + 𝑛2. A cross-section consists in 𝑁 such points for all
agents surveyed, a time-series in the dynamic configuration of 𝑇 points for each agent.
We suppose that 𝑧𝑖 is independent from 𝑧𝑗 for all 𝑗 ̸= 𝑖 and that the characteristics are
exogenous ( 𝜕𝑧𝑘

𝜕𝑥𝑘′
= 0, 𝑘 ̸= 𝑘′). Suppose 𝑁 is large and the observations (𝑥, 𝑧) describe a

smooth surface over R𝑛. At each point, we define a tangent space by means of the gradient
of 𝑥 at this point. As this gradient changes from one point 𝑀 to another infinitely close
point M+dM the derivative corresponding to these two close points on the surface will
differ from the gradient at each point. Thus, the gradient at a point is related to the
time variations of the variables, while the derivative (named absolute derivative) over the
surface describes the cross-section variations. Riemannian geometry consists in connecting
together the tangent surfaces corresponding to close points by linear transformations,
so that the Riemannian surface can be locally represented by an Euclidean space, the
metric of this space defining the scalar product and the distance between two points on
the tangent surface. If the integrability conditions are satisfied, these Euclidean metrics
can be embedded in an Euclidean metric for the whole Riemannian space, which becomes
an Euclidean space. In this case the Riemannian curvature is zero. Conversely, if the
curvature differs from zero, the space cannot be considered as Euclidean and one cannot
define an Euclidean metric over the whole space.

We consider that (𝑥, 𝑧) pertain to a 𝑛-dimensional manifold 𝑉𝑛, associated with a
domain E* of R𝑛 (the atlas at point (𝑥, 𝑧)) by a 𝐶𝑝-diffeomorphism (𝑝 ≥ 2):

𝑚 = (𝑦1, . . . , 𝑦𝑛) ∈ E*
𝑛 ⊂ R𝑛 ⇒ 𝑀 = 𝑓(𝑚) ∈ 𝑉𝑛 (1)

Here 𝑦𝑖 are the coordinates of 𝑀 on the chart E*. This means that every neighbourhood
of a point 𝑀0 in 𝑉𝑛 can be represented by the system of 𝑛 coordinates {𝑦𝑖}𝑛𝑖=1. 𝑉𝑛 is said
continuously differentiable at order 𝑝 ≥ 2 if other systems of coordinates, {𝑢}, are related
to {𝑦} by a 𝐶2-diffeomorphism 𝑢𝑖 = 𝑔(𝑦). A natural basis {𝑒𝑖} corresponds to these
coordinates for point 𝑀0 such that 𝑂𝑀0 =

∑︀
𝑖 𝑦

𝑖𝑒𝑖 = 𝑦𝑖𝑒𝑖, using the Einstein convention
(summation runs over indexes which appear as both a subscript and a superscript). So
𝜕𝑀
𝜕𝑦𝑖

= 𝑒𝑖. As E*
𝑛 is Euclidean, we can define its metric at each point 𝑀0 by the quadratic

form :
d𝑠2 = 𝑔𝑖𝑗d𝑦

𝑖d𝑦𝑗 (2)

with 𝑔𝑖𝑗 = 𝑒𝑖𝑒𝑗 . The 𝑔𝑖𝑗 are arbitrary continuously differentiable (at order 𝑝) functions of
the 𝑦𝑖. So far, 𝑉𝑛 is a topological manifold covered by compatible 𝐶𝑝 coordinate charts,
with a “Riemannian metric” 𝑔 at each point which is any smooth positive definite matrix1.

1Note that this is not really a more general setting than R𝑛, as proved by the Nash theorem—every
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We can now define the tangent surface at 𝑚0 (the corresponding point of 𝑀0 ∈ 𝑉𝑛

in E*) by the equation:

𝑚0𝑚 =
[︀
(𝑦𝑖 − 𝑦𝑖0) + Ψ𝑖(𝑦𝑖 − 𝑦𝑖0)

]︀
𝑒𝑖

with Ψ𝑖 a second order function with respect to (𝑦𝑖 − 𝑦𝑖0). This equation defines the first-
order representation in the neighbourhood of 𝑀0. Hence the system of coordinates 𝑦𝑖 also
applies to point 𝑚 in the neighbourhood of 𝑀0. It can be shown (lichnerowicz1987) that
any change in the system of coordinates from {𝑦} to another system {𝑦′}, with 𝐴𝑘

𝑖 = 𝜕𝑦𝑖

𝜕𝑦′𝑘
,

changes the metrics by the formula 𝑔𝑖𝑗 = 𝐴𝑘
𝑖𝐴

𝑙
𝑗𝑔𝑘𝑙, so that the metric does not truly depend

on the system of coordinates: it is an intrinsic notion. A second-order representation of
the tangent surface can also be defined in 𝑀0 so that (lichnerowicz1987) the Euclidean
metric on E* and the Riemannian metric on 𝑉𝑛 have the same coefficients with the same
derivatives (they are said to be connected metrics for 𝑦𝑖 = 𝑦𝑖0).

From point 𝑀 in 𝑉𝑛 to another point 𝑀 + d𝑀 (with d𝑀 = {d𝑦𝑖}) which is infinitely
close to 𝑀 , the basis {𝑒𝑖} changes according to formula:

𝑒𝑖 + d𝑒𝑖 = 𝑒𝑖 + 𝜔𝑗
𝑖 𝑒𝑗 (3)

with 𝜔𝑗
𝑖 defined as a linear function of the changes d𝑦𝑖 of the coordinates of 𝑀 :

𝜔𝑗
𝑖 = Γ𝑗

𝑘𝑖d𝑦
𝑘. (4)

This change is related to the change of the metric, since 𝑔𝑖𝑗 = 𝑒𝑖𝑒𝑗 . Thus, the metric
in each point writes: 𝑔𝑖𝑗 = 𝜕𝑥/𝜕𝑦𝑖

𝜕𝑥/𝜕𝑦𝑗
.

If the metric 𝑔 satisfies the integrability conditions, there exists a system of coordinates
in E*

𝑛 such that the metric in E*
𝑛 takes the form of equation (3) on all points of E*

𝑛.
This means that 𝑔 is a continuous function on E*

𝑛. These conditions, which apply to the
differential equations relating the two points and the associated basis (d𝑀 = d𝑦𝑖𝑒𝑖 and
d𝑒𝑖 = 𝜔𝑗

𝑖 𝑒𝑗 : (lichnerowicz1987),) require the symmetry of the second derivatives of 𝑀
and 𝑒𝑖, and can be written: Γ𝑗

𝑘𝑖 = Γ𝑗
𝑖𝑘 for all 𝑖, 𝑘 on all points {𝑦𝑖}. They allow us to

calculate at each point the 𝑛3-scalar Γ𝑗
𝑘𝑖 knowing the 𝑛(𝑛+1)

2 values 𝑔𝑖𝑗 on each point.

1.2 The Levy-Civita linear connection

Consider now the change from 𝑀 to 𝑀 + d𝑀 . The natural basis {𝑒𝑖} assigned
to point 𝑀 changes to {𝑒𝑖 + d𝑒𝑖} on point 𝑀 + d𝑀 . Thus, any vector 𝑣 = 𝑣𝑖𝑒𝑖 is
differentiated as

d𝑣 = d𝑣𝑖𝑒𝑖 + 𝑣𝑖 d𝑒𝑖 = d𝑣𝑖𝑒𝑖 + 𝑣ℎ𝜔𝑖
ℎ𝑒𝑖

abstract Riemannian manifold can be isometrically embedded in some R𝑚—but the calculus is usually
easier in 𝑉𝑛.
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So, the components of the vector d𝑣 write ∇𝑣𝑗 = d𝑣𝑖 +𝜔𝑖
ℎ𝑣

ℎ and are denoted the absolute
differential of 𝑣𝑖. The corresponding partial derivatives1 are:

∇𝑘𝑣
𝑖 = 𝜕𝑘𝑣

𝑖 + Γ𝑖
𝑘ℎ𝑣

ℎ. (5)

This defines the Levy-Civita connection between the tangent spaces.
We identify the absolute derivative, which includes the change of coordinates along

the tangent surface and the change of the natural basis, with the cross-section marginal
propensities on the Riemannian surface. These marginal propensities correspond to the
overall change between two points M and M + dM on the surface, while the derivatives
𝜕𝑘𝑣

𝑖 are associated with the change of the coordinate 𝑣𝑖 along the tangent surface (i.e. for
a constant basis). The estimation of the cross-section and time-series parameters for each
point of the surface thus allows us to calculate Γ𝑖

𝑘ℎ𝑣
ℎ. Supposing that these parameters

are constant over a neighbourhood of 𝑀0 allows us to calculate the coefficients Γ𝑖
𝑘ℎ as the

parameters of the coordinates 𝑣ℎ(𝑀) for 𝑀 in this neighbourhood.
In the application, we consider 𝑣 = (𝑥, 𝑧) as containing the expenditures 𝑥𝑖 of

households on 𝑛 commodities, and the characteristics 𝑧𝑘 of the household, such as its
income (or total expenditure), family size (measured in units of consumption), location,
individual prices and so on.

Consider now Cartan’s quasi-parallelogram: an initial change from 𝑀0 to 𝑀1 =
𝑀0+d𝑀0 is followed by a second change from 𝑀0+d𝑀0 to 𝑀 ′

1 = [𝑀0+d𝑀0+𝛿(𝑀0+d𝑀0)].
The two derivatives d and 𝛿 can be commuted:

𝑀0 ⇒ 𝑀2 = 𝑀0 + 𝛿𝑀0 ⇒ 𝑀 ′
2 = 𝑀0 + 𝛿𝑀0 + d(𝑀0 + 𝛿𝑀0).

Cartan shows that points 𝑀 ′
1 and 𝑀 ′

2 coincide if the Christoffel symbols are symmet-
rical:

d𝛿𝑚0 − 𝛿d𝑚0 = (Γℎ
𝑘𝑖 − Γℎ

𝑖𝑘) d𝑦𝑘 𝛿𝑦𝑖𝑒ℎ = 0 ⇐⇒ Γℎ
𝑘𝑖 = Γℎ

𝑖𝑘,

which is the integrability condition for points, with 𝑚0 being the point corresponding to
𝑀0 on the related Euclidean surface.

As 𝑀 varies on the Riemannian surface, the basis also changes and is submitted to a
rotation which is measured by the Riemann—Christoffel Tensor of Curvature. Suppose
the two differentiations defined by Cartan are used one after another. The difference
of the change of the basis according to the order of differentiation can be computed
as: d𝛿𝑒𝑖 − 𝛿d𝑒𝑖 = 𝑅ℎ

𝑖𝑟𝑠 d𝑦𝑟 𝛿𝑦𝑠𝑒ℎ, and this difference is null if the Tensor of Curvature
disappears:

d𝛿𝑒𝑖 − 𝛿d𝑒𝑖 = 𝑅ℎ
𝑖𝑟𝑠 d𝑦𝑟 𝛿𝑦𝑠𝑒ℎ = 0 ⇐⇒ 𝑅ℎ

𝑖𝑟𝑠 = 𝜕𝑟Γ
ℎ
𝑖𝑠 + Γℎ

𝑟𝑙Γ
𝑙
𝑖𝑠 − 𝜕𝑠Γ

ℎ
𝑖𝑟 − Γℎ

𝑟𝑙Γ
𝑙
𝑖𝑟 = 0. (6)

𝑅ℎ
𝑖𝑟𝑠 is called the Riemann—Christoffel Tensor of Curvature. This condition defines

integrability for vectors, i. e. basis, and the absence of torsion in the Riemannian space.
1The absolute (or covariant) derivatives are the component of a tensor, i. e. change according to

certain formulas when the basis changes, while the 𝜕𝑘 cannot be considered as tensors. Thus, only the
∇𝑘 correspond to the change from 𝑀 to 𝑀 + d𝑀 on the Riemannian surface.
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The Riemann—Christoffel Tensor of Curvature can also be defined in terms of the covariant
derivatives of the Christoffel symbols using the Ricci identities, 𝑅ℎ

𝑖𝑟𝑠𝑣
𝑠 = ∇𝑟𝑠𝑣

ℎ −∇𝑠𝑟𝑣
ℎ,

so that:
𝑅ℎ

𝑖𝑟𝑠 = ∇𝑟Γ
ℎ
𝑖𝑠 −∇𝑠Γ

ℎ
𝑖𝑟. (7)

The test of the Riemannian versus the Euclidean structure of the space relies on
the nullity of the scalar Riemann curvature (which is obtained by contraction1 of the
curvature tensor): the space is Euclidean only if the scalar Riemann curvature is zero at
each point.

1.3 Computation of the Christoffel symbols

We can equate the cross-section marginal propensities with the covariant deriva-
tives ∇𝑘𝑣

𝑖 and the between-period propensities with the time derivatives 𝜕𝑘𝑣𝑖; we therefore
compute the Christoffel symbols as ∇𝑘𝑣

𝑖−𝜕𝑘𝑣
𝑖 = Γ𝑖

𝑘ℎ𝑣
ℎ. The covariant derivatives of these

∇𝑠Γ
𝑖
𝑘ℎ = Γ𝑖

𝑘ℎ;𝑠 can be obtained by estimating the equation: Γ𝑖
𝑘ℎ = Γ𝑖

𝑘ℎ;𝑠 · 𝑣𝑠 + 𝛾𝑖𝑘ℎ + 𝜀𝑖𝑘ℎ.
The system of these two equations reduces to:

∇𝑘𝑣
𝑖 − 𝜕𝑘𝑣

𝑖 = Γ𝑖
𝑘ℎ;𝑠 · 𝑣ℎ𝑣𝑠 + 𝛾𝑖𝑘ℎ𝑣

ℎ + 𝜀𝑖𝑘. (8)

Another method of estimating the differences between the absolute and partial differ-
entials of 𝑣𝑖 would be to use the formulas defining geodesics in Riemannian space: along
geodesics acceleration is null, so that (morgan1998) and (lichnerowicz1987):

d2𝑣𝑖

d𝑡2
+ Γ𝑖

𝑘ℎ

d𝑣ℎ

d𝑡

d𝑣𝑘

d𝑡
= 0. (9)

1.4 Consequences

The Riemannian structure of the consumption space can then be described as follows:
1. Γ𝑖

𝑘ℎ ̸= 0 ⇐⇒ estimated cross-section consumption behaviour differs from time-
series behaviour2.

2. Γ𝑖
𝑘ℎ = Γ𝑖

ℎ𝑘 ⇐⇒ path independence of consumption. For instance, two consecutive
changes can affect a household: first an increase of its income (both adults work
on the market), then the birth of a child (only one spouse working on the market),
or the reverse two changes. The two sequences, operated during the same lengh of
time, may result in different socio-economic situations for similar households.

3. 𝑅ℎ
𝑖𝑟𝑠 ̸= 0 ⇐⇒ the differential equations d𝑒𝑖 = 𝜔𝑗

𝑖 𝑒𝑗 are integrable, i. e. there is no
torsion for the basis affected to the different points in the space. In that case, the
same metric can be applied to the whole surface (corresponding to a survey).

4. The sign of 𝑅 indicates the sign of Riemannian scalar curvature at each point.
1 Contraction consists in summing up a tensor over the same index which is in both high and low

position: 𝑅𝑖𝑗 = 𝑅ℎ
𝑖ℎ𝑗 .

2 Note that the difference between cross-section and time-series parameters depends on the agent’s
location on the Riemannian surface, i. e. that the shadow prices are not the same for all agents.
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In Riemannian space, the metric is attached to each point by the equation which de-
fines locally the distance between two arbitrary close points 𝑀 and 𝑀 ′ = 𝑀 + d𝑀 :
d(𝑀,𝑀 ′) = 𝑔𝑖𝑗 d𝑣𝑖 d𝑣𝑗 . Christoffel symbols are related to the metric 𝑔 by the formulÃ
(delachet1969calcul) and (lichnerowicz1987elements):

𝑔𝑖ℎΓℎ
𝑘𝑗 + 𝑔𝑗ℎΓℎ

𝑘𝑖 = 𝜕𝑘𝑔𝑖𝑗 , with 𝜕𝑘𝑔𝑖𝑗 =
𝜕𝑔𝑖𝑗
𝜕𝑣𝑘

Christoffel symbols thus indicate second-order derivatives and can be used to calculate
the curvature of the space. These formula allow us to calculate Γ in terms of the metric:

Γℎ
𝑘𝑖 = 𝑔𝑗ℎΓ𝑘𝑗𝑖 =

1

2
(𝜕𝑘𝑔𝑖𝑗 + 𝜕𝑖𝑔𝑔𝑘 − 𝜕𝑗𝑔𝑘𝑖) (10)

Therefore, the curvature of the space is defined by the metric which is attached to each
point, and which can be represented as a square matrix over indices (𝑖, 𝑗) of the different
variables. This metric describes in a sense how a particular situation 𝑀 is related to its
close neighbours. It defines the situations, in terms of variables 𝑣, in which the individual
will move when the determinants of its consumption change. The set of these situations
is the geodesic passing through 𝑀 . Thus, the metric, which plays the role of gravitation
in physics (describing the properties of the space by the gravity attached to each of its
point) can be interpreted as the full cost associated with each situation (see Section 3.2).

2 The Riemannian curvature of the consumption space

2.1. Theory

Classic methods

The curvature of a Riemannian surface is usually recovered by two alternative methods:
either the metric g𝑖𝑗 is calculated using the relationship between a particular basis on the
surface (for instance polar coordinates) and the euclidian basis of the space. In that case,
the Christoffel symbols can be calculated on each point by equation (10); another method
calculates directly the curvature of the equation which generates the surface. For instance
for a surface in a three dimensional space given by the equation z=g(x1,x2), the total
curvature is given in terms of the two first order derivatives p, q over 𝑥1 and 𝑥2 and the
three second order derivatives r, t and s over (𝑥1,𝑥1), (𝑥2, 𝑥2) and (𝑥1,𝑥2): K= 𝑟𝑡−𝑠2

(1+𝑝2+𝑞2)2
.

For a Working specification of the budget share w𝑖 in terms of log-income per Unit of
consumption 𝑦

𝑛 and log-price:

𝑤𝑖 = 𝛼𝑖 + 𝛽𝑖𝑙𝑜𝑔(
𝑦

𝑛
) + 𝛾𝑖𝑙𝑜𝑔(𝜋𝑖) + 𝜀𝑖 (11)

the total curvature writes 𝐾 = −𝑛2𝛾𝑖(𝛽𝑖+𝛾𝑖)[︂
1+𝑛2(𝑤𝑖+𝛽𝑖)2+

𝛾2
𝑖
𝑦2

𝜋2
𝑖

]︂2 which is positive (respectively

negative) when 𝛽𝑖 < −𝛾𝑖(respectively >). The estimation of food expenditure on the
Polish panel used in this article gives the following estimates for the average values of
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income, price, food budget share and family size: 1581.03 zlotis, 1.15, 0.39 and 2.48. The
estimates of the parameters are: 𝛽𝑖 = −0.168; 𝛾𝑖 = −0.036 which gives a total curvature
𝐾 = +1.39𝑥10−5.

Empirical curvature

I propose in this article an alternative original method based on equations (5) and
(8). Consider that the survey given by n variables (here the partial expenditure for some
good i, its relative price, the household’s income and various other covariates such as
the age of the head) corresponds to a surface where the explained variable (here the
partial expenditure) depends on the other variables. This gives rise to a (n-1) dimension
hypersurface the curvature of which can be related to the Christoffel symbols which
describe the geometric intrinsic properties of the surface. The relation between these
Christoffel symbols and the Lévy-Civita connection is used to evaluate empirically these
parameters and subsequently the Riemannian curvature.

The derivatives Γ𝑖
𝑘ℎ;𝑠 of Christoffel symbols are computed as indicated in sub-section 1.3

by estimating equation (7) . ∇𝑘𝑣
𝑖 is the derivative on income (i.e. on log-income per

UC in a linear Working specification such as equation (11)) estimated in the Between
dimension. 𝜕𝑘𝑣

𝑖 is the corresponding parameter after a within transformation. These
parameters are supposed to change from one point on the surface to another. Several
estimations of these derivatives could be obtained by grouping a panel into cells defined
by exogenous variables (such as education level, location and age groups). Under some
hypothesis on the grouping method, the absolute derivative ∇𝑘𝑣

𝑖 could be calculated
on the cross-section dimension within cells, while the time derivative 𝜕𝑘𝑣

𝑖 is estimated
between the different observations of individual in the same cell and in different periods.
A similar method could be applied to a pseudo-panel of repeated cross-sections. These
parameters could also be recovered at each point of the space by a local estimation using a
non-parametric method. Another method is used here. We estimate a system of equations
based on the Working form (or another model such as the linear or double-log) on a
four years Polish panel presented in Appendix: the first four equations relate the budget
share of good i in period t for household h 𝑤𝑖𝑡ℎ to lny=log( 𝑦ℎ𝑡

𝑛ℎ𝑡
) the logarithm of total

expenditure per unit of consumption,𝑍ℎ𝑡 a vector of covariates describing the households’
characteristics, 𝑙𝑛𝜋ℎ𝑡 the logarithmic full price changing from one household to another
(the definition of which is presented explained in Appendix D).

This set of equation is completed by three equations in difference corresponding to
equation (8):

𝜕𝑘𝑣
𝑖 = ∇𝑘𝑣

𝑖 − (Γ𝑖
𝑘ℎ;𝑠 · 𝑣ℎ𝑣𝑠 + 𝛾𝑖𝑘ℎ𝑣

ℎ) + 𝜀𝑖𝑘. (12)

which is applied to the data as:
𝑤

𝑖𝑡ℎ
−𝑤𝑖,𝑡−1,ℎ = 𝑑𝑤 = 𝛼0

𝑖𝑡+𝛽𝑖𝑑𝑙𝑛𝑦ℎ𝑡−
{︀
𝛾211𝑤

2
𝑖𝑡ℎ + 𝛾212𝑤𝑖𝑡ℎ𝑙𝑛𝑦ℎ𝑡 + 𝛾213𝑤𝑖𝑡ℎ𝑙𝑛𝜋ℎ𝑡 + 𝛾222𝑙𝑛𝑦

2
ℎ𝑡 + 𝛾223𝑙𝑛𝑦ℎ𝑡𝑙𝑛𝜋ℎ𝑡 + 𝛾233𝑙𝑛𝜋

2
ℎ𝑡

}︀
𝑑𝑙𝑛𝑦ℎ𝑡−{︀

𝛾311𝑤
2
𝑖𝑡ℎ + 𝛾312𝑤𝑖𝑡ℎ𝑙𝑛𝑦ℎ𝑡 + 𝛾313𝑤𝑖𝑡ℎ𝑙𝑛𝜋ℎ𝑡 + 𝛾322𝑙𝑛𝑦

2
ℎ𝑡 + 𝛾323𝑙𝑛𝑦ℎ𝑡𝑙𝑛𝜋ℎ𝑡 + 𝛾333𝑙𝑛𝜋

2
ℎ𝑡

}︀
𝑑𝑙𝑛𝜋ℎ𝑡+𝜂𝑖𝑡ℎ

where 𝛾𝑟𝑠𝑣 is an estimate of Γ𝑖
𝑟𝑠;𝑣 for good i.
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The Riemann curvature is computed by equation (6) :

𝑅ℎ
𝑖𝑟𝑠 = 𝜕𝑟Γ

ℎ
𝑖𝑠 + Γℎ

ℎ𝑙Γ
𝑙
𝑖𝑠 − 𝜕𝑠Γ

ℎ
𝑖𝑟 − Γ𝑙

𝑖ℎΓℎ
𝑠𝑙 = ∇𝑟Γ

ℎ
𝑖𝑠 −∇𝑠Γ

ℎ
𝑖𝑟 =

= (𝛾𝑖𝑘𝑠;ℎ∇𝑟𝑣
ℎ + 𝛾𝑖𝑘𝑠;𝑟) − (𝛾𝑖𝑘𝑟;ℎ∇𝑠𝑣

ℎ + 𝛾𝑖𝑘𝑟;𝑠) = 𝛾𝑖𝑘𝑠;ℎ∇𝑟𝑣
ℎ − 𝛾𝑖𝑘𝑟;ℎ∇𝑠𝑣

ℎ

for ℎ ̸= 𝑠 and 𝑟, as the 𝛾 are symmetrical in (𝑟, 𝑠).
The Riemann-Christoffel tensor 𝑅ℎ

𝑖𝑟𝑠describes the curvature properties of the Rieman-
nian surface. This tensor depends on four variables i, k, h, j and can be contracted to the
Ricci tensor by equalizing k with h: 𝑅𝑖𝑗 = 𝑅𝑘

𝑖𝑘𝑗 . This tensor can be contracted equalizing

i and j to give rise to the scalar Riemannian curvature: R=g𝑖𝑗R𝑖𝑗 . The 𝑛(𝑛+1)
2 weights g𝑖𝑗

defining the metric depend on the Christoffel symbols by means of 𝑛2(𝑛+1)
2 differential

equations which cannot be easily resolved. Therefore, this scalar curvature R cannot be
calculated except by calibrating the g𝑖𝑗 . In case of a surface of two dimensions in a three
dimensional space (a variable x, for instance consumption, depending on two determinant
variables𝑧1,𝑧2, for instance income per unit of consumtion and the commodity full price),
the two dimensional Ricci tensor 𝑅𝑖𝑗 occurs only two times: for k=x1, i=x1 and j=x2 (or
its negative inversing i and j) and for k=x2, i=x2 and j=x1 (or its negative inversing i and
j). All other alternatives (such as 𝑘 = 𝑥1, 𝑖 = 𝑥2 and 𝑗 = 𝑥2) are nul. The two tensors
𝑅223 and 𝑅332 thus measure the principal curvatures of the surface (its maximum and
minimum curvatures) which allow to calculate the average and total Gaussian curvature
as 𝑅223 𝑅332 and the average curvature as 𝑅223+𝑅332

2 .
𝑅223 and 𝑅

′
12 can finally be written:

𝑅223(𝑖, ℎ, 𝑡) = 𝛾213∇𝑙𝑦𝑤𝑖𝑡ℎ + 𝛾233∇𝑙𝑦𝑙𝑛𝜋ℎ𝑡 − 𝛾211∇𝑙𝜋𝑤𝑖ℎ𝑡 − 𝛾211∇𝑙𝜋𝑙𝑛𝑦
𝑅332(𝑖, ℎ, 𝑡) = 𝛾321∇𝑙𝜋𝑤𝑖𝑡ℎ + 𝛾322∇𝑙𝜋𝑙𝑛𝑦ℎ𝑡 − 𝛾331∇𝑙𝑦𝑤𝑖ℎ𝑡 − 𝛾333∇𝑙𝑦𝑙𝑛𝜋ℎ𝑡

2.2. Application

∇𝑘𝑣
𝑖 and 𝜕𝑘𝑣

𝑖 have been estimated on the Polish panel (1997–2000, see Appendix A
for a description of the data) containing data over 3052 households. Prices are defined
as full prices calculated by means of an estimation of the opportunity cost of time using
the model exposed in Gardes (2017) described in Appendix. This model is based on a
household domestic production for each commodity (such as eating or ransportation) using
a direct utility approach. A Cobb-Douglas specification is adopted both for the direct
utility function depending on the quantities of domestic activities and for the domestic
production functions of these activities (which depend on the monetary expenditure
and time use for each activity). All functions can be estimated locally, either on sub-
populations or by a non-parametric method, so that te assumption of unitary elasticity of
substitution applies only to a neighborhood of each observation. This allows to define an
indirect utility function depending on a proxy of total expenditure and total domestic
time.The opportunity cost of time is the ratio of the marginal utilities of money and time
and can be recovered by means of the first order conditions of the optimization of the
direct utility (equation (A4) in Appendix B). Then, full prices are calculated supposing
either that the two inputs of the domestic productions (money and time) are complements,
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as in the case examined by Becker (1965), or substitutes, as supposed by Becker and
Michael (1973) and Gronau (1977). Both assumptions give rise to similar estimates of the
price effects (see Alpman and Gardes, 2016 and Gardes, 2017). The definition of these
two variants of the full prices is presented in Appendix.

The absolute and tangent partial derivatives ∇𝑘𝑣
𝑖 and 𝜕𝑘𝑣

𝑖(identified with the cross-
section and time-series derivatives) depend on the specification of the function between the
explained variable (partial expenditure) and the set of explanatotory variables. Therefore,
the estimated empirical curvature indicates wether there remains some unexplained
endogeneity in the cross-section estimation, i.e. an effect of endogenous permanent latent
variables over the cross-section dimension, which disapear for variations through time. In
that case, the specification is not sufficient to take care of this remaining endogeneity.
The comparison between the curvatures found for different specifications (for instance
a linear and a Working) thus gives rise to a non-parametric specification test, in the
sense that a specification takes care more completly of the endogenous biases created
by permanent latent variables. The importance of the remaining curvature (once the
curvature linked to the specification has been taken into account) indicate the existence
of an endogeneity bias when estimating on the surface (i.e. using the dataset given by
the survey) instead of estimating on tangent planes where latent variables are constant.

The estimates of the Riemann curvatures for food expenditures explained by a Working
specification are presented in Table 1. The estimates for other expenditures and sub-
population defined by age classes or family composition are presented in Appendix. Also,
estimates corresponding to the linear model and the double-logarithmic specification can
be found in Appendix.

Food All households 1st level of education 2nd level of education 3rd level of education

𝑅223 0.0437 -0.1146 -0.0749 -0.0136
s.e. (0.0093) (0.0275) (0.0162) (0.0609)

𝑅332 0.0418 -0.0231 0.0299 0.2946
s.e. (0.0541) (0.1217) (0.0840) (0.2756)

R12R𝑅332 18.27x10−4 26.47x10−4 -22.40x10−4 -40.07x10−4

𝑅223+𝑅332
2 0.0427 -0.0689 -0.0225 0.1405

s.e. 0.0274 0.0624 0.0428 0.0706
N 3,052 915 1,870 267

Table 1. Curvature for food expenditure
Note: standard error in parentheses. Bootstrap for Gaussian curvature.
Specification of the surface: 𝑤𝑖ℎ𝑡 = 𝛼𝑖 + 𝛽𝑖 ln𝑚ℎ𝑡 + 𝛾𝑖 ln𝜋𝑖ℎ𝑡 + 𝑍ℎ𝑡𝛿𝑖 + 𝜀𝑖ℎ𝑡.
Explanatory variables: lnmℎ𝑡= logarithmic total expenditure per Consumption Unit, ln𝜋𝑖ℎ𝑡=

logarithmic full price, Zℎ𝑡= log age of the head and survey dummies.
Data: The Polish panel covering 3,052 households for the period 1997–2000.
Table 1 presents the estimated curvatures corresponding to the endogeneity bias

on the income effect (𝑅223) or the price effect (𝑅′
12) in the Working specification. The

Riemannian curvatures are normalized, being divided by the average budget share of
the commodity (since the specification is written in that term as concerns the explained
variable for the Working model). Estimation over the whole population in all four waves
(Table 1) generates a Riemannian curvature significantly different from zero regarding the
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derivative 𝑘 with respect to total expenditure for all consumptions 𝑅12, except Clothing
(which corersponds to 8% of total expenditure). The estimation for sub-populations
(Table A1 in Appendix) by age group (20-34, 35-55, over 56), three levels of education or
family types (singles, two adult without children, families with children) indicates also
significant curvatures with a majority of declining value for age classes and family size,
while it tends to increase with the education level. The estimates on sub-populations are
less significant than for the whole population, which could be explained by the greater
homogeneity of these sub-populations and a weaker effect of latent variables between
similar households. The curvatures differ between sub-populations, as concerns their
sign as well as their level, which is normal as each expenditure is impacted by specific
endogeneity biases due to specific latent variables.

The curvature corresponding to the 𝑘-derivative with respect to the full prices 𝑅
′
12 is

not significantly different from zero except for Clothing and Other expenditures. This
indicates that endogeneity biases are less significant as concerns the price effect. The
results show also more heterogeneity of conditions of choice for large families and more
educated families.

The curvature for the linear model is significant for almost all commodities (21 over 24
at 5%); generally greater than for the double-log model (17 only significantly differentfrom
zero) which means that the assumption of a constant income elasticity fits better the
dataset than supposing the constancy of the marginal propensity.

Different signs and levels linear compared to double-log, which shows that these model
differ as conern their proximity to the dataset.

Note that the level of the curvature for the linear model (2.2𝑥10−5) is comparable
with the curvature of the surface induced by the Working model (-1.4x10−5) (but with an
opposite sign).

2.3. Discussion

The consequence is that the metric changes from one point to another: on a Riemannian
space, the differential metric writes d𝑠2 = 𝑔𝑖𝑗 d𝑣𝑖d𝑣𝑗 , with d𝑣𝑖 and d𝑣𝑗 the changes in
variables 𝑣𝑖 and 𝑣𝑗 . Indeed, minimising the Riemannian distance over the whole space
corresponds to calculate the usual estimate by Maximum Likelihood or least squares,
constraining the optimization by the change of the shadow prices from one point to
another: the metric at each point changes according to the non-monetary resources and
the constraints, which characterize this location in Riemannian space. The curvature
of the Riemannian space thus indicates the heterogeneity of these conditions of choice
over the population. Therefore it is not possible to recover consumption functions by
minimising a unique distance over the whole space: the distance between some point 𝑀
and its estimate 𝑀1 depends on the coefficients 𝑔𝑖𝑗 which are attached to this point,
if the two points are sufficiently close so that the same metric applies to them. For
another point 𝑀 ′, it will be necessary to take into account the change of the metric when
computing the distance from its estimate 𝑀 ′

1. Moreover, if points 𝑀 and 𝑀 ′ are not
sufficiently close, the metric changes continuously on every path between them, so that it
is necessary to determine the minimum path between them in the Riemannian space, i. e.
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a geodesic between the two points, by integrating ds between the two points.
A solution would be to project the Riemannian space on an Euclidian space, where

a unique distance is defined. It is well known that every Riemannian manifold of
dimension 𝑛 can be embedded in an Euclidian space of greater dimension. The first
embedding theorems were proved by Janet and Cartan, the Euclidian space necessitating
at least 𝑛(𝑛+1)

2 dimensions (see ivey2003cartan), but the general theorem was proved by
extraordinary methods by John Nash (1956): his Theorem 3 realizes the imbedding of a
non-compact 𝑛-manifolds in 𝑛(𝑛+1)(3𝑛+11)

2 dimensions. We propose a simple projection of
the Riemannian consumption space into an Euclidian space by defining a unique metrics
defined by the position of the household in its life cycle.

Indeed, another way of estimating the curvature of the space would be to estimate
the equation of geodesics on cross-sections: whenever the curvature is non-null, the
geodesics are not straight lines, because the basis changes along the geodesic. Thus, a
new econometrics on Riemannian space must be defined by considering geodesics. In
cross-sections, geodesics represent the shortest paths from one point to another. So,
an agent can be supposed to follow a geodesic over her life cycle. The definition of a
time dimension on cross-section, discussed in the subsequent section, may permit the
estimation of Christoffel symbols along geodesics. Considering households, one solution
consists in taking into account the age of the family head or, for firms, the number of
years the firm has been active in the market as measuring the passage of time in the
survey. Thus, the priority of one variable over another is defined by the priority of the
agents over which they are measured. For instance, the past and future consumption
of some household ℎ in a dynamic model (representing habit and addiction effects) can
be instrumented by the expenditures of similar households (by age, education, location,
family structure) one year younger or older in the survey1. One drawback is that age
is correlated with cohort effects in cross-sections. We propose in section 5 a formula to
correct this cohort effect and find that such instrumentation is very effective compared to
usual instruments such as past and future prices.

3 Endogenous prices

pb: latent var representable by prices? Condition.
The effect of latent variables which produce endogenous biases could be represented

by the cost they imply for the explained variable: for instance, a rationing scheme can be
taken into account by the virtual price corresponding to the constarint. This implies that
the economic price may differ between households, even if monetary prices are the same,
which in fact is not usually the case. Prices are known to vary according to the agent
location, sometimes its age (special tarifications) or other socio-economic characteristics
of the agent (taxes according to the income class). Also, Barten (1964) explains by the
public nature of some consumptions, why, in a simple model of the allocation of goods in
the family, the relative price of individual consumptions (such as milk) compared to a

1Note that it is generally necessary when estimating dynamic models to instrument past values of the
variables, even when these past values are observed.
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public consumption such as heating, varies according to the demographic structure of
the household (being greater for larger families). These economic costs are named here
endogenous prices. Two important examples of endogenous prices are presented hereafter.

3.1 The shadow price of a constraint

Neary and Roberts (1980) compares demand theory without or under rationing by
decomposing the set of commodities into a subset of goods that can be freely chosen and a
second subset of rationed goods. They show that, under usual condition for the existence
of implicit functions (quasi-concavity of the utility function and differentiability at the
optimum), the restricted demand functions can be considered as unrestricted choices with
virtual prices defined as those which would induce an unrationed agent to choose the same
bundle set as the rationed agent 1. Thus, unconstrained estimation of a system of demand
adding virtual prices to the set of market prices can be substituted to the estimation
under the constraints corresponding to these virtual prices. Barten and Bettendorf (1995)
and Gardes and Starzec (2014) provide applications of this method to the computation of
virtual prices of the rationing of housing in Belgian for the Interwar period and Poland
before its liberalization.

3.2 Full price in the domestic production model

Becker (1965) considers a set of final goods which are the arguments of the consumer
direct utility of the consumer. In order to simplify the analysis, Becker states that a
separate activity i produces the final good in quantity Zi using a unique market good (an
hypothesis which can be generalized easily) in quantity xi and time ti per unit of activity.
The market good and time are supposed to follow a Leontief technology: The full price 𝜋𝑖
for one unit of the final good (activity) 𝑖 can be written: 𝑝𝑖𝑥𝑖 + 𝜔𝑡𝑖 with an opportunity
cost of time 𝜔 which is usually taken as the agentâs market wage rate net of taxes. The
unit full price of the market good 𝑥𝑖 is therefore: 𝑝𝑖 + 𝜔𝜏𝑖. It is assumed here that the
agent’s opportunity cost 𝜔 differs from her net wage, so that the full budget constraint is:∑︁

𝑖

(𝑝𝑖𝑥𝑖 + 𝑡𝑖) = 𝑦𝑓 − 𝑤(𝑇 − 𝑡𝑤) = 𝑦𝑓 − 𝑤
∑︁
𝑖

𝜏𝑖𝑥𝑖 (13)

In this formula, the full income is corrected by means of a function of the domestic
production time which represents the difference between the market (w) and the personal
valuation (𝜔) of that time. An important difficulty in this generalization of the domestic
production model lies in the valuation of time. A Cobb-Douglas specification for both
the utility function and the domestic production functions allows estimating locally (for
each household) the opportunity cost of time by means of the first order conditions for
the substitution between time and monetary resources used for the domestic production
(estimation performed on data grouped into 40 homogenous cells to take care of possible
errors of measurement, see Gardes, 2014). The average of the estimated opportunity cost

1Barten and Betteldorf (1995) show how virtual prices can be computed by means of the estimation
of a complete demand system.
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is 6.74 euros (with a standard-error of 1.5), close to the minimum wage rate and about two
third of the householdsâ average wage rate. It is positively indexed on the householdâs
net wage (with an elasticity of 0.85) and on income (conditional to net wage: elasticity
of 0.19). In the application, the value of time will be defined either by the householdâs
average wage net of taxes, the minimum wage rate or this estimated value. Note that
both full budget shares and the full income and full prices depend on the opportunity
cost which is choosen, which involves a systematic endogeneity in the demand equation.
The empirical application shows that the resulting price elasticities do not depend much
on the opportunity cost choosen for these variables.

3.3 Definition of full prices

The full expenditure for one unit unit of activity 𝑖 is the sum of its monetary cost
and the opportunity cost of time used for that activity. It depends on the households’
characteristics, both through the household’s opportunity cost of time and its domestic
production technology. Two definition of full prices are proposed in Appendix: first under
the assumption of substituability between the factors of production of the activity, time
and money, second under complementarity (as in Becker’s original model). With these
definitions, it is possible to proxy the changes in the full prices, observing only monetary
and full expenditures.

Two hypotheses were necessary to derive full prices from monetary and time expendi-
tures: first, domestic production functions are supposed to be Leontief functions (note
that the parameters of these functions are specific for each household); second, absence of
joint production is supposed, which may be more easily verified for broad categories of
activities such as housing and food (see Pollack-Wachter, 1976, for a discussion). Full price
are computed in Gardes (2015) by matching a French Family Budget with a Time Use
survey using either an exogenous opportunity cost of time or an estimate. The estimated
price elasticities compare well with the estimates by other methods. The method affords
also elasticities of consumption with respect of time and the opportunity cost of time.

3.4 Empirical evidence

Full prices are shown to depend on macroeconomic conditions, since the opportunity
cost of time diminishes during recessiosns (see Alpman and Gardes’ analysis of the great
recession in the US). An estimation on French data (Gardes, 2016) shows that full prices
depend on the opportunity cost of time and on the amount of time consecrated to each
activity. Their variation (see Table A4 in Appendix) is quite large across the population
(for instance, the full price for transport under substitutability varies from 1.003 to 6.66,
with a mean 1.94 and a standard error 0.54). The OCT and time use may both depend
on the household’s level of being, its situation in its life cycle (family size, age of the
head and the spouse), its location. . . A regression analysis of the logarithm of full prices
on these variables shows that all prices decrease with income, with an average elasticity
-0.30 (from -0.13 for transport to -0.15 for food and housing, -0.4 for clothing and other
commodities and -0.75 for leisure). They increase with age (except for other expenditures)
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with an average elasticity 0.4, and decrease with the proportion of children in the family.

4 Shadow Prices

Differences between cross-section and time-series estimates of demand functions are
commonly observed in recent empirical work: for instance, Gardes et al. (2005) analyse the
bias in income and total expenditure food elasticities estimated on panel or pseudo-panel
data caused by measurement error and unobserved heterogeneity. This bias suggests
that unobserved heterogeneity imparts a downward bias to cross-section estimates of
income elasticities of at-home food expenditure and an upward bias to estimates of
income elasticities of away-from-home food expenditure. Moreover, the magnitude of
the differences in elasticity estimates across methods of estimation is roughly similar in
U.S. and Polish expenditure data: for instance, despite some differences between the
estimations: the relative income elasticity of food at home is around 0.2 based on a number
of different methods with PSID data (1984–1987), while the time-series estimates (within
or first differences) are 0.4. The same order between income elasticities in the cross-section
or time-series dimensions is found for Polish households observed in a four years panel
(1987–1990), with higher elasticities as can be expected for a much poorer country. On
the contrary, the cross-section elasticity for food away from home is estimated as much
higher than the time-series one. Similar results have been obtained on pseudo-panels of
French and Canadian surveys (Cardoso et al. ;Gardes et al., 1996). Generally speaking,
such endogeneity biases are shown to exist in the cross-section estimates for half of the
commodities. A recent empirical analysis by Christensen (2014) on a spanish panel data
as well as estimations performed previously on pseudo-panles (see Gardes et al, ) show
that the cross-section income effect is generally significantly greater for most expenditures
on services, while changes in expenditure on housing over time are more strongly related
to income changes than are the differences between two households in the same survey.

One way to explain these differences is to consider the relationship between the relative
position of the agent in the income distribution and his non-monetary resources (such as
time) or the presence of constraints (such as subsistence constraints) on choice, which
both can be related to virtual prices.

Suppose that the monetary price 𝑝𝑚 and a shadow price 𝜋 corresponding to non-
monetary resources and to constraints faced by the households are combined together into
a complete price. Expressed in logarithmic form, we have: 𝑝𝑐 = 𝑝𝑚 + 𝜋.

Consider two estimations of the same equation:

𝑥𝑖ℎ𝑡 = 𝑍ℎ𝑡𝛽𝑖 + 𝑝𝑐ℎ𝑡𝛾𝑖 + 𝑢𝑖ℎ𝑡 (14)

for good 𝑖 (𝑖 = 1, . . . , 𝑛), individual ℎ (ℎ = 1, . . . ,𝐻) in period 𝑡 (𝑡 = 1, . . . , 𝑇 ), with
𝑍ℎ𝑡 = (𝑍1ℎ𝑡,𝑍2ℎ𝑡). These estimations are carried out on cross-section and time-series
data using the same dataset.

Set 𝑢𝑖ℎ𝑡 = 𝛼𝑖ℎ + 𝜀𝑖ℎ𝑡, where 𝛼𝑖ℎ is the specific effect which contains all of the
permanent components of the residual for individual ℎ and good 𝑖. As discussed by
mundlak1978pooling the cross-section estimates can be biased by a correlation between
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the explanatory variables 𝑍ℎ𝑡 and the specific effect. This can result from latent permanent
variables (such as an event during childhood, parents’ characteristics, or permanent wealth)
which are related to some of the explanatory cross-section variables 𝑍ℎ𝑡: for instance,
the relative income position of the household can be related to its wealth or its genetic
inheritance. Thus, the correlation 𝛿𝑖 between the time average of the vector of the
explanatory variables, 𝑍ℎ𝑡 =

{︀
𝑧𝑘1ℎ𝑡

}︀𝐾1

𝑘=1
, transformed by the Between matrix:

𝐵𝑍ℎ𝑡 =

{︃
1

𝑇

∑︁
𝑡

𝑧𝑘ℎ𝑡

}︃𝐾1

𝑘=1

,

and the specific effect 𝛼𝑖ℎ, 𝛼𝑖ℎ = 𝐵𝑍ℎ𝑡𝛿𝑖 + 𝜂𝑖ℎ, will be added to the parameter 𝛽𝑖 of
these variables in the time average estimation: 𝐵𝑥𝑖ℎ𝑡 = 𝐵𝑍ℎ𝑡(𝛽𝑖 + 𝛿𝑖) + 𝜂𝑖ℎ + 𝐵𝜀𝑖ℎ𝑡, so
that the between estimates are biased. The difference between the cross-section and the
time-series estimates amounts to 𝛿𝑖.

Let us now assume that the shadow price 𝜋𝑖ℎ𝑡 of good 𝑖 for household ℎ in period 𝑡,
depends on variables 𝑍1ℎ𝑡, which also appear in the consumption function for good 𝑖:

𝑥𝑖ℎ𝑡 = 𝑔𝑖(𝑝ℎ𝑡,𝑍ℎ𝑡,𝑆ℎ𝑡) + 𝑢𝑖ℎ𝑡

with 𝑝ℎ𝑡 the vector of prices 𝑝𝑗ℎ𝑡 containing (if it exists) a shadow, unknown compo-
nent 𝜋𝑗ℎ𝑡, and 𝑆ℎ𝑡 the vector of all other determinants.

We now assume that only the monetary component of prices change over time (the
shadow component being related to permanent variables), while the different agents ob-
served in the cross-section survey are characterized by different non-observed shadow prices
(corresponding to individual non-monetary resources and constraints). Equation (14)
writes on time-series (for instance in first differences between periods):

𝑥𝑖ℎ𝑡 = 𝑍ℎ𝑡𝛽𝑖 + 𝑝𝑚𝑖ℎ𝑡𝛾𝑖 + 𝑢𝑖ℎ𝑡

while on cross-section it is, supposing the price effect 𝛾𝑖 and monetary prices are the same
on both dimensions:

𝑥𝑖ℎ𝑡 = 𝑍ℎ𝑡𝛽
′
𝑖 + 𝑢′𝑖ℎ𝑡 = 𝑍ℎ𝑡𝛽𝑖 + 𝜋𝑖ℎ𝑡𝛾𝑖 + 𝑢𝑖ℎ𝑡

with obvious notations. Thus, the difference between the two estimations is:

𝑍ℎ𝑡𝛿1𝑖 = 𝑍ℎ𝑡𝜃1𝛾
′
𝑖 + (𝑆ℎ𝑡𝜃2 + 𝜆𝑖ℎ + 𝜇𝑖ℎ𝑡)𝛾𝑖

which allows to calculate the set of parameters 𝜃1 after calibrating the price effect measured
by 𝛾𝑖.

The marginal propensity to consume with respect to 𝑍1ℎ𝑡, when considering the effect
of the shadow prices 𝜋𝑗ℎ𝑡 on consumption, can be written as:

d𝑥𝑖ℎ𝑡
d𝑍ℎ𝑡

=
d𝑔𝑖

d𝑍ℎ𝑡
+
∑︁
𝑗

(︂
d𝑔𝑖

d𝜋𝑗ℎ𝑡

)︂(︂
d𝜋𝑗ℎ𝑡
d𝑍ℎ𝑡

)︂
.
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The second term will differ between cross-section and time-series because of the
correlation of the shadow price with the endogenous variables 𝑍ℎ𝑡. So, comparing two
different households surveyed in the same period, this bias adds to the direct unbiased
consumption propensity with respect to 𝑍ℎ𝑡, as estimated on time-series data. For
instance, the influence of the household head’s age cohort or income may differ in cross-
section and time-series estimations if the shadow prices depend on cohort effects or on the
relative income position of the agent (note that the same effect may occur with respect
to monetary prices).

The term
∑︀

𝑗
d𝑔𝑖

d𝜋𝑗ℎ𝑡

d𝜋𝑗ℎ𝑡

d𝑍ℎ𝑡
above can be used to reveal the variation of shadow prices

over 𝑍1ℎ𝑡,
d𝜋𝑗ℎ𝑡

d𝑍ℎ𝑡
, since it can be computed by resolving a system of 𝑛 linear equations

after having independently estimated the price marginal propensities d𝑔𝑖
d𝜋𝑗

= 𝛾𝑖𝑗 . We can

also consider only the direct effect of the variables 𝑍ℎ𝑡 through the price of good 𝑖, 𝛾𝑖𝑖 d𝜋𝑖
d𝑍 ,

so that:
d𝜋𝑖
d𝑍

=
𝛽c.s.
𝑖 − 𝛽t.s.

𝑖

𝛾𝑖𝑖
. (15)

The price effect 𝛾𝑖𝑖 is supposed to be the same for monetary and shadow prices.
Thus, the change in the shadow price between two periods can be written as: d ln𝜋𝑖ℎ𝑡 =∑︀

𝑘

(︁
d𝜋𝑖

d𝑧𝑘

)︁
d𝑧𝑘ℎ𝑡. Under homogeneity (of degree 𝑚) of shadow prices over variables 𝑍1ℎ𝑡,

the shadow prices can be computed as ln𝜋𝑖ℎ = 𝑚
∑︀

𝑘
d𝜋𝑖

d𝑧𝑘
𝑧𝑘ℎ𝑡. However, this homogeneity

assumption is quite strong, and we will prefer to compute only the change in the log
shadow prices1.

The income elasticities of the shadow prices of food at home and food away from
home expenditures are computed in Table ?? for the PSID and the Polish panel (using
equation 15, and assuming that direct price elasticities are minus one half of the corre-
sponding income elasticities). These estimated parameters are remarkably similar in both
countries: positive and smaller than one for food at home, so that the full price of food
at home is greater for richer than for poorer households. One interpretation is that rich
people are time constrained and have a larger opportunity cost for the additional time
spent on food at home compared to food away. This difference may be thought to be
greater in the USA than in Poland. On the contrary, the income elasticity of the full
price for food away from home is negative, and of the same magnitude in both countries.

In our analysis, the relation between cross-section and time-series estimates, modelled
by shadow prices, is supposed to be linear over all of the distribution. It is however
likely that the derivatives d𝜋𝑗ℎ𝑡

d𝑍1ℎ𝑡
also depend on individual characteristics. This is for

instance the case in Barten’s model (barten1964family) where relative prices depend
on the family structure. This local dependency requires a geometric characterization of
the consumer space.

1This model is presented more thoroughly and applied to rationality tests in diaye2001world
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Empirical evidence

Boelaert-Gardes-Langlois (L’Actualité Economique, 2018) apply this method to a
pseudo-panel of seven canadien Households Expenditures surveys from 1978 to 2008.
The shadow prices are shown to change along the income distribution, increasing with
relative income for Food at Home, Alcohol, Tobacco and Private Transport, decreasing
for Public Transport, Health expenditures and Education. The recent widening of income
inequality in Canada implies that these virtual prices are more inequal in the whole
population, which make the conditions of the economic choices motre inequal between
rich and poor households (a supplementary inequality between them). The virtual prices
are also shown to be correlated with full prices (Table 5 in Boelaert et al. article), which
are one component of the economic cost.

Conclusion

We have shown that the consumption space has a Riemannian structure, which
allows us to connect the time dimension of consumption laws to the social distribution of
consumption expenditure in the population. Riemannian curvature of consumption means
that there exists, for the social distribution of consumption, path-dependency with respect
to the order of the changes in the different variables influencing consumption choices.
For instance, comparing a couple of two adults to a family with children in cross-section
allows us to compute an equivalence scale which may depend not only on income levels,
but also on income changes, in the sense that an increase in family size d𝑠 for a family
of size 𝑠 and income 𝑦1 = 𝑦0 + d𝑦 may not give rise to the same levels of expenditure
as an increase in income d𝑦 for a family with size 𝑠 + d𝑠 and income 𝑦0 (whenever the
condition for point integrability, i. e. the symmetry of Christoffel symbols, does not hold).
Thus, considering the Riemannian structure of the expenditure space may be useful for
Lewbel’s problem of identification in equivalence scale models1.

Second, the impossibility of defining a unique metric for the whole population means
that usual econometric estimations of consumption laws on cross-section data are mis-
leading. This is due to the fact that local conditions of choice, which correspond to local
shadow prices, are not taken into account in the estimation. In a sense, the Riemannian
curvature of the consumption space can be related to social heterogeneity, and the change
of the basis from one point to another in this space indicates the variation in the various
constraints and non-monetary resources which influence consumer choice by means of the
associated shadow prices. The conditions of choice depend on the situation of the agent,
i. e. his or her location in Riemannian space. Barten’s (1964) discussion of the change in
relative monetary prices due to changes in family composition can be considered as an
example of this relationship.

We have shown that the substitution between time and the socio-economic determi-
nants of household behaviour makes it possible to estimate dynamic models on cross-
sectional individual data. The position of individuals on the synthetic time axis also

1I am grateful to Alain Trognon for this suggestion.
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provides a natural distance between them, which can be related to the differences which
are observed between their expenditure patterns.

Third, preference interdependencies are generally estimated by adding the average
quantities consumed by similar households 𝑥𝐻,𝑡 (see montmarquette2002large for a
discussion of this specification). This model is highly implausible, though it is generally
estimated as significant. In the model we propose in Section 5, this variable corresponds
to the instrumented past or future expenditures of the household, so that the so-called
interdependence effect can be interpreted as a habit or addiction effect of past and future
expenditures. These effects may be inversely related to the distance between similar
consumers, which is measured by the time distance between the household and its past
and future expenditures1.

Finally, the geometric structure of a survey could be considered to estimate dynamic
models on a cross-section. For a survey on households, it could consists in taking into
account the age of the family head or, for firms, the number of years the firm has been
active in the market, as measuring the passage of time in the survey. For instance, the
past and future consumption of some household ℎ in a dynamic model (representing habit
and addiction effects) can be instrumented by the expenditures of similar households
(by education, location, family structure) one year younger or older in the survey. One
drawback is that age is correlated with cohort effects in cross-sections. To correct this
cohort effect, Gardes (2018) uses the fact that in theories such as the life cycle, both the
dependent variable and its determinants are related to the time dimension. For instance,
considering savings, income per unit of consumption increases early in the life cycle, then
falls as household size increases, and finally increases to a constant level at the end of the
life cycle, while the savings rate also varies systematically over the life cycle. Therefore,
income and age can substitute locally as concerns their influence on savings. For example,
a rich household aged 35 may have the same saving behaviour as a poor household aged 50,
so that income compensates for age in determining savings. Similar relations as those
considered with the head’s age can be found for other household’s characteristics (such as
its demographic composition), so that a combination of all may be more efficient to date
each household on the time axis. Two methods to correct for cohort effects are presented
in Gardes (2018). These corrections are applied to the estimation of a dynamic model of
consumption and to the estimation of Christoffel symbols using the equation of geodesics
(which relates the second order derivatives over time of some variable at choice with a
linear combination of first order derivatives with coeffcients depending on the Christoffel
symbols). Finally, the estimation of Christoffel symbols can be used to correct for the
endogeneity biases of cross-section estimates.

Appendix A: The Polish Data (1997-2000)

Household budget surveys have been conducted in Poland for many years. In the
period analysed, the annual total sample size was about 30 thousand households, which

1A test of this interpretation would be to estimate the parameters of the autoregressive operator 𝐴
over the synthetic time scale, in a model: 𝑥ℎ𝑡 = 𝐴(𝐿)𝑥𝐻𝑡 +𝑊 ℎ𝑡𝛽 + 𝜀ℎ𝑡.
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represent approximately 0.3% of all households in Poland. The data were collected by
a rotation method on a quarterly basis. The master sample consists of households and
persons living in randomly selected dwellings. This was generated by a two-stage, and
in the second stage, two-phase sampling procedure. The full description of the master
sample generating procedure is given by Kordos and Kubiczek (1991).

On every annual sample it is possible to identify households participating in the
surveys during four consecutive years. For the four years panel from 1997 to 2000, 3052
households remain in the data set after deleting a few number of households with missing
values. The available information is as detailed as in the cross-section surveys: the usual
socio-economic characteristics of households and individuals, as well as information on
income and expenditures. A large part of this panel containing demographic and income
variables is included in the comparable international data base of panels in the framework
of the PACO project (Luxembourg) and is publicly available. The four surveys from 1997
to 2000 have been matched with the 2000 Time use Polish survey by Rubin’s method,
which assigns an adult observed in the Time use survey to each adult of a household. The
usual matching method by regression has two shortcomings: the reduction of the variance
of the imputed values and the conditional independency assumption of the variable which
are imputed with those which are observed in the dataset. Both problems can be solved
to a great extent by the statistical matching procedure proposed by Rubin (1986). This
procedure allows its user to assume a partial correlation value between the two variables
that are jointly unobserved. This method conserves the individual distribution of the
matched times and from this point of view is better than the usual regression method
which diminishes drastically the variance of the matched variables compared to their
distribution in the survey where they are observed. The matching procedure is discussed
in Alpman (2016), Alpman and GArdes (2015) and Alpman, Gardes and Thiombiano
(2017).

The 1997-2000 panel corresponds to the post transition high economic growth period
with relatively low inflation, decreasing unemployment and generally improved socio-
economic situation in the context of almost totally liberalized economy.

Appendix B: Estimation of the opportunity cost of time

To estimate the shadow price of time, I assume (Gardes, 2017) that the consumer
combines time with monetary expenditures to produce activities that generate utility
in a model where the market work time is valued by the consumer’s wage rate while
the remaining time (e.g., time allocated to leisure or non-market work) is valued by the
shadow price of time that may differ from the wage rate. It is assumed that the consumer’s
utility function is given by u(Q) = Q i aiQ i i where ai is a positive parameter and Qi is
the quantity of the activity i produced by the combination of monetary and time inputs
denoted mi and ti, respectively: Q𝑖 = b𝑖m𝛼𝑖

𝑖 t𝛽𝑖
𝑖 where m𝑖 = x𝑖p𝑖 with x𝑖 the quantity of

the market goods i, p𝑖 its price, and b𝑖 a positive parameter. The domestic production Q
is assumed to depend on expenditures m𝑖 (rather than quantities x𝑖) because the dataset
informs only expenditures. This approach yields consistent results when all households
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face the same prices.Expenditures are divided by a yearly price index and the regressions
include State and year dummies.

The choice of the Cobb-Douglas forms allows the parameters to be identiable. Note that
the estimation is made locally, either over sub-population or locally, for each household,
using a non-parametric method similar to the Lowess estimator. The Cobb-Douglas
specification implies simply constant substitution between time and monetary resources
only in the neighborhood of each individual’s equilibrium point. Combining the utility
and the production functions allows to write the utility in terms of inputs:

𝑢(𝑚, 𝑡) = (
∏︀

𝑖 𝑎
𝛾𝑖
𝑖 𝑏𝛾𝑖𝑖 )(

∏︀
𝑖𝑚

𝛼𝑖𝛾𝑖∑︀
𝛼𝑖𝛾𝑖

𝑖 )
∑︀

𝛼𝑖𝛾𝑖(
∏︀

𝑖 𝑡
𝛽𝑖𝛾𝑖∑︀
𝛽𝑖𝛾𝑖

𝑖 )
∑︀

𝛽𝑖𝛾𝑖 = 𝐴𝑚
′ ∑︀𝛼𝑖𝛾𝑖𝑡′

∑︀
𝛽𝑖𝛾𝑖

where 𝑚
′and 𝑚

′ are geometric weighted means of the monetary and time inputs
and 𝐴 =

∏︀
𝑎𝛾𝑖𝑖 𝑏𝛾𝑖𝑖 . In this framework, the consumer is subject to an income constraint,

Σ𝑚𝑖 = 𝑤𝑡𝑤 +𝑉 , and to a time constraint, Σ𝑡𝑖 + 𝑡𝑤 = 𝑇 , where t𝑤 is the time allocated to
market work, V is other income and Y and T total income and available time (excluding
sleeping time which is not included in the time uses 𝑡𝑖). Utility maximization implies that

the shadow price of time, denoted 𝜔, is given by 𝜔 =
𝜕𝑢

𝜕𝑡
′

𝜕𝑡
′

𝜕(Σ𝑡𝑖)

𝜕𝑢

𝜕𝑚
′
𝜕𝑚

′
𝜕𝑌

=
𝑚

′
Σ𝛽𝑖𝛾𝑖

𝜕𝑡
′

𝜕(Σ𝑡𝑖)

𝑡′Σ𝛼𝑖𝛾𝑖
𝜕𝑚

′
𝜕𝑌

(A1). The

shadow price of time differs from the market wage rate when, for instance, there exists
some market imperfections, transaction costs, and constraints on the labor market or in
the home sector. The shadow price of time can be estimated provided that estimates of
𝛼𝑖, 𝛽𝑖 and 𝛾𝑖 are available. Under the assumed functional forms, the optimal combination
of the inputs yields 𝛼𝑖and 𝛽𝑖: 𝛼𝑖 = 𝑚𝑖

𝜔𝑡𝑖+𝑚𝑖
and 𝛽𝑖 = 𝜔𝑡𝑖

𝜔𝑡𝑖+𝑚𝑖
. The optimal allocation of an

input across the activities i and j implies:
𝛾𝑖
𝛾𝑗

=
𝛽𝑗𝑡𝑖
𝛽𝑖𝑡𝑗

=
𝑎𝑗𝑚𝑖
𝑎𝑖𝑚𝑗

and the system of (𝑛− 1) equations: 𝑚𝑖𝛾𝑗 = 𝑚𝑗𝛾𝑖 + 𝜔𝛾𝑖𝑡𝑗 − 𝜔𝛾𝑗𝑡𝑖

which allow to estimate an average opportunitry cost of time 𝜔and all parameters 𝛾.
This system is overidentied and the unknown parameters, that is, 𝜔 and each 𝛾𝑖, can

be estimated as a system of (𝑛− 1) equations under the constraint
∑︀

𝑖 𝛾𝑖 = 1. Using the
shadow price of time estimated from the system, we obtain the estimates of 𝛼𝑖 and 𝛽𝑖 for
each individual using equation (4) that allow to derive estimates of the shadow price of
time at the individual level by equation (A1).

Appendix C: Full prices in a Becker’s domestic production framwork

Full prices under substitutability assumption

Following Gronau (1977) , the full expenditure can be written as the sum of its
monetary and time components:

𝜋1
𝑖 𝑧𝑖 = 𝑝𝑖𝑥𝑖 + 𝜔𝑡𝑖

with and p the full and the monetary prices corresponding to the quantities z and x
of the activity and of the corresponding market good, for activity i (note that prices and
the opportunity cost of time depend on household and time, which indices are removed).

The full price is the derivative of the full expenditure over z, which writes for the
Cobb-Douglas specification of the domestic production functions:

p𝑓1
𝑖 = 𝑝𝑖

𝜕𝑥𝑖
𝜕𝑧𝑖

+ 𝜔 𝜕𝑡𝑖
𝜕𝑧𝑖
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The optimization program gives rise to the first order condition: 𝑡1
𝑥1

= 𝑝1
𝜔

𝛽1

𝛼1
(note that

all variables, including and , are measured or estimated at the household level). Writing
the quantity of the activity z𝑖 in terms, either of t or x, gives:

𝑡𝑖 = 1
𝑎𝑖
𝑧𝑖(

𝑝𝑖𝛽𝑖

𝛼𝑖
)𝛼𝑖and 𝑥𝑖 = 1

𝑎𝑖
𝑧𝑖(

𝜔𝛼𝑖
𝑝𝑖𝛽𝑖

)𝛽𝑖

So that the full price becomes:

𝑝𝑓1𝑖 = 1
𝑎𝑖
𝑝𝛼𝑖
𝑖 𝜔𝛽𝑖

{︂(︁
𝛽𝑖

𝛼𝑖

)︁𝛼𝑖

+
(︁
𝛼𝑖
𝛽𝑖

)︁𝛽𝑖
}︂

This derivation of , and at the individual level allows identifying the full price for
each household (𝑎𝑖 being supposed constant across the population).

Full prices under complementarity assumption

Becker’s full price for one unit of activity i can be written: p𝑝𝑓2𝑖 = 𝑝𝑖 +𝜔𝜏𝑖 with 𝜏 𝑖 the
time use necessary to produce one unit of the activity i. Suppose (as in Becker’s model)
that a Leontief technology allows the quantities of the two factors to be proportional to
the activity:

𝑥𝑖 = 𝜉𝑖𝑧𝑖 and 𝑡𝑖 = 𝜏𝑖𝑧𝑖with 𝜏𝑖= 𝜃𝑖
𝜉𝑖

This case corresponds to an assumption of complementarity between the two factors
in the domestic technology, which allows calculating a proxy for the full price of activity i
by the ratio of full expenditure over its monetary component:

𝜋𝑖 = (𝑝𝑖+𝜔𝜏𝑖)𝑥𝑖
𝑝𝑖𝑥𝑖

= 𝑝𝑖+𝜔𝜏𝑖
𝑝𝑖 = 1 + 𝜔𝜏𝑖

𝑝𝑖 = 1
𝑝𝑖
𝑝𝑓2𝑖

Note that under the assumption of a common monetary price pi for all households
in a survey made in period t, this ratio contains all the information on the differences
of full prices between households deriving from their opportunity cost for time _h and
the home production technology represented by the coefficient of production _i. If the
monetary price p changes between households or periods, the full price can be computed
as the product of this proxy 𝜋𝑖ℎ with 𝑝𝑖: 𝑝𝑓2𝑖 = 𝑝𝑖𝜋𝑖. With these definitions, it is possible
to measure the full prices, observing only monetary and full expenditures.

The first definition of prices corresponds to a complete substitution between the two
factors in the model (which is used in section 1 to estimate the opportunity cost of time),
since the Cobb-Douglas domestic production functions are characterized by a unitary
elasticity of substitution between the two factors. Its relies on the estimation of three
parameters: , and . On the other hand, the second definition supposes no substitution
between the two domestic production factors but it may give a more robust measure of
the full prices since it depends only on the estimation of the households’ opportunity cost
for time . Both definitions of the full prices will be used in the estimation. However, there
exists a simple relation between these two definitions of the full prices. Using equations
(9) we obtain:

𝑝𝑓1𝑖 = 1
𝑎𝑖
𝑝𝛼𝑖
𝑖

(︁
𝑚𝑖

𝜔ℎ𝑡𝑡𝑖

)︁𝛽𝑖
{︁

1 + 𝜔𝑡𝑖
𝑝𝑖

}︁
So that their logarithmic transforms differ only by _i logm_i/t_i on a cross-section:
𝑙𝑜𝑔(𝑝𝑓1𝑖 ) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 + 𝛽𝑖𝑙𝑜𝑔(𝑚𝑖

𝑡𝑖 ) + 𝑙𝑜𝑔(𝜋𝑖) with prices 𝑝𝑖 set to one.
Two hypotheses were necessary to derive full prices from monetary and time expen-

ditures: first, the domestic production functions are supposed to be Leontief functions
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with constant production coefficients (for Becker’s prices) or Cobb-Douglas functions (for
Gronau’s prices); second no joint production exists, which may be more easily verified for
broad categories of activities such as housing and food.

Appendix D: Empirical curvature: results

Food Housing Transport Clothing Leisure Other
𝑅223, Whole survey 0.0437 0.0238 0.0931 -0.0096 -0.0280 -0.0043

s.e. (0.0093) 0.0123 0.0286 0.0074 0.0100 0.0020
𝑅332, Whole survey 0.0418 -0.3643 -0.9361 0.0298 0.0159 -0.0312

s.e. (0.0541) 0.2176 0.4717 0.0109 0.0240 0.0024
𝑅223𝑅332, Whole survey 18.27x10−4 -86.70x10−4 -439.15x10−4 -2.86x10−4 -4.45x10−4 1.34x10−4

𝑅223+𝑅332
2

Whole survey 0.0427 -0.1703 -0.4213 -0.0048 -0.0061 -0.0178
s.e. 0.0274

Age 20-34: 𝑅223/𝑅332 -0.0967*/-0.0902 -0.0020/-0.2347 -0.0064/0.0061 0.01461*/-0.0379 -0.1951*/0.1066 0.0274/-0.0121
Age 35-54 0.0620*/0.0181 0.0796*/-0.4818 0.0135*/0.0029 0.0051/0.0059 -0.0149/0.0727 -0.0047*/-0.0298*
Age 55- 0.0139/0.0599 0.0139 /0.0599 0.0338*/0.0032 0.0061/0.0864* -0.0573*/-0.3343* -0.0155*/-0.0022

Education 1 -0.1146*/-0.0231 -0.0731/-0.0548 0.0351*/0.0022 0.0059/0.0583* -0.0200*/-0.1590 0.0025/-0.0066*
Education 2 -0.0749*/0.0299 0.0731*/0.4845 0.0165*/0.0083 -0.0192/0.0263 0.0131/0.0595 -0.0012/-0.0227*
Education 3 -0.0136/0.02946 0.1370*/-0.0582 -0.0887*/-0.0039 -0.0117/0.0225 -0.0413/-0.3646 0.0062*/0.0025

Singles 0.1416*/0.3134 0.0418*/-0.4342 0.1841*/0.0382 0.0355/0.1763 -0.1733*/-0.2466* 0.0095/-0.0170*
2 adults -0.0037/0.1314 0.0611*/-0.4636 0.0166*/0.0039 -0.0142/-0080 -0.1348*/-0.4021* -0.0438*/-0.0255*

Family with children 0.0443* 0.0197 0.0273 -0.4344 -0.0255* 0.0220 -0.0411* 0.0114* -0.0829* 0.1290* 0.0067 -0.0120*
Table A1. Gaussian Riemannian curvature, Working specification: R12R

′
12, Polish Panel,

1997–2000.
* significant at 5%; R12R

′
12 multiplied by 104

Table A2. Gaussian Riemannian curvature, Working specification: R12R
′
12, Polish Panel,

1997–2000.

* significant at 5%; ** significant at 1%

References

Alpman, Anil (2016) \Implementing Rubin’s Alternative Multiple-Imputation Method
for Statistical Matching in Stata." Stata Journal, 16, 717739.

Alpman, A. et Gardes, F., 2015, Time Use during the Great Recession - A Comment,
Cahiers de recherche du CES, 2015.12.

24



Food Housing Transport Clothing Leisure Other

Linear

𝑅223 0.000129** -0.000790** -0.001628 -0.000145** 0.000111** -0.000013*
𝑅332 0.173236** -0.449871** -0.023963** 0.000969** 0.039849** 0.000644**

𝑅223.𝑅332 2.23x10−5 35.52x10−5 3.90x10−5 -0.014x10−5 0.443x10−5 -8.31x10−9

𝑅223+𝑅332
2 0.08668 -0.22533 -0.01280 0.00041 0.01998 0.00032

Log-linear

𝑅223 -0.0001079 0.001183** 0.000980** -0.000601 0.001938** 0.000580**
𝑅332 0.001474** 0.002588** 0.000785** 0.003575** 0.002757** 0.000769**

𝑅223.𝑅332 -0.00158 0.3625x10−5 -0.0769x10−5 0.21474x10−5 0.5343x10−5 0.0447x10−5

𝑅223+𝑅332
2 0.00074 0.00189 0.00088 0.00149 0.00235 0.00067

Working

𝑅223 0.0437** 0.0238* 0.0931** -0.0096* -0.0280** -0.0043**
𝑅332 0.0418 -0.3643* -0.9361* 0.0298** 0.0159 -0.0312**

𝑅223𝑅332 18.27x10−4 -86.70x10−4 -439.15x10−4 -2.86x10−4 -4.45x10−4 1.34x10−4

𝑅223+𝑅332
2 0.0427 -0.1703 -0.4213 -0.0048 -0.0061 -0.0178

Alpman, Anil, Francois Gardes, and Noel Thiombiano (2017) \Statistical Matching
for Combining Time-Use Surveys with Consumer Expenditure Surveys: An Evaluation
on Real Data." CES Working Paper, 2017.24.

Angrist, Joshua D. and Alan B. Krueger (1999). Empirical strategies in labor eco-
nomics, vol. 3A. Ed. by O. C. Ashenfelter and D. E. Card. Vol. 3. North-Holland, pp.
1277–1397.

Barten, Antonius Petrus (1964). “Family composition, prices and expenditure patterns”.
In: Economic analysis for national economic planning. Ed. by Gordon Mills Peter E.
Hart and John K. Whitaker. London: Butterworths.

Becker G.S. and Michael. “On the New Theory of Consumer Behavior.” Swedish
Journal of Economics, 75.4 (1973): 378-396.

Bettendorf Léon, Barten Anton. Rationnement dans les systèmes de demande : calcul
des prix virtuels. Économie & prévision. N 121, 1995-5.

Boelaert, J., Gardes, F., Langlois, S., 2017, Consommation marchande et contraintes
non monétaires au Canada (1969-2008), L’Actualité Economique-Canadian Review of
Economic Analysis.

Christensen, B., 2014, Heterogeneity in Consumer Demands and the Income Effect:
Evidence from Panel Data, The Scandinavian Journal of Economics, 116, 2, 335-355.

Cardoso, N., Gardes, F., 1996b, Estimation de lois de consommation sur un pseudo-
panel d’enquêtes de l’INSEE (1979, 1984, 1989) , Economie et Prévision, 5 : 111–125.

Collet, R., Gardes, F., Starzec, C., 2011, Does Addiction Matters in Transportation,
w.p. CES, Université Paris I.

Delachet, André (1969). Le Calcul Tensoriel. Vol. 1336. Presses universitaires de
France.

Diaye, Marc-Arthur, François Gardes, and Christophe Starzec (2004). Non-parametric
Tests of Demand Theory and Rational Behavior. Annals of Economics and Statistics.

Gardes, F., 2016, The estimation of price elasticities and the value of time in a
domestic framework: an application on French micro-data, under revision in Annals of

25



Economics and Statistics.
Gardes, F., 2018, Time as a social distance, w.p. PSE, University Paris I, May.
Gardes, F., G.J. Duncan, P. Gaubert, C. Starzec, 2005, A Comparison of Consumption

Laws Estimated on American and Polish Panel and Pseudo-Panel Data, Journal of Business
and Economic Statistics, April.

Gardes, F., Langlois, S., Richaudeau, D., 1996, Cross-section versus Time Series
Income Elasticities of Canadian Consumption, Economics Letters, 51, 169-175.

Gardes, F. and Starzec, C., 2014, Evidence on Addiction Effects from Households
Expenditure Surveys: the Case of the Polish Panel, w.p. CES, Université Paris I.

Gronau R. “Leisure, Home Production, and Work – The theory of the Allocation of
Time revisited.” Journal of Political Economy 85 (1977): 1099-1123.

Jeanperrin, Calcul Tensoriel,
Heckman, James L. (1999). Causal parameters and policy analysis in economcs: A

twentieth century retrospective. Tech. rep. National Bureau of Economic Research.
Hicks, John Richard (1979). Causality in economics. Basic Books New York.
Ivey, Thomas A. and J. M. Landsberg (2003). “Cartan for beginners”. In: Graduate

Studies in Mathematics 61.
Kordos, J. and A. Kubiczek (1991). “Methodological Problems in the Household

Budget Surveys in Poland”. In: GUS, Warsaw.
Lichnerowicz, André (1987). Eléments de calcul tensoriel. Jacques Gabay.
Morgan, Frank (1998). Riemannian Geometry: A Beginners Guide. AK Peters/CRC

Press.
Mundlak, Yair (1978). “On the pooling of time series and cross section data”. In:

Econometrica: Journal of the Econometric Society, pp. 69–85.
Neary, J.P., Roberts, K.W.S., 1980, The Theory of Household Behaviour under

rationing, European Economic Review, 19, pp. 25-42.

26


	The Riemannian Geometry of consumption 
	Metric and tangent surfaces
	The Levy-Civita linear connection
	Computation of the Christoffel symbols
	Consequences

	The Riemannian curvature of the consumption space
	Endogenous prices
	The shadow price of a constraint
	Full price in the domestic production model
	Definition of full prices
	Empirical evidence

	Shadow Prices
	The time structure of cross-sections
	Rationale
	Substitution between cross-section variables in the time dimension
	Correction of cohort effects
	Defining a global time index over the whole space
	Empirical application: estimation of the Christoffel symbols along geodesics

	Appendices

