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Abstract

This article defines a synthetic time axis in the space of a set of vari-
ables which are observed in cross-section. Considering the relative position
of two individuals along this time dimension allows us to estimate dynamic
models and equations of geodesics on the surface using only cross-section
data. An instrumentation using this synthetic time axis is thus proved
to be efficient compared to usual instrumentation for dynamic models on
panel data. The linear element (i.e. a distance) of the Riemannian space
corresponding to this data set can be recovered by means of that synthetic
time, which allows to consider the intrinsic properties of that surface.

1 Theory
Considering households, one solution to estimate dynamic models on a cross-
section consists in taking into account the age of the family head or, for firms,
the number of years the firm has been active in the market as measuring the
passage of time in the survey. For instance, the past and future consumption of
some household h in a dynamic model (representing habit and addiction effects)
can be instrumented by the expenditures of similar households (by education,
location, family structure) one year younger or older in the survey.

One drawback is that age is correlated with cohort effects in cross-sections.
To correct this cohort effect, we use the fact that in theories such as the life
cycle, both the dependent variable and its determinants are related to the time
dimension. For instance, considering savings, income per unit of consumption
increases early in the life cycle, then falls as household size increases, and finally
increases to a constant level at the end of the life cycle, while the savings rate also
varies systematically over the life cycle. Therefore, income and age can substi-
tute locally as concerns their influence on savings. For example, a rich household
aged 35 may have the same saving behaviour as a poor household aged 50, so
that income compensates for age in determining savings. Similar relations as
those considered with the head’s age can be found for other household’s char-
acteristics (such as its demographic composition), so that a combination of all
may be more efficient to date each household on the time axis.
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1.1 Substitution between cross-section variables in the time
dimension

Suppose an agent h is characterised by a vector of socio-economic variables Zh =
zkh (some being time-invariant, noted Z ′, such as the highest diploma obtained,
some varying through time, including age, noted Z ′′), which influence some ex-
plained variable xh, for instance savings. Under appropriate hypotheses, max-
imising a utility function depending on x and other determinants of the agent’s
satisfaction, yields x as a function of individual characteristics and other eco-
nomic variables such as prices: xh = f(Zh,W ). In the space of the determi-
nants zk, a compensating substitution can be effected between two characteris-
tics to maintain the agent in the same savings position (whenever the derivatives
of x over these characteristics are non-zero). Whenever such compensation oc-
curs, it is as if, under the life cycle saving theory, the two households were at
the same point in their life cycle. Income therefore operates some transforma-
tion of the time axis such that, considering an individual h with characteristics
zkh (including age), we can define a hypothetical individual h′ with the same
characteristics as h, but lower relative income, so that h′ behaves (as concerns
savings) as if she were one year younger than h. More generally, as long as the
Hessian matrix for f is regular, a combination of some of the variables zk may
define a hypothetical time dimension in the cross-section, along which dynamic
relations and causality can be defined1. This time axis can be interpreted as a
life cycle dimension, the position on this axis depending not only on age, but
on all variables which influence savings, such as income, education or family
structure.

Consider the (K + 1) linear space where the vertical axis corresponds to
this time dimension τ and other axes correspond to characteristics zk (all other
determinants W being fixed). Consider now the plane Πτ0 intersecting the time
axis at τ0. An isoquant is associated with this time position, since τ corresponds
to the age of the typical agent (at point A0). The isoquant is defined by the
substitution between characteristics zk such that x is constant along it. The
ratios of the derivatives of f over zk and age measure substitution between
the agent’s age and other characteristics so that synthetic time remains equal
to τ0. The isoquants along the time axis sum up into a cone in (time, Z)-space
(this cone depends also on variables W , supposed to be fixed). Each isoquant,
corresponding to a definite level on the vertical axis, can be projected onto
a plane of characteristics Z, including age, defined by a time position τ0 (see
Figure 1). For some level of all characteristics except age, the age differs for
these different isoquants, so that they do not intersect. On the plane Πτ0 , the
projected isoquants corresponding to higher τ are posited at higher levels of
age and all characteristics positively related to age (i. e. such that the marginal
substitution rate between the two, ∂x/∂zk

∂x/∂age , is negative).
To make it clear, suppose that a household h = 1 is posited at point τ1 of the

1If the relationship between the K variables zk and time is linear, it defines a hyperplane
of dimension K. A non-linear continuous relation would define a differential manifold.

2



I(τi): isoquant corresponding to synthetic period τi.

Figure 1: Substitution between individual characteristics and time

time axis, which corresponds to its life cycle position. This point pertains to the
isoquant I(Zh) = I1 defined by the constant life-cycle position: τ = τ1, so that
the gradient of I1 is equal to the substitution rate between the characteristics.
Suppose that another agent h = 2 is posited at pointM2 for a life cycle position
τ = τ2 on the plane corresponding to τ2, which differs by k units of time on
the life cycle axis (τ2 = τ1 + k). M2 is on the isoquant I(Zh) = I2. Projecting
M1 and M2 on points m1 and m2 in the characteristics plane corresponding
to some time τ0, m1 and m2 are on distinct isoquants2 (as long as τ2 6= τ1).
The line between points m1 and m2 intersects with the intermediate isoquant
corresponding to time τ = τ1+1 at a pointm which indicates the best prediction
of the future position of household 1 (compared to agent 2) or the past position
of household 2, (k − 1) periods before (compared to agent 1)3. The calculated
position of household h one period later or before depends on the agent h′
who is compared to h. This predicted position will be used as a proxy for
agent h one year before or later. This instrumented value for f(Zh,τ−1) plays
the same role as the instruments for past values of the endogenous variable

2Which are the projections of the isoquants on the cone corresponding to τ1 and τ2.
3Such a construction does not suppose that time on the life cycle axis is a linear function

of the (z1, z2), which may require additional hypotheses to estimate position m, such as:
the number of periods on the life cycle axis between two vectors of characteristics (z1, z2)
and (z1, z′2) on the characteristics plane is a linear function of the difference between the two
characteristics vectors.
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when estimating dynamic models4. Suppose that agent h’s level of saving xh =
f(Zh, Uh) depends on variables zkh. The change in characteristics Z = Zh − Z ′h
between two cohorts corresponding to points mh and m′h, leads to a first-order
change in saving of

∑
k
∂f
∂zk

zk = Zβ, with βk = ∂f
∂zk

. Thus, the point on isoquant
I(τh + 1) which is paired with household h on isoquant I(τh) can be taken on
the line passing through Mh with a direction defined by the βk (which is Omh

only if βki
βkj

= zki(h)
zkj(h)

, for all ki, kj).
To define the agent who is paired with h, we first have to define the changes

in characteristics Z between ages τh and τh+1. These can be estimated in cross-
section data between the averages of each variable for different cohorts in the
survey (whenever there is no cohort effect with respect to these characteristics).
The calibration of the coefficients βk must correct for any cohort effect occurring
between the comparing two agents aged τh and τh+ 1 in the same cross-section.
Considering the variable zk, we first estimate βk in the cross-section (βc.s.,
computed between similar agents aged τh and τh+ 1 in the same survey) and in
time-series (βt.s., for the individual in the same cohort aged τh in the first wave
and τh + 1 in the second). The generation effect is thus β = βc.s. − βt.s., as a
change in zk over time changes x by βt.s.

k zk as opposed to the estimated cross-
section effect βc.s.

k zk. Taking the example of income, the estimated coefficient
in a cross-section regression reveals the correlation between savings and the
individual’s relative income (i. e. their position in the distribution of income at
the time of the survey), controlling for their age, education etc. However, age
at the time of the survey may be correlated with relative income, giving rise to
the usual bias in the estimated coefficients.

To define the agent who can be paired with h, we first have to define the
changes in characteristics Z between ages τh and τh + 1. These can be esti-
mated in cross-section data between the averages of each variable for different
cohorts in the survey (whenever there is no cohort effect with respect to these
characteristics). The calibration of the coefficients βk must correct for any co-
hort effect occurring between the comparing two agents aged τh and τh + 1 in
the same cross-section. Considering the variable zk, we first estimate βk in the
cross-section (βc.s., computed between similar agents aged τh and τh + 1 in the
same survey) and in time-series (βt.s., for the individual in the same cohort
aged τh in the first wave and τh+1 in the second). The generation effect is thus
β = βc.s. − βt.s., as a change in zk over time changes x by βt.s.

k zk as opposed
to the estimated cross-section effect βc.s.

k zk. Taking the example of income, the
estimated coefficient in a cross-section regression reveals the correlation between
savings and the individual’s relative income (i. e. their position in the distribu-
tion of income at the time of the survey), controlling for their age, education

4Other definitions are possible: for instance, the closer point on I
(
Z(h)

)
if the isoquant

curve is known. The position of some household h one year later may also be defined projecting
it (in the space of characteristics Z) on the point on the isoquant of its synthetic age plus one,
using the ray Omh to define its future position in the next period as the intersection between
the isoquant of period (τh + 1) and Omh. This supposes that the change in all characteristics
between two age groups is homothetic.
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Z: vector of individual characteristics
xt0 (Zj , age = a): observation at t0 of the saving rate for agents characterized by Zj , aged a,
as observed in the panel
x(Zj): observation in the survey for individuals with characteristics Zj

CE: Cohort Effect
DZβc.s.: change in the saving rate due to change Z in the explanatory variables

Figure 2: Survey and panel observations over the life cycle

etc. However, age at the time of the survey may be correlated with relative
income, giving rise to the usual bias in the estimated coefficients.

1.2 Correction of cohort effects
The first method consists in defining, for each agent h in a cohort Ch, an
agent S(h) in the same survey with the same observed permanent characteris-
tics Z ′ but one year younger. We then correct for the generation effect associated
with these characteristics by computing for each variable of interest x its esti-
mated value for an agent in the same cohort Ch, i. e. having characteristics Zh
in the previous year. Suppose that savings x depend on variables Z, so that, as
a first-order approximation:

1. between two periods for individual h: x(Zh,t) − x(Zh,t−1) = (Zh,t −
Zh,t−1)βt.s. + εh,t − εh,t−1;

2. between S(h) and h in period t: x(Zh,t)−x(S(Zh,t)) = (Zh,t−ZS(h),t)β
c.s.+

εh,t − εS(h),t.

Now suppose that Zh,t−1 is equal to ZS(h),t. In order to compare saving by
the similar individual S(h) in t to saving by h in (t + 1) we correct using the
following formula, where the residuals are set to zero:

E
(
x(Zh,t−1)

)
= x(ZS(h),t) + (ZS(h),t − Zh,t)(βt.s. − βc.s.) (1)
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The coefficients βt.s. can be estimated on aggregate time-series or on a panel
or pseudo-panel containing at least two periods. ZS(h),t can be computed as
the average on households having the same permanent characteristics as house-
hold h.

1.3 Synthetic time
A second method consists in estimating the distance on the time axis between h
and each other household of the survey and pairing h with another household or
the average of all households distant by one period. The simplest way to define
the time distance between two households relies on their age, but this implies,
as noted above, cohort effects.

Consider the cross-section difference in some variable x between two house-
holds, h and h′. This is related to the change of the vector of all the explanatory
variables zk by the cross-section estimates of the parameters β, and also (through
the time-series estimate of β) to their variations between the two positions of
agents h and h′ on the synthetic time axis:

x(Zh′,t)− x(Zh,t) = (Zh′,t − Zh,t)βc.s. + εh′ − εh = Zh,tβ
t.s. + ε,

where Zt = Z1(τh′ − τh), Z1 being the change in explanatory variables for one
period over the line defined by Z(h) and Z(h′) in the K-dimensional space5.
This allows us to compute the difference in the positions of h and h′ on the time
axis:

τhh′ = τh′ − τh =
∆c.s.Zβ

c.s.

Z1βt.s. (2)

with ∆c.s.Z = Zh′ − Zh.
As Z1β

t.s. is a first-order measure of the variation in x over one period,
∆c.s.Zβ

t.s.

Z1βt.s. measures the time τ ′ necessary to change x from f(Z) to f(Z +

∆c.sZ). The difference (τ−τ ′) indicates the additional time for the cross-section
comparison between agents differing by ∆c.s.Z, corresponding to the effect of all
non-monetary resources (information, time budget etc.) and constraints (such
as the liquidity constraints correlated with Z in cross-sections) which are, in
the cross-section dimension, related to this difference in characteristics. This
may also be interpreted as the influence of the change in the shadow prices πv
corresponding to these resources and constraints: (τ − τ ′) = ep∆π

v with ep the
vector of direct and cross-price propensities. So the distortion of the synthetic
price axis depends on the price effect related to the positions of agents in the
characteristics space6.

5Z1 can be calibrated on aggregate time-series or between averages of reference populations
using two surveys. For instance, income growth can be calibrated over the whole population
(on aggregate time series) or between two surveys for some sub-population. For age, ln age =
ln

ageh
ageh−1

. For the proportion of children in the family, one can calculate pr = pr(ageh) −
pr(ageh − 1) + p̄, with the first term computed on the cross-section and the second p̄ is the
average variation between t and (t− 1) and is computed over the whole population or for the
household’s reference population.

6Note that equation (??) can be interpreted along the same lines.
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Formula (1) shows corrected savings for a similar agent observed in the same
survey, while formula (2) allows us to calculate (under a hypothesis defining
Z1) the movement on the time axis between the two agents and to pair agents
according to their time position, for instance such that τhh′ = 17.

The time scale is independent of agents h and h′ who are being compared:
first, the time lag τh,h′ is symmetric, as is clear from the symmetry of ∆c.s.Z in
formula (2). Second, it is additive: τh,h′′ = τh,h′ + τh′,h′′—as is also clear from
the linearity of (2). These properties are sufficient to define uniquely a time
scale up to the choice of the origin.

Suppose for example that only the age of the head changes between two
periods or two households, with the same coefficient in the two dimensions:
βc.s.

age = βt.s.
age. In this case, E(τhh′) = ∆(Zh′−Zh)

Z1
= ageh′ − ageh. If βc.s.

age > βt.s.
age,

the cohort effect is positive and the difference between h and h′ on the time axis
is greater than their age difference because of this cohort effect. The effect of a
difference in income between two households on the time axis can be analysed
similarly. For example, for food at home and considering only income elasticities
(which can, for Poland, be calibrated at 0.5 in cross-sections and 0.8 in time-
series, see gardes and Starzec, 2002), τ = 6 years when comparing h aged 30
with income yh and other characteristics Z ′h and household h′ aged 30 with
income yh′ = 2yh and the same characteristics: τhh′ = −0.1∆c.s.y

−0.25g (we suppose
that income increases by g = 5% each year at this age). Thus, the time distance
between households increases when g decreases, because it will take longer for h
to attain the income position of h′. Note that, due to the correction by the cross-
section and time series elasticities, 6 years is less than the ratio 14 necessary
to double income with an increase of 5% per year (i. e. for the same income
elasticity on cross-section and time-series).

The synthetic time scale depends on the endogenous variable being anal-
ysed. Nevertheless, we can imagine relationships between the time scales corre-
sponding to different expenditures because of the additivity constraint. When
considering for instance different expenditures i = 1, . . . , n, with coefficients
βi estimated under the additivity constraint, one obtains from equation (??)
if only zk changes or if all variables change proportionally: Z1

∑
i β

t.s.
i τi =

∆c.s.Z
∑
i β

c.s.
i = 0

∑
i β

t.s.
i τi = 0, so that for n = 2: β1 = −β2τ1 = τ2, and for

n = 3: τ3 = τ1
β1

β1+β2
+ τ2

β2

β1+β2
.

Finally, the first method can be applied to all similar agents aged one year less
than household h, correcting the cohort effect by (1), then estimating a dynamic
model by instrumenting past values of the variable to which (1) applies, either
by the average corrected x for similar agents or by one of the set of similar
agents chosen by minimising some distance.

The second method consists in estimating the time distance between agents,
thus pairing agent h with some h′ (or all h′) at unit time distance. A dynamic
relation can also be estimated over all agents ordered along the synthetic time
dimension (with appropriate modelling of the partial adjustment according to
the time distance between two consecutive agents).

7These pairings may be compared to simple pairing by age.
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1.4 Defining a global time index over the whole space
As the cross-section and time-series propensities change from one point to an-
other over the consumption space, the time index defined by equation (2) is in
fact attached to a particular point or to a sub-space where the propensities are
constant. It is thus necessary to examine how the point-time measures can be
joined together over the whole space or a sub-set of the space. A natural idea
consists in associating the time indices along a continuous curve corresponding
to a geodesic, since in a Riemannian space, metrics can be continuously associ-
ated along each continuous curve in the space: in this way, each situation can
be time related to those which correspond to other periods in the agent’s life
cycle. This is left for future work.

2 Empirical application:

2.1 Synthetic time
The synthetic time is estimated for 3052 households surveyed in the four years
Polish panel (1997-2007). Its span covers 105 years in 1997 (respectively 84,
94 and 96 for years 1998, 1999 and 2000) with a standard error of the loga-
rithm (measuring the inequality of this time variable between households) equal
to 0.295 (compared to 0.466 for income per UC). This standard error can be
interpreted as a social distance between households. It increases sharply for
households the head of which is older than 40 (0.172 and 0.199 before 30 and
between 31 and 40; .32 to .33 after 40, while income per UC stay at the same
level of inequality within the same age groups. It decreases from 0.34 to 0.25
beween the first and the last quartiles of the income per UC distribution.

2.2 Estimation of dynamic models on cross-sections
\section{Empirical applications} \label{sec:empirical}

In this section, we use formula~\eqref{eq:expected} to correct for cohort ef-
fects between households pertaining to different generations and estimate a dy-
namic model on the Polish panel (1997-2000). Then, the equations of geodesics
defined in Gardes (2018) are estimated along the synthetic time defined over
the same data set.

\subsection{Estimating addiction effects on cross-sections} \label{sec:addiction}
In the simple version of the Becker—Murphy model, the consumer is sup-

posed to maximise the present value of her inter-temporal additive utility Σtβ
t−1U(Ct, Ct−1, Yt, et)

under the inter-temporal budget constraint
∑
t β

t−1(Yt + PtCt) = A0 with
C fixed at t = 0. This yields, for quadratic utility, a dependency of cur-
rent expenditures on past and future consumption, as well as on current prices
and current and future values of the variables et entering directly in the util-
ity function (and not through their effects on current consumption) [p. 89,
eq. 5.4]becker1996:

Ct = θCt−1 + βθCt+1 + θ1Pt + θ2et + θ3et+1 + ut.

8



In this specification, past and future expenditures must be instrumented
(because of the autocorrelation of the residual). The instruments used (past
income and prices) are typically very inefficient in applications on aggregate
time-series. With individual-level data, three waves are required to estimate
the reduced equation, with the usual difficulties for estimating dynamic models
on panel data. In previous estimations, either on aggregate or individual data,
an important parameter: the inter-temporal substitution rate is poorly esti-
mated, with highly implausible values (such as 300% per year for Chalupka’s
1998 estimation on individual data).

We have proposed gardes2002evidence the use of a new type of instrumen-
tation, considering the next or previous cohorts defined by the same permanent
characteristics as h, H−h,t and H

+
h,t, to individual h observed in the same period t

(i. e. all households with the head one year younger or older than h). Agent h’s
past and future expenditures Ch,t−1 and Ch,t+1 are instrumented by the average
expenditures at t of H−h,t and H

+
h,t:

Et(Ch,t−1) =
∑

h′∈H−h,t

1

H−h,t
Ch′,t

with the same holding for future consumption. We then correct for the genera-
tion effect associated with these characteristics by means of equation eq:mainfull8.

This estimation is carried out on Polish panel data for tobacco expenditures
(see the Appendix 2.3 for a description of the data-set, and gardes2002evidence,
for details of the estimation strategy). The first classic instrumentation uses
past, present and future prices (Ia) eventually combined with household in-
come (Ib), and is estimated on the first differences to cancel out the individual
fixed effects. No selection bias appears. The coefficients (Table ??) of past and
future tobacco expenditures are positive and very significant, as rational addic-
tion would imply. On the contrary, the rate of time preference β is the same for
estimations in levels and first differences.

The second instrumentation based on cohorts observed in the same year and
corresponding to the household (aged one year less or more), gives similar but
much more precise results. The implied yearly rate of time preference β is around
32%. This is a very encouraging result, as this instrumentation allows us to
estimate dynamic models on cross-sections without any retrospective questions
(often imprecisely recorded, as shown for instance in PSID data).

8This correction amounts to 8% of expenditures.
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TS TS CS CS
Total Expenditure per UC 0.137 0.107 0.053 0.049

s.e. 0.008 0.007 0.019 0.019
Past Food Expenditure 0.742 0.428 0.476 0.311

s.e. 0.008 0.010 0.035 0.040
Future Food Expenditure - 0.451 - 0.321

s.e. - 0.017 - 0.015
N 6095 6095 2811 2811
R2 0.645 0.734 0.068 0.090

Table 1: Dynamic model of food consumption (logarithmic speci-
fication)

TS: estimation on 1998 and 1999 surveys, past and future expenditures ob-
served in 1997 and 2000 for the same household

CS: estimation for 1997 survey, Cohort instrumentation of past and future
expenditures

2.3 Estimation of the Christoffel symbols along geodesics
In this section, I use formula (1) to correct for cohort effects between households
pertaining to different generations and estimate the equations of geodesics.

Consider the curve in the consumption space of different positions of a house-
hold in his life cycle (as indicated by the curves xτ0(zk) in Figure 2). We can
identify this curve with a geodesic between its extreme points, as the household
is supposed to maximize its satisfaction over the life cycle. Indeed, this maxi-
mization is made under all the constraints which apply to the household at each
period of its life cycle, and considering both the monetary and the non-monetary
resources of the household. These constraints and non-monetary resources are
represented by the shadow prices on each point of this geodesic. Therefore, op-
timizing its behaviour under these constraints defines the optimal path as the
geodesic over the life cycle of the household.

A typical household can be defined by a set of characteristics, some of which
are permanent and other change according to the normal evolution along the
life cycle. On a survey, the different positions of such a typical household can
be observed as the average of all households at each point of the life cycle path.
Between two period along this life cycle path, the changes in the bundle of goods
are biased by generation effects, which can be removed by the formula which
relates these two types of partial derivatives: ∇kvi = ∂kv

i+ Γikhv
h whenever we

have some information on the cross-section and time-series consumption laws.
If we estimate on a single survey, we do not have information on time-series
parameters, but we can estimate the Christoffel symbols Γikh using the equation
of geodesics:

d2vi

dt2 + Γikh
dvh

dt
dvk

dt (3)
with vi equal to the budget share and h logarithmic total expenditure per

Unit of Consumption and logarithmic number of U.C.
Thus, compute time-series estimates of the derivatives ∂gij

∂vk
using the cross-
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section estimates of the covariant derivatives and the equation which relates
these two types of partial derivatives: ∇kvi = ∂kv

i + Γikhv
h. A convergence

process on the Γikh thus allows to compute the time derivatives ∂kvi, knowing the
cross-section derivatives and using the geometric properties of the consumption
space described by the Christoffel symbols.

The derivatives v
k

t can be estimated between two close pointsM andM+M
if an index of time is defined between these points. Suppose the difference on
the time scale discussed in Section ?? between pointsM0, M1 andM2 are noted
∆τ(M0,M1) = ∆τ1 and ∆τ(M0,M2) = ∆τ2. The time index being additive,
we have: ∆τ(M0,Mi) + ∆τ(Mi,M

′
i) = ∆τ(M0,M

′
i), j ∈ {1; 2}. So, with

vj = v(Mj) and v′j = v(M ′j),

v′2 − v1

∆τ(M1,M ′2)
− v2 − v0

∆τ(M0,M ′2)
and

v′1 − v2

∆τ(M2,M ′1)
− v1 − v0

∆τ(M0,M ′1)

are discrete measures of
2vi

t2 which can be used to estimate Γikh in equation (??)9.
Households are grouped by age classes of two years in the 1990 Polish sur-

vey. Each cell contains 140 households on average. The series of these 25 cells
are considered as describing a geodesic for the average Polish household. The
derivatives v

k

t and the acceleration
2vk

t2 are computed between consecutive points
on the average geodesic, which allows to estimate the system of equations (??).
The cross-section income elasticities for Food at home expenditures and other
expenditures are thus corrected using the estimated Γikh, and compared to time-
series parameters computed on the four years panel.

For food at home, which represents one half of total expenditures, the in-
dices T1 (calculated for all variables) and T123 (calculated only for the term
corresponding to the product of income and family size) have the same sign as
the difference between the cross-section and time-series elasticities (Table ??).
Their magnitude is similar to this difference, which is curious as this differ-
ence must be compared to T1

w and T123
w , with w the average budget share. For

the other expenditures, there is a strong correlation between the difference of
the elasticities and the indices, specially index T1: for five items over seven
(for which the difference between the elasticities is significant) the signs are the
same, and the two expenditures with different sign are Food away (an expendi-
ture which is very particular in Poland) and alcohol and tobacco expenditures
(which are not well measured in households surveys). Moreover, the order of
the eleven expenditures according to the difference between the elasticities is
very similar to the order according to the index T1: the average difference of
the rank is 1.24, compared to a random difference which would be 3.75. The
average levels of T1 and the elasticity difference are also similar (and for six
cases, the elasticity difference is very close to T1), which is not expected since
the elasticity difference corresponds to the ratio of T1 and the budget shares.

Considering only food at home and all other expenditures, Table 2.3 shows
9Note that this method also uses the true time dimension (between periods), as the time

structure of cross-section is defined according to the true time gradient of variables vk.
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Ec.s. − Et.s. T1 1st CF T123 2nd CF Sign (1)
(2)

Sign (1)
(3)

Food at Home −0.35 −0.55 −1.135 −0.241 −0.498 Yes Yes
Food Away (+0.11) −0.026 −6.5 0.111 27.765 No Yes
Alcohol-Tobacco 0.42 −0.049 −1.55 0.123 3.878 No Yes
Housing (+0.06) −0.24 −2.44 0.477 4.851 No Yes
Energy −0.58 −0.112 −2.82 -0.095 −2.389 Yes Yes
Clothing (+0.01) −0.071 −0.76 0.112 1.194 No Yes
Transportation 0.97 1.211 18.69 0.427 6.594 Yes Yes
Health (−0.07) −0.144 −5.48 0.029 1.099 Yes No
Culture 0.35 0.518 6.82 −0.307 −4.046 Yes No
Various expend. (+0.20) 0.044 1.41 0.066 2.120 Yes Yes
Financial Goods 0.74 1.006 19.88 −1.034 −20.425 Yes No

Estimation on the Polish Panel, 1987–1989.
Between parentheses: difference between elasticities is not well estimated
T1 = Γi

khv
h with i budget share, k logarithmic total expenditure and h logarithmic total

expenditure per Unit of Consumption and logarithmic number of U.C. and the budget share.
T123 = Γi

khv
h with i budget share, k logarithmic total expenditure and h logarithmic number

of U.C.

Table 1: Income Elasticities and Correction Factors

that the corrected (by T123) cross-section elasticity are close to those which have
been estimated on the panel.

Cross-section Correction Corrected Time-series
elasticity* factor** elasticity elasticity*

Food at Home 0.451 0.498 0.949 0.805
[-0.5ex] (...) (0.079) (...) (...)
Other expenditures 1.475 −0.47 1.005 1.169
[-0.5ex] (0...) (0.079) (...) (...)

Population: Households with head aged more than 20, with positive expenditure on food at
home for all four years.
Surveys: * four waves of the 1987–1990 Polish panel (3,630 households): Between and Within
estimations (instrumented total expenditures). ** 1990 survey.
Equation of the geodesic:

2vi

t2
+ Γi

kh
vh

t
vk

t
= 0, with vi budget share and h logarithmic total

expenditure per Unit of Consumption and logarithmic number of U.C.
Correction of cross-section parameters: Ec.s. − Γi

khv
h, with h total expenditures.

Table 2: Cross-section and time-series income elasticities

Finally, the estimation of geodesics along the life-cycle, although it has been
performed very roughly, has allowed to classify the expenditures according to the
endogeneity bias, and to predict the sign of this bias, using only the information
given by one survey. For expenditures characterized by high values of this bias
(very different cross-section and time-series parameters), the magnitude of the
bias is close to the index T1. Therefore, the estimation of the Christoffel symbols
along an average geodesic on one survey gives an information on the difference
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between cross-section and time-series food consumption laws and may allow to
estimate unbiased parameters using only one survey.

Another application of the instrumentation of past and future was made
(Collet, Gardes and Starzec, 2014) for the estimation of habit and addiction
effects for tobacco, alcohol and transport expenditures in the Becker-Murphy
farmework. This model conclude to a reduced equation where present con-
sumtion depends on past and future expenditures, which must be instrumented
(because of the autocorrelation of the residual). The instruments used (past val-
ues income and prices) are typically very inefficient in applications on aggregate
time-series. With individual-level data, three waves are required to estimate
the reduced equation, with the usual difficulties for estimating dynamic models
on panel data. In previous estimations, either on aggregate or individual data,
an important parameter: the inter-temporal substitution rate is poorly esti-
mated, with highly implausible values (such as 300% per year for Chalupka’s
1998 estimation on individual data). Instruments for these variables correspond
to the values for the next or previous cohorts defined by the same permanent
characteristics as the observed household, correcting for the generation effect
associated with these characteristics by means of equation 10. The coefficients
of past and future tobacco expenditures are positive and very significant, as
rational addiction would imply. Moreover, the implied yearly rate of time pref-
erence β is around 32%, which is a very encouraging result compared to the
results in the litterature.

Conclusion
We have shown that the substitution between time and the socio-economic de-
terminants of household behaviour makes it possible to estimate dynamic models
on cross-sectional individual data. The position of individuals on the synthetic
time axis also provides a natural distance between them, which can be related
to the differences which are observed between their expenditure patterns. The
linear element corresponding to that distance allows to estimate the curvature
of the Riemaniann surface using the Riemann-Christoffel tensor of curvature
empirically estimated in Gardes (2018) by means of the definition of the scalar
curvature corresponding to a contraction of the Ricci tensor: R = gijRij(gij be-
ing the inverse matrix of the metric gij). It also provides a natural parametric
representation of the surface corresponding to the virtual move of households
on the surface.

Appendix A: The Polish Data (1997-2000)
Household budget surveys have been conducted in Poland for many years. In the
period analysed, the annual total sample size was about 30 thousand households,
which represent approximately 0.3% of all households in Poland. The data

10This correction amounts to 8% of expenditures.
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were collected by a rotation method on a quarterly basis. The master sample
consists of households and persons living in randomly selected dwellings. This
was generated by a two-stage, and in the second stage, two-phase sampling
procedure. The full description of the master sample generating procedure is
given by Kordos and Kubiczek (1991).

On every annual sample it is possible to identify households participating in
the surveys during four consecutive years. For the four years panel from 1997
to 2000, 3052 households remain in the data set after deleting a few number of
households with missing values. The available information is as detailed as in
the cross-section surveys: the usual socio-economic characteristics of households
and individuals, as well as information on income and expenditures. A large
part of this panel containing demographic and income variables is included in
the comparable international data base of panels in the framework of the PACO
project (Luxembourg) and is publicly available. The four surveys from 1997
to 2000 have been matched with the 2000 Time use Polish survey by Rubin’s
method, which assigns an adult observed in the Time use survey to each adult
of a household. The usual matching method by regression has two shortcom-
ings: the reduction of the variance of the imputed values and the conditional
independency assumption of the variable which are imputed with those which
are observed in the dataset. Both problems can be solved to a great extent by
the statistical matching procedure proposed by Rubin (1986). This procedure
allows its user to assume a partial correlation value between the two variables
that are jointly unobserved. This method conserves the individual distribution
of the matched times and from this point of view is better than the usual regres-
sion method which diminishes drastically the variance of the matched variables
compared to their distribution in the survey where they are observed. The
matching procedure is discussed in Alpman (2016), Alpman and Gardes (2015)
and Alpman, Gardes and Thiombiano (2017).

The 1997-2000 panel corresponds to the post transition high economic growth
period with relatively low inflation, decreasing unemployment and generally
improved socio-economic situation in the context of almost totally liberalized
economy.

Appendix B: Estimation of the opportunity cost
of time
To estimate the shadow price of time, I assume (Gardes, 2017) that the consumer
combines time with monetary expenditures to produce activities that generate
utility in a model where the market work time is valued by the consumer’s wage
rate while the remaining time (e.g., time allocated to leisure or non-market
work) is valued by the shadow price of time that may differ from the wage rate.
It is assumed that the consumer’s utility function is given by u(Q) = Q i aiQ
i i where ai is a positive parameter and Qi is the quantity of the activity i
produced by the combination of monetary and time inputs denoted mi and ti,
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respectively: Qi = bimαi
i tβii where mi = xipi with xi the quantity of the market

goods i, pi its price, and bi a positive parameter. The domestic production Q
is assumed to depend on expenditures mi (rather than quantities xi) because
the dataset informs only expenditures. This approach yields consistent results
when all households face the same prices.Expenditures are divided by a yearly
price index and the regressions include State and year dummies.

The choice of the Cobb-Douglas forms allows the parameters to be iden-
tiable. Note that the estimation is made locally, either over sub-population or
locally, for each household, using a non-parametric method similar to the Lowess
estimator. The Cobb-Douglas specification implies simply constant substitution
between time and monetary resources only in the neighborhood of each indi-
vidual’s equilibrium point. Combining the utility and the production functions
allows to write the utility in terms of inputs:

u(m, t) = (
∏
i a
γi
i b

γi
i )(
∏
im

αiγi∑
αiγi

i )
∑
αiγi(

∏
i t

βiγi∑
βiγi

i )
∑
βiγi = Am

′∑αiγit′
∑
βiγi

where m
′
and m

′
are geometric weighted means of the monetary and time

inputs and A =
∏
aγii b

γi
i . In this framework, the consumer is subject to an

income constraint, Σmi = wtw + V , and to a time constraint, Σti + tw = T ,
where tw is the time allocated to market work, V is other income and Y and T
total income and available time (excluding sleeping time which is not included
in the time uses ti). Utility maximization implies that the shadow price of time,

denoted ω, is given by ω =
∂u

∂t
′

∂t
′

∂(Σti)

∂u

∂m
′
∂m
′

∂Y

=
m
′
Σβiγi

∂t
′

∂(Σti)

t′Σαiγi
∂m
′

∂Y

(A1). The shadow price

of time differs from the market wage rate when, for instance, there exists some
market imperfections, transaction costs, and constraints on the labor market
or in the home sector. The shadow price of time can be estimated provided
that estimates of αi, βi and γi are available. Under the assumed functional
forms, the optimal combination of the inputs yields αiand βi: αi = mi

ωti+mi
and

βi = ωti
ωti+mi

. The optimal allocation of an input across the activities i and j
implies:

γi
γj

=
βjti
βitj

=
ajmi
aimj

and the system of (n − 1) equations: miγj = mjγi +

ωγitj − ωγjti which allow to estimate an average opportunitry cost of time
ωand all parameters γ.

This system is overidentied and the unknown parameters, that is, ω and
each γi, can be estimated as a system of (n− 1) equations under the constraint∑
i γi = 1. Using the shadow price of time estimated from the system, we obtain

the estimates of αi and βi for each individual using equation (4) that allow to
derive estimates of the shadow price of time at the individual level by equation
(A1).

15



Appendix C: Full prices in a Becker’s domestic
production framwork

Full prices under substitutability assumption
Following Gronau (1977) , the full expenditure can be written as the sum of its
monetary and time components:

π1
i zi = pixi + ωti

with ÏĂ and p the full and the monetary prices corresponding to the quan-
tities z and x of the activity and of the corresponding market good, for activity
i (note that prices and the opportunity cost of time depend on household and
time, which indices are removed).

The full price is the derivative of the full expenditure over z, which writes
for the Cobb-Douglas specification of the domestic production functions:

pf1
i = pi

∂xi
∂zi

+ ω ∂ti∂zi

The optimization program gives rise to the first order condition: t1
x1

= p1

ω
β1

α1

(note that all variables, including Îś and Îš, are measured or estimated at the
household level). Writing the quantity of the activity zi in terms, either of t or
x, gives:

ti = 1
ai
zi(

piβi
αi

)αiand xi = 1
ai
zi(

ωαi
piβi

)βi

So that the full price becomes:

pf1

i = 1
ai
pαii ω

βi

{(
βi
αi

)αi
+
(
αi
βi

)βi}
This derivation of ÏĽ,Îś and Îš at the individual level allows identifying the

full price for each household (ai being supposed constant across the population).

Full prices under complementarity assumption
BeckerâĂŹs full price for one unit of activity i can be written: ppf2

i = pi + ωτi
with τ i the time use necessary to produce one unit of the activity i. Suppose
(as in BeckerâĂŹs model) that a Leontief technology allows the quantities of
the two factors to be proportional to the activity:

xi = ξizi and ti = τiziwith τi= θi
ξi

This case corresponds to an assumption of complementarity between the two
factors in the domestic technology, which allows calculating a proxy for the full
price of activity i by the ratio of full expenditure over its monetary component:

πi = (pi+ωτi)xi
pixi

= pi+ωτi
pi = 1 + ωτi

pi = 1
pi
pf2

i

Note that under the assumption of a common monetary price pi for all house-
holds in a survey made in period t, this ratio contains all the information on
the differences of full prices between households deriving from their opportunity
cost for time ÏĽ_h and the home production technology represented by the coef-
ficient of production ÏĎ_i. If the monetary price p changes between households
or periods, the full price can be computed as the product of this proxy πih with
pi: p

f2

i = piπi. With these definitions, it is possible to measure the full prices,
observing only monetary and full expenditures.
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The first definition of prices corresponds to a complete substitution between
the two factors in the model (which is used in section 1 to estimate the oppor-
tunity cost of time), since the Cobb-Douglas domestic production functions are
characterized by a unitary elasticity of substitution between the two factors. Its
relies on the estimation of three parameters: Îś,Îš and ÏĽ. On the other hand,
the second definition supposes no substitution between the two domestic pro-
duction factors but it may give a more robust measure of the full prices since it
depends only on the estimation of the householdsâĂŹ opportunity cost for time
ÏĽ. Both definitions of the full prices will be used in the estimation. However,
there exists a simple relation between these two definitions of the full prices.
Using equations (9) we obtain:

pf1

i = 1
ai
pαii

(
mi
ωhtti

)βi {
1 + ωti

pi

}
So that their logarithmic transforms differ only by Îš_i logâĄąãĂŰm_i/t_i

ãĂŮ on a cross-section:
log(pf1

i ) = constant+ βilog(miti ) + log(πi) with prices pi set to one.
Two hypotheses were necessary to derive full prices from monetary and time

expenditures: first, the domestic production functions are supposed to be Leon-
tief functions with constant production coefficients (for BeckerâĂŹs prices) or
Cobb-Douglas functions (for GronauâĂŹs prices); second no joint production
exists, which may be more easily verified for broad categories of activities such
as housing and food.
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