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Abstract

The basic assumption of a structural vector autoregressive moving-average (SVARMA) model
is that it is driven by a white noise whose components are independent and can be interpreted
as economic shocks, called “structural” shocks. When the errors are Gaussian, independence
is equivalent to non-correlation and these models face two identification issues. The first iden-
tification problem is “static” and is due to the fact that there is an infinite number of linear
transformations of a given random vector making its components uncorrelated. The second
identification problem is “dynamic” and is a consequence of the fact that, even if a SVARMA
admits a non invertible moving average (MA) matrix polynomial, it may feature the same
second-order dynamic properties as a VARMA process in which the MA matrix polynomials
are invertible (the fundamental representation). Moreover the standard Box-Jenkins approach
[Box and Jenkins (1970)] automatically estimates the fundamental representation and, there-
fore, may lead to misspecified Impulse Response Functions. The aim of this paper is to explain
that these difficulties are mainly due to the Gaussian assumption, and that both identification
challenges are solved in a non-Gaussian framework. We develop new simple parametric and
semi-parametric estimation methods that accommodate non-fundamentalness in the moving
average dynamics. The functioning and performances of these methods are illustrated by ap-
plications conducted on both simulated and real data.
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Introduction

1 Introduction

The basic assumption of a structural VARMA model (SVARMA) is that it is driven by a white noise
whose components are independent and are interpreted as economic shocks, called “structural”
shocks. When the errors are Gaussian, independence is equivalent to non-correlation and these
models have to face two kinds of identification problems.

First the components of the white noise appearing in the reduced-form VARMA are instanta-
neously correlated and the shock vector must be derived from this white noise by a linear transfor-
mation eliminating these instantaneous correlations. The snag is that this can be done in an infinite
number of ways and, in the Gaussian case, all the resulting standardized shock vectors have the
same (standard Gaussian) distribution. There is a huge literature trying to solve this “static” iden-
tification issue by adding restrictions on the short-run impact of a shock (see e.g. Bernanke, 1986;
Sims, 1980, 1986, 1989; Rubio-Ramirez, Waggoner, and Zha, 2010), or on its long-run impact
(see e.g. Blanchard and Quah, 1989; Faust and Leeper, 1997; Erceg and Gust, 2005; Christiano,
Eichenbaum, and Vigfusson, 2006), as well as on the sign of some impulse response functions (see
e.g. Uhlig, 2005; Chari, Kehoe, and McGrattan, 2008; Mountford and Uhlig, 2009).

A second identification issue comes from the fact that a stationary SVARMA process may
feature a non-invertible moving average (MA) matrix lag polynomial, in the sense that it cannot be
inverted into a matrix lag series. This is the case when the determinant of the matrix lag polynomial
has some roots inside the unit circle. The latter situation, called non-fundamentalness, may occur
for many reasons, in particular when the SVARMA is deduced from business cycle models (see
e.g. Kydland and Prescott, 1982; Francis and Ramey, 2005; Gali and Rabanal, 2005), or from
log-linear approximations of Dynamic Stochastic General Equilibrium (DSGE) models involving
rational expectations or news shocks (see e.g. Hansen and Sargent, 1991; Smets and Wouters,
2003; Christiano, Eichenbaum, and Vigfusson, 2007; Leeper, Walker, and Yang, 2013; Sims, 2012;
Blanchard, L’Huillier, and Lorenzoni, 2013). A non-fundamental SVARMA process has exactly
the same second-order dynamic properties as another VARMA process with an invertible MA part
(the fundamental representation) and, in the Gaussian case, both processes are observationally
equivalent. This creates a dynamic identification problem, which is exacerbated by the fact that the
standard Box-Jenkins approach –the Gaussian Pseudo Maximum Likelihood method based on a
VAR approximation of the VARMA (Box and Jenkins, 1970)– provides automatically a consistent
estimation of the fundamental representation. Even though they can feature the exact same second-
order dynamic properties, a fundamental and a non-fundamental SVARMA entail different Impulse
Response Functions (IRFs). Using the Box-Jenkins approach may therefore lead to misspecified
IRFs (see Lippi and Reichlin, 1993, 1994).

The aim of this paper is to explain that these difficulties are due to the Gaussian assumption
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underlying the Box-Jenkins type approaches, and that these identification problems disappear in
a non-Gaussian framework. We also introduce parametric and semi-parametric estimation ap-
proaches that accommodate non-fundamentalness in the multivariate moving-average dynamics.

In Section 2, we consider a vector autoregressive moving average process, with roots of the
moving average polynomial that are not necessarily outside the unit circle. We stress that the
economic shocks are not necessarily interpretable in terms of causal linear innovations. We review
different examples of non-fundamental representations in the moving average dynamics given in
the literature. Next we discuss the identification issue in the Gaussian case and point out that
the standard Box-Jenkins approach based on Gaussian pseudo-likelihood suffers from the same
identification issues.

Section 3 is the core of the paper. We consider non-Gaussian SVARMA processes based on
serially and instantaneously independent shocks (see e.g. Brockwell and Davis, 1991; Rosenblatt,
2000, for an introduction to linear processes). We explain that, in this context, the standard static
and dynamic identification problems encountered in the Gaussian SVARMA analysis disappear;
we also discuss the identification of the structural shocks and of the Impulse Response Functions
(IRFs). In Section 4 we present new parametric and semi-parametric estimation methods to im-
prove upon the standard SVAR methodology. A key element is an algorithm aimed at estimating
the structural shocks from samples of endogenous variables; this procedure is shown to provide
consistent estimates of the shocks, irrespective of the moving-average fundamentalness regime.
The algorithm further makes it possible to compute truncated log-likelihood functions, opening
the door to Maximum Likelihood (ML) estimation. We also propose a consistent 2-step semi-
parametric approach that is less subject to the curse of dimensionality than the ML approach.

Applications are provided in Section 5. First, we conduct a Monte-Carlo analysis aimed at
illustrating the performances of our estimation approaches in the context of a univariate MA(1)
process. Second, the maximum likelihood estimation procedure is employed to estimate the pro-
cesses followed by GDP growth rates of different countries. Third, following Blanchard and Quah
(1989), Lippi and Reichlin (1993, 1994), we study the joint dynamics of U.S. GNP growth and
unemployment rates; our results suggest that the data call for non-fundamental bivariate VARMA
models. Section 6 concludes.

The special case of a one-dimensional MA(1) process is completely analysed in Appendix A.
Proofs are gathered in Appendix B. Appendix C provides details about the semi-parametric ap-
proach and its asymptotic properties.
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2 Dynamic Linear Model and Non-Fundamentalness

2.1 The dynamic model

Despite the standard Vector Autoregressive (VAR) terminology, the linear dynamic reduced-form
structural models may have both autoregressive and moving average parts. The VARMA model is
the following:

Φ(L)Yt = Θ(L)εt , (2.1)

where Yt is a n-dimensional vector of observations at date t, εt is a n-dimensional vector of errors,
L the lag operator,

Φ(L) = I−Φ1L− . . .−ΦpLp, Θ(L) = I−Θ1L− . . .−ΘqLq,

I is the identity matrix, and the matrix autoregressive and moving average lag-polynomials are of
degrees p and q, respectively.

Let us now introduce the following assumptions on model (2.1):

Assumption A.1. Assumption on errors.

i) The process (εt) is a square-integrable strong white noise, i.e. the errors εt are indepen-

dently, identically distributed and such that E(εt) = 0 and E(‖εt‖2)< ∞.

ii) The errors can be written as εt = Cηt ⇔ ηt = C−1εt , where the components η j,t of ηt are

mutually independent, and have unit variance, i.e. V (η j,t) = 1, j = 1, . . . ,n.

Assumption A.1 i) on the errors is standard in the literature. Assumption A.1 ii) is required
for defining separate shocks on the system when deriving the impulse response functions (see the
discussion in Section 3.2). The independent random variables η j,t , j = 1, . . . ,n, are usually called
“structural shocks” and the following representation is called a “structural” VARMA, or SVARMA,
representation:

Φ(L)Yt = Θ(L)Cηt . (2.2)
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Assumption A.2. Assumption of left coprimeness on the lag-polynomials.

If Φ(L) and Θ(L) have a left common factor C(L), say, such that: Φ(L) =C(L)Φ̃(L),Θ(L) =

C(L)Θ̃(L), then det(C(L)) is independent of L.

This condition ensures that the VARMA representation is minimal in the sense that all possible
simplifications have been already done (see Hannan and Deistler, 1996, Chap 2 for more details).
This condition greatly simplifies the discussions in the next sections. It is often forgotten in struc-
tural settings and it might be necessary to test for the minimality of the representation. This is out
of the scope of this paper.1

The next assumption, on the roots det Φ(z), is also made to simplify our analysis.2

Assumption A.3. Assumption on the autoregressive polynomial.

All the roots of det Φ(z) have a modulus strictly larger than 1.

Under Assumptions A.1–A.3, the linear dynamic system (2.1) has a unique strongly stationary
solution, such that E(‖Yt‖2)< ∞ (see e.g. the discussion in Gouriéroux and Zakoian, 2015). Also
note that, if the right-hand side of (2.1) is µ +Θ(L)εt , the process Yt −m ≡ Yt − [Φ(1)]−1µ satis-
fies (2.1) without intercept; we can therefore assume µ = 0, or m = 0, without loss of generality.

Assumption A.4. Assumption on the observable process.

The observable process is the stationary solution of model (2.1) associated with the true values

of Φ, Θ, C and with the true distribution of ε .

Since all the roots of det(Φ(z)) lie outside the unit circle, it is easy to derive the inverse of the

1See Deistler and Schrader (1979) for a study of identifiability without coprimeness, and Gouriéroux, Monfort, and
Renault (1989) for the test of coprimeness –i.e. common roots– for one-dimensional ARMA processes.

2This assumption excludes cointegrated variables. When Yt is I(1) and, assuming that β is a n× r matrix whose
columns span the cointegrating space (of dimension r), one can come back to the present (stationary) case by consid-
ering the following stationary vector of variables: Wt = [Ỹ ′t ,Y

′
t β ]′, where Ỹt = [∆Y1,t , . . . ,∆Yn−r,t ]

′. Engle and Granger
(1987)’s least square methodology provides a consistent estimate of the cointegration directions β (at rate 1/T ). Let’s
denote this estimate by β̂ . The estimation approaches that are presented in Section 4 can then be applied to the station-
arized process Ŵt = [Ỹ ′t ,Y

′
t β̂ ]′; the effect of estimating the matrix of cointegrating directions β can be neglected due to

the high convergence speed of β̂ .
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polynomial operator Φ(L) as a convergent one-sided series in the lag operator L:

Φ(L)Yt = Θ(L)εt

⇐⇒ Yt = Φ(L)−1
Θ(L)εt ≡Ψ(L)εt =

∞

∑
k=0

ΨkLk
εt =

∞

∑
k=0

Ψkεt−k (2.3)

=
∞

∑
k=0

ΨkCηt−k =
∞

∑
k=0

Akηt−k,

with Ak = ΨkC. Hence, the Aks are combinations of the Ψks, which determine the dynamics of the
system, and of C, which defines the instantaneous impact of the structural shocks.

Moreover, when all the roots of det(Θ(z)) lie outside the unit circle, Yt has a one-sided autore-
gressive representation:

Θ
−1(L)Φ(L)Yt ≡

∞

∑
k=0

BkLkYt =
∞

∑
k=0

BkYt−k = εt ,

and
ηt =C−1

Θ
−1(L)Φ(L)Yt ,

where Θ−1(L) is the one-sided series operator involving positive powers of L and that satisfies
Θ−1(L)Θ(L) = I. In this case, we say that the operator Θ(L) is invertible and that the SVARMA
model (2.2), is fundamental.

However, from the macroeconomic literature we know that SVARMA models do not always
have roots of the moving average located outside the unit circle (see Section 2.2). If det(Θ(z))

has no roots on the unit circle, but roots on both sides of the unit circle, we get a two-sided
autoregressive representation:

∞

∑
k=−∞

BkYt−k = εt ,

and
ηt =C−1

∞

∑
k=−∞

BkYt−k.

Here B(L) = ∑
∞
k=−∞

BkLk = Θ−1(L)Φ(L), where Θ−1(L) is the (unique) two-sided series op-
erator satisfying Θ−1(L)Θ(L) = I. In this case, we say that Θ(L) is invertible in a general sense.

Let us now study the consequences of “ill-located” roots of det(Θ(z)), that are roots located in-
side the unit circle. For expository purpose, let us consider a one-dimensional ARMA(1,1) process:

(1−ϕL)yt = (1−θL)εt , (2.4)

6



Dynamic Linear Model and Non-Fundamentalness

where |ϕ|< 1 and |θ |> 1.We have

yt = (1−ϕL)−1(1−θL)εt ,

and, therefore, yt is a function of the present and past values of εt .
To get the (infinite) pure autoregressive representation of process (yt), we have to invert (1−

θL). This leads to:

(1−ϕL)yt =

(
1− 1

θ
L−1
)
(−θLεt)

⇔
(

1− 1
θ

L−1
)−1

(1−ϕL)yt =−θLεt . (2.5)

Formula (2.5) implies that εt is a function of the present and future values of yt . Therefore, εt

is not the causal innovation of yt , defined by yt−E(yt |yt−1,yt−2, . . .), the latter being a function of
present and past values of yt only.

Since (2.4) implies that the knowledge of {εt ,εt−1, . . .} results in the knowledge of {yt ,yt−1, . . .},
but because (2.5) shows that εt is not a function of {yt ,yt−1, . . .}, it comes that the information set
{yt ,yt−1, . . .} is strictly included in the information set {εt ,εt−1, . . .}.

To summarize, under Assumptions A.1-A.3, the error term in the VARMA representation is
equal to the causal innovation of the process if the roots of det(Θ(z)) are all outside the unit
circle. Under this condition, the process (Yt) has a fundamental VARMA representation.3,4 In
this case, at any date t, the information contained in the current and past values of Yt coincides
with the information contained in the current and past values of εt . Otherwise, that is, if some
roots of det(Θ(z)) are inside the unit circle, the VARMA representation is non-fundamental. In
the latter case, εt is not equal to the causal innovation, that is, it is not function of present and past
observations of Yt only.

Consider a non-fundamental SVARMA process (Yt) defined by (2.2). (Yt) admits a fundamental
VARMA representation of the form: Φ(L)Yt = Θ∗(L)ε∗t .5 Process (ε∗t ) is a weak white noise, i.e.

3See e.g. Hansen and Sargent (1980), p18, (1991), p79, and Lippi and Reichlin (1994) for the introduction of this
terminology in the macroeconometric literature. The term “fundamental” is likely due to Kolmogorov and appears in
Rozanov (1960), p367, and Rozanov (1967), p56, to define the “fundamental process”, that is, the second-order white
noise process involved in the Wold decomposition of a weak stationary process.

4The terminology “fundamental” can be misleading, in particular since fundamental shock and structural shock
are often considered as equivalent notions (see e.g. the description of the scientific works of Nobel prizes Sargent and
Sims in Economic Sciences Prize Committee, 2011, or Evans and Marshall, 2011). Moreover in some papers (see
Grassi, Ferroni, and Leon-Ledesma, 2015) a shock is called fundamental if its standard deviation is non-zero.

5 This representation can be obtained from the non-fundamental SVARMA representation by making use of
Blaschke matrices. Consider a square matrix of the lag operator denoted by B(L). B(L) is a Blaschke matrix if
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ε∗t and ε∗s , t 6= s, are uncorrelated but not independent, except in the Gaussian case. This process is
the linear causal innovation of (Yt) appearing in the Wold representation but is in general different
from the innovation, except in special cases, such as the Gaussian case. In any case, it does not
coincide with process (Cηt). Now, consider the new (fundamental) process (Y ∗t ) defined through
Φ(L)Y ∗t = Θ∗(L)C∗ηt , where C∗ satisfies V (ε∗t ) = C∗C∗′. Processes (Yt) and (Y ∗t ) have the same
(dynamic) second-order properties. As a result, the estimation methods focussing on second-order
properties cannot distinguish between Θ∗(L) and Θ(L). However, the dynamic responses of Yt and
Y ∗t to changes in ηt resulting from one or the other MA specification are different.6

2.2 Examples of non-fundamentalness

There exist different sources of non-fundamentalness in SVARMA models, that is, of ill-located
roots of the moving average polynomial (see also the discussion in Alessi, Barigozzi, and Capasso,
2011). Let us consider some examples and highlight, in each case, the errors with a structural
interpretation.

i) Lagged impact. A well-known example appears in the comment of the Blanchard, Quah model
(Blanchard and Quah, 1989) by Lippi and Reichlin (1993). The productivity, yt , can be
written as:

yt = εt +θεt−1,

where εt denotes the productivity shock, reflecting for instance the introduction of an inno-
vation. It may be realistic to assume that the maximal impact of the productivity shock is
not instantaneous and is maximal with a lag, i.e. that θ > 1 (see Appendix A.5). The MA(1)
process is then non-fundamental (or non-invertible).

ii) Non-observability. Non-fundamentalness can arise from a lack of observability. Fernandez-
Villaverde, Rubio-Ramirez, Sargent, and Watson (2007) give the example of a state-space
representation of the surplus in a permanent income consumption model (see Lof, 2013,
Section 3, for another example). The state-space model is of the following type:{

ct = act−1 +(1−1/R)εt , 0 < a < 1,
yt = −act−1 +1/Rεt ,

and only if [B(L)]−1 = B∗(L−1), where B∗(.) is obtained from B(.) by transposing and taking conjugate coefficients.
See Leeper, Walker, and Yang (2013), p1123-1124 for a practical use of Blaschke matrices.

6This is easily illustrated in the context of a univariate MA(1) process, see Appendix A.5.
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where yt − ct is the surplus, the consumption ct is latent, R > 1 is a constant gross interest
rate on financial assets, and εt is an i.i.d. labor income process. From the first equation, we
deduce:

ct =
(1−1/R)

1−aL
εt ,

and, by substituting in the second equation, the dynamics of yt reads:

yt =

[
1/R−a

L(1−1/R)
1−aL

]
εt =

1/R−aL
1−aL

εt .

Thus the root of the moving-average lag-polynomial is equal to 1/aR, and it is smaller than
one when aR > 1.7

iii) Rational expectation. Other sources of non-fundamentalness are the rational expectations
introduced in the models. In the simple example of Hansen and Sargent (1991) the economic
variable yt is defined as:

yt = Et

(
∞

∑
h=0

β
hwt+h

)
, with wt = εt−θεt−1, 0 < β < 1, |θ |< 1.

If the information set available to the economic agent at date t is It = (εt ,εt−1, . . .), we get:

yt = (1−βθ)εt−θεt−1.

The root of the moving average polynomial is (1−βθ)/θ . Depending on the values of β

and θ , this root is larger or smaller than 1. When the root is strictly smaller than 1, the
model is non-fundamental. In such rational expectation models, the information sets of the
economic agent and of the econometrician are assumed to be aligned.

iv) Lagged information and news shocks. Non-fundamentalness may also occur when the eco-
nomic agent and econometrician information sets are not aligned. The literature on informa-
tion flows applied to fiscal foresight or productivity belongs to this category (see e.g. Fève,
Matheron, and Sahuc, 2009; Fève and Jihoud, 2012; Forni and Gambetti, 2010; Leeper,

7This reasoning does not hold for a = 1, which is precisely the case considered in Fernandez-Villaverde, Rubio-
Ramirez, Sargent, and Watson (2007), where ct and yt are nonstationary co-integrated processes. Indeed their equation
(5) assumes the stationarity of the y process and is not compatible with the assumption of a cointegrated model.
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Walker, and Yang, 2013). A stylized model is (see Fève, Matheron, and Sahuc, 2009):

yt = aEtyt+1 + xt ,

xt = εt−q,

where εt is a white noise, and Et is the conditional expectation given εt , εt−1,...

If |a|< 1, the forward solution is easily seen to be:

yt =
q

∑
i=0

aq−i
εt−i. (2.6)

The roots of Θ(L) = aq
q

∑
i=0

a−iLi = aq 1− (a−1L)q+1

1−a−1L
are equal to: aexp(2ikπ/(q+1)),k =

1, . . . ,q, with common modulus |a|< 1. Therefore the moving-average lag polynomial Θ(L)

is noninvertible and the MA process is non-fundamental.

A related situation is that of models that incorporate news shocks. In these models, the
demeaned growth rate of technology typically follows a process of the form:

yt = εt +ut−q,

where εt is a standard technology shock and ut is a news shock, in the sense that agents
in the economy see it in period t, but it has no effect on the level of technology until date
t+q, with q≥ 1. When incorporated in general equilibrium models, Sims (2012) shows that
such a specification for the technology process may imply that vectors of the form [yt ,xt ]

′,
where xt is another model variable, say output, follow a non-fundamental process (see also
Blanchard, L’Huillier, and Lorenzoni, 2013).

v) Prediction error. When the variable of interest is interpreted as a prediction error, non-
fundamentalness may also appear (see Hansen and Hodrick, 1980). For instance if yt is
the price of an asset at t, Et−2yt can be interpreted as the futures price at t−2 (if the agents
are risk-neutral). The spread between the spot price and the futures price is: st = yt−Et−2yt

and, if yt is a fundamental (invertible) MA(2) process: yt = εt +θ1εt−1 +θ2εt−2 = Θ(L)εt ,
then st = εt +θ1εt−1 (= Θ(L)εt) and the spread process is not necessarily fundamental. For
example if Θ(L) = (1−θL)2 with |θ |< 1, we have Θ1(L) = 1−2θL, which is not invertible
as soon as |θ |> 1/2.
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2.3 The limits of the Gaussian approach

2.3.1 Static identification issue

Let us first consider the popular case of a structural VAR process (SVAR), where Θ(L) = I. The
Gaussian SVAR process is defined by:

Φ(L)yt =Cηt ,

where Φ(0) = I, the roots of det(Φ(z)) are outside the unit circle and where the process (ηt) is a
Gaussian white noise, with E(ηt) = 0 and V (ηt) = I. The model involves two types of parameters:
whereas the sequence Φk, k = 1, . . . , p, characterizes the dynamic features of the model, matrix C

defines (static) scale effects.
In this case, the dynamic parameters Φ1, . . . ,Φp are characterized by the Yule-Walker equa-

tions, they are therefore identifiable, but the static parameter C is not, since replacing C by CQ,
where Q is an orthogonal matrix, leaves the distribution of process (Yt) unchanged. It is the static

identification problem.
In order to solve this identification issue, additional short-run, long-run, or sign restrictions

have been imposed in the literature [see e.g. the references in the introduction].8 It turns out
that, if at most one of the components of ηt is Gaussian, the identification problem disappears.
This result, shown by Comon (1994) (Theorem 11) is a consequence of the Darmois-Skitovich
characterization of the multivariate Gaussian distribution (see Darmois, 1953; Skitovich, 1953;
Ghurye and Olkin, 1961). In this case, C can be estimated using Independent Component Analysis
(ICA) algorithms (see Hyvärinen, Karhunen, and Oja, 2001), or Pseudo Maximum Likelihood
techniques (see Gouriéroux, Monfort, and Renne, 2017). These estimators of C are consistent, up
to sign change and permutation of its columns. This (quasi) identifiability of the static parameter
C in the non-Gaussian case implies that the recursive approach proposed by Sims, imposing that
C is lower-triangular, cannot be used in general to find independent shocks, but only uncorrelated
shocks. The importance of the independence assumption for the computation of IRFs is discussed
in Subsection 3.2.

2.3.2 Dynamic identification issue

Let us now consider the general case of a SVARMA process:

Φ(L)Yt = Θ(L)Cηt ,

8An alternative consists in leaving the linear dynamic framework by considering Markov Switching SVAR [see
Lanne, Lütkepohl, and Maciejowska (2010), Lütkepohl (2013), Herwartz and Lütkepohl (2017), Velinov and Chen
(2014)]. In this paper we will stay in a pure SVARMA framework.

11



Dynamic Linear Model and Non-Fundamentalness

where Φ(0) = Θ(0) = I, the roots of det(Φ(z)) lie outside the unit circle, the roots of det(Θ(z))

can be inside or outside the unit circle, and (ηt) is a Gaussian white noise with E(ηt) = 0 and
V (ηt) = I.

Let us focus here on the identification of the dynamic parameters Φ and Θ. In the Gaussian
case, the distribution of the stationary process (Yt) depends on the dynamic and static parameters
through the second-order moments of the process or, equivalently, through the spectral density
matrix:

f (ω) =
1

2π
Φ
−1(exp iω)Θ(exp iω)CC′Θ(exp−iω)′Φ−1(exp−iω)′. (2.7)

Using the equalities Γh−Φ1Γh−1− ·· ·−ΦpΓh−p = 0, ∀h ≥ q+ 1, with Γh = cov(Yt ,Yt−h), it is
readily seen that the coefficient matrices Φ1, ..., Φp are identifiable from the distribution of pro-
cess (Yt) (Gaussian or not), but several sets of coefficients (Θ1, . . . ,Θq,C) yield the same spectral
density and the same distribution for the process (Yt) in the Gaussian case; the different polynomi-
als Θ(L) are obtained from the fundamental one –the one with the roots of det(Θ(z)) outside the
unit circle– by use of Blaschke matrices.9 The lack of identification of the dynamic parameters
Θ is called the dynamic identification problem. We see in Section 3 that this second identification
problem also disappears in the non-Gaussian case.

The dynamic identification problem is simply illustrated in the univariate MA(1) model: yt =

σηt−θσηt−1, where (ηt) is a Gaussian white noise with E(ηt) = 0, V (ηt) = 1 and, for instance,
0 < θ < 1. If we replace θ by θ ∗ = 1/θ and σ by σ∗ = σθ , we get the process:

y∗t = σ
∗
ηt−θ

∗
σ
∗
ηt−1

= σθηt−σηt−1,

which is also Gaussian and with the same covariance function as (yt), namely:

Γ0 = σ
2(1+θ

2), Γ1 =−θσ
2 and Γh = 0, for h≥ 2,

and, therefore, with the same distribution. In other words, the pairs (θ ,σ) and (1/θ ,σθ) give the
same distributions for processes (yt) and (y∗t ). By contrast, we will see that, if ηt is non-Gaussian,
the distributions of processes (yt) and (y∗t ) are different, although their spectral density matrices
are the same (see e.g. Weiss, 1975; Breidt and Davis, 1992; Lii and Rosenblatt, 1992).

Alternatively, the process (η∗t ) defined by yt = σθη∗t −ση∗t−1 ≡ σ∗(η∗t − 1
θ

η∗t−1), with σ∗ =

σθ is another Gaussian white noise with zero mean and unit variance. More generally in the MA(q)
case, yt = θ(L)σηt , with θ(0) = 1, we get other representations by replacing θ(L) by θ ∗(L) ob-
tained from θ(L) by inverting some roots (the complex roots being inverted by pairs) and replacing

9See Footnote 5 for the definition of Blaschke matrices.
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σ by σ∗ giving the same variance to yt . Then the processes (η∗t ) defined by yt = θ ∗(L)σ∗η∗t are
Gaussian white noises with zero mean and unit variance. Among all these equivalent represen-
tations, one is fundamental. In the non-Gaussian case, if one of these (η∗t ) processes is a strong
white noise, i.e. a serially independent process, the others will be only weak white noises, i.e.
serially uncorrelated. If the strong white noise process does not correspond to the fundamental
representation, the weak white noise corresponding to the invertible polynomial θ ∗(L) is the linear
innovation process associated with the Wold representation.

In the usual Box-Jenkins approach, the estimation of the parameters Φ1, ..., Φp, Θ1, ..., Θq, Σ =

CC′ is based on a truncated VAR approximation relying on the assumption that Θ(L) is invertible
(i.e. the roots of det(Θ(z)) are outside the unit circle), namely a truncation of Θ(L)−1Φ(L)Yt = εt ,
with V (εt) = Σ = CC′ (see e.g. Galbraith, Ullah, and Zinde-Walsh, 2002). In other words, a fun-
damental representation is a priori imposed without being tested. The introduction of multivariate
non-fundamentalness tests is actually very recent (see e.g. Forni and Gambetti, 2014; Chen, Choi,
and Escanciano, 2017).10

3 Identification and Impulse Response Functions (IRFs) in the
Non-Gaussian SVARMA

3.1 Identification of the parameters

Let us consider again the SVARMA process:

Φ(L)Yt = Θ(L)Cηt ,

and make the following assumption on Θ(L):

Assumption A.5. Assumption on the moving average polynomial .

The roots of det(Θ(z)) are not on the unit circle.

In the univariate MA(1) case, yt = (1−θL)σηt , this excludes the cases θ =±1. In the multi-
variate MA(1) case yt = (I−ΘL)Cηt , this excludes eigenvalues of Θ on the unit circle. However,
under Assumption A.5, the roots of det(Θ(L)) can be inside or outside the unit circle, and Θ(L)

is invertible in a general sense, since there exists a two-sided series B(L) = ∑
∞
k=−∞

BkLk such that

10The test developed by Chen, Choi, and Escanciano (2017) exploits the non-normality of the shocks; Forni and
Gambetti (2014) use information not included in the VAR specification.
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B(L)Θ(L) = I.

Since Φ(L) is invertible, we have:

Yt = Φ
−1(L)Θ(L)Cηt = A(L)ηt , (3.1)

with A(L) = Φ−1(L)Θ(L)C.

Using the same argument as in Subsection 2.3.1, namely that Φ1, . . . ,Φp are characterized by
the Yule-Walker equations, we know that Φ(L) is identifiable. What about Θ(L) and C? The next
proposition is deduced from Theorem 1 in Chan, Ho, and Tong (2006) (based on Theorem 4 in
Chan and Ho, 2004), and solves the dynamic identification issue in the non-Gaussian case.11,12

Let us first introduce the following assumption:

Assumption A.6. Each component of ηt has a non-zero rth cumulant, with r ≥ 3, and a finite

moment of order s, where s is an even integer greater than r.

Assumption A.6 is introduced to eliminate the Gaussian framework in which all cumulants of
order r ≥ 3 are zero. Assumption A.6 is satisfied if the distribution of η j,t is skewed and has a
finite moment of order 4, or if it is symmetric, but has a kurtosis different from 3 and has a finite
moment of order 6.

Proposition 1. Under Assumptions A.1 to A.6, if we consider another stationary process (Y ∗t )

defined by:

Φ(L)Y ∗t = Θ
∗(L)C∗η∗t ,

then the process (Yt) defined in (2.2) and (Y ∗t ) are observationally equivalent if and only if:

Θ(L) = Θ
∗(L) and C =C∗,

where the last equality holds up to a permutation and sign change of the columns and η∗t = ηt in

distribution up to the same permutation and sign change of their components.

Proof See Appendix B.1.

11See Findley (1986), Cheng (1992) for the one-dimensional case n = m = 1.
12A similar identification result has been recently derived when the components of ηt have fat tails (see Gouriéroux

and Zakoian, 2015).
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There is no other normalisation needed on matrix C because the components η j,t are assumed
to have a unit variance.

Proposition 1 provides conditions under which the SVARMA parameterization is identified.
This identification result is however not constructive and does not explain how to estimate the
correct –possibly non-fundamental– SVARMA representation.13 The latter task is the objective of
the methods presented in Section 4 below.

3.2 Identification of the structural shocks and of the IRFs: The indepen-
dence assumption

The proposition in the previous section shows that, in the non-Gaussian case, Φ(L) and Θ(L) are
identified and, therefore, Cηt = Θ−1(L)Φ(L)Yt is identified too.

Since C is identified up to a permutation and a sign change of its columns, the structural distur-
bances ηt are identified up to a permutation and a sign change of their components, not depending
on t. In this context, the IRFs corresponding to shocks to the process (ηt) of structural disturbances
are also identified; these IRFs are defined from the sequences Ah = ΨhC, where matrices Ψh de-
pend on Φ(L) and Θ(L) (see eq. 2.3). The only remaining problem is the labelling of these shocks.
The labelling will depend on the economic interpretation of the IRFs. This is completely different
from standard structural approaches where the identification of the shocks themselves necessitates
additional theory-based economic restrictions. In the latter case, labelling is tied to the choice
of the restrictions. Proposition 1 states that, under Assumptions A.1 to A.6, such restrictions are
over-identifying restrictions.

In the rest of this subsection, we highlight the importance of the independence Assumptions A.1.ii)
for the derivation of the IRFs. We use the traditional definition of IRF (see e.g. Koop, Pesaran, and
Potter, 1996):

Definition 1. The Impulse Response Function (IRF) of Yi,t to η j,t is defined as the sequence of the

differential impacts of a unit shock on η j,t on the Yi,t+hs, h = 0,1, . . . . Formally, this IRF is given

by {IRFi, j,0, IRFi, j,1, . . .}, with:

IRFi, j,h = E
(

Yi,t+h|η j,t = 1,Yt−1

)
−E

(
Yi,t+h|Yt−1

)
, (3.2)

where Yt = {Yt ,Yt−1, . . .}.

13Theorem 1 of Chen, Choi, and Escanciano (2017) is closely related to Proposition 1. Chen, Choi, and Escanciano
(2017) exploit their Theorem 1 to define a test aimed at checking if the fundamental representation is the right one.
They do not explain how to estimate the SVARMA representation under non-fundamentalness.

15



Identification and Impulse Response Functions (IRFs) in the Non-Gaussian SVARMA

The following proposition shows that, under the serial and mutual independence assumptions,
i.e. A.1, the IRFs are directly deduced from the AR and the (possibly non-invertible) MA coeffi-
cients.

Proposition 2. Under A.1, the IRFs are given by:

IRFi, j,h = Ψi,hC j,

where C j is the jth column of matrix C and where Ψi,h is the ith row of Ψh defined in equation (2.3).

Proof By the iterated expectation theorem, using that the information set Yt is included in the
information set ηt = {ηt ,ηt−1, . . .}, we have:

IRFi, j,h = E
{[

E(Yi,t+h|ηt)−E(Yi,t+h|ηt−1)
]
|η j,t = 1,Yt−1

}
,

and, by using (2.3):

IRFi, j,h = E
[
Ψi,hCηt |η j,t = 1,Yt−1

]
= Ψi,hCE

[
ηt |η j,t = 1,Yt−1

]
.

Because the ηts are serially independent, we get

IRFi, j,h = Ψi,hCE
[
ηt |η j,t = 1

]
.

Since the components of ηt are independent and of mean zero, we have:

E
[
ηt |η j,t = 1

]
= e j, (3.3)

where e j is the jth selection vector. This leads to the standard impact formula:

IRFi, j,h = Ψi,hC j.

The previous proof can easily be adjusted to show that the IRF defined above also corresponds
to this alternative formulation:

IRFi, j,h = E(Yi,t+h|η j,t = 1,Yt−1)−E(Yi,t+h|η j,t = 0,Yt−1)

and, further, that we have:

E(Yi,t+h|η j,t = δ +η ,Yt−1)−E(Yi,t+h|η j,t = η ,Yt−1) = δ IRFi, j,h,
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for any η and δ .

The standard derivation of the impact of a shock on η j,t shows the importance of both the serial
and cross-sectional independence assumptions. In particular, if the components of ηt were not
independent, there would be an instantaneous impact of the shock η j,t = 1 on the other components
ηi,t , i 6= j. In other words, the quantity E

[
ηi,t |η j,t = 1

]
, i 6= j, would not necessarily be zero,

contradicting equation (3.3).14,15

Hence, the serial and cross-correlation assumptions on the noise are not sufficient for structural
applications. A case where errors can be made uncorrelated but not independent notably arises
in the recent literature proposing to decompose a series into its short- and long-run components
in order to focus on the impact of long-run shocks (see e.g. Bandi, Perron, Tamoni, and Tebaldi,
2018). The decomposition of the series at different frequencies is based on the spectral decompo-
sition of the series. Though uncorrelated, the resulting linear innovations associated with different
frequencies depend on a unique underlying i.i.d. noise. It is then impossible to shock separately
the short-run and the long-run components of the series.

Proposition 2 also highlights that the IRFs hinge on the fundamentalness regime of the SVARMA
model. It shows indeed that the IRF depends on the (possibly non-invertible) MA coefficients
through the Ψhs. Appendix A.5 shows for instance that, in the MA(1) case, if the IRF associated
with the fundamental representation is monotonously decreasing, then the one associated with the
non-fundamental representation is hump-shaped.

4 Estimation of Models with Non-Fundamentalness

In this section, we present parametric and semi-parametric estimation approaches of non-fundamental
SVARMA models. For a parametric SVARMA model, we show that the parameters can be esti-
mated by the Maximum Likelihood (ML) method. We first discuss the regularity of the likelihood
function on the frontier between fundamentalness and non-fundamentalness. Next, we explain
how to numerically compute, or approximate, the likelihood function.

14Such an adjustment has already been taken into account in previous studies (see e.g. Pesaran and Shin, 1998;
Jardet, Monfort, and Pegoraro, 2013).

15To illustrate this point, let us introduce a stylized example. Consider the case where η1,t is drawn from a uniform
distribution on [−

√
3,
√

3], such that E(η1,t) = 0 and V (η1,t) = 1 and where η2,t is independently drawn from N (0,1).
Now consider the vector [η∗1,t ,η

∗
2,t ]
′ obtained by rotating ηt by an angle of −π/4. We have that η∗1,t and η∗2,t are

uncorrelated, zero-mean and with unit variance, but not independent. In particular, we have E(η∗2,t |η∗1,t) > 0 for
η∗1,t >

√
3, which derives from the fact that the support of [η∗1 ,η

∗
2 ]
′ is the area delineated by the two curves defined by

y = x−
√

3 and y = x+
√

3.
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When the distribution of the errors is left unspecified, Proposition 1 suggests better semi-
parametric estimation methods than the inconsistent Gaussian pseudo-maximum likelihood used
in the standard Box-Jenkins methodology. These alternative methods provide consistent estimators
of the true values of Φ(L), Θ(L) and C in a SVARMA representation where the roots of det(Θ(z))

may be inside or outside the unit circle. The idea is to introduce appropriate moment restrictions
deduced from the independence assumption on the components of error η and derive associated
moment methods for estimation. This semi-parametric approach is robust to a misspecification of
the error distribution.

When the dimension of the vector of endogenous variables Yt increases, the number of param-
eters specifying the SVARMA representation (2.2) increases at a much faster rate, giving rise to a
curse of dimensionality problem. As a result, in practice, there is a tradeoff between the dimension
n and the degrees p and q in VARMA modelling. In most applications, q is equal to 0, 1 or 2. In the
following, the estimation methods are presented for VARMA(p,1) models. They can be extended
to VARMA(p,q) models for q > 1. Contrary to our ML approach, the numerical complexity of
our semi-parametric approach does not depend on the autoregressive order p. Nevertheless, both
methods are subject to the curse of dimensionality when augmenting the moving-average order q.

4.1 Maximum Likelihood (ML) estimation of parametric SVARMA models

For illustrative purpose, let us first discuss the case of a one-dimensional MA(1) process before
considering the general framework of a SVARMA process. Derivations of truncated log-likelihood
functions and associated asymptotic results of ML estimators in the context of possibly nonin-
vertible univariate MA(q) and ARMA(p,q) processes can notably be found in Lii and Rosenblatt
(1992, 1996), or Wu and Davis (2010). The approach exposed in Subsection 4.1.2 can be seen as
an extension of these previous studies to the multivariate case.

4.1.1 The Maximum Likelihood approach in the MA(1) context

We consider the MA(1) process:
yt = εt−θεt−1, (4.1)

where the εts are independent.
Suppose that we observe {y1, . . . ,yT}. If the common distribution of the εts is N(0,σ2), the

model is not identifiable (see Section 2.3). If εt satisfies Assumptions A.1 to A.6, i.e. in particular
if it is not Gaussian, then Proposition 1 states that the model is identifiable.16 Let us denote by

16See Appendix A for a more detailed discussion of non-identifiability of a MA(1) process and the links with
invertibility.
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g(ε;γ) the common p.d.f. of the εts, where γ is an unknown parameter, and let us consider three
cases, depending on the position of |θ | with respect to 1:

i) When |θ |< 1, we can invert equation (4.1) in the standard way in order to get εt as a function
of current and lagged values of process Y as:

εt =
∞

∑
h=0

θ
hyt−h. (4.2)

Using the notation yT
1 = {y1, . . . ,yT}, the truncated log-likelihood function is:

L1(yT
1 ;θ ,γ) =

T

∑
t=1

logg

(
t−1

∑
h=0

θ
hyt−h;γ

)
, (4.3)

where the infinite sums are truncated to be compatible with the observed y1, . . . ,yT .
ii) When |θ |> 1, equation (4.1) can still be inverted, but in reverse time. We get:

yt = εt−θεt−1

⇔ −yt+1

θ
= εt−

1
θ

εt+1

⇔ εt = −
∞

∑
h=0

1
θ h+1 yt+h+1.

(4.4)

The truncated log-likelihood function is then:

L2(yT
1 ;θ ,γ) =

T

∑
t=1

log

{
1
|θ |

g

(
−

T−t−1

∑
h=0

1
θ h+1 yt+h+1;γ

)}
, (4.5)

where the sums are now truncated to account for the most recent observations and the factor 1/|θ |
comes from the Jacobian formula.

iii) Let us now discuss the case θ = 1. Though this case is not consistent with Assumption A.5,
it has to be considered for analyzing the continuity of the likelihood function on the unit circle.

Focussing on the regimes when truncating the log-likelihood function gives the misleading
impression of a lack of continuity of the exact log-likelihood function w.r.t. θ at |θ | = 1. This
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exact log-likelihood is however continuous.17 Indeed, we have:

ε1 = y1 +θε0,

ε2 = y2 +θy1 +θ
2
ε0,

...
...

εT = yT +θyT−1 + . . .+θ
T−1y1 +θ

T
ε0.

Thus the joint p.d.f. of {y1, . . ., yT} given ε0 is:

Π
T
t=1g

(
t−1

∑
h=0

θ
hyt−h +θ

t
ε0;γ

)
,

and the exact log-likelihood is:

L (yT
1 ;θ ,γ) = log

{∫
Π

T
t=1g

(
t−1

∑
h=0

θ
hyt−h +θ

t
ε;γ

)
g(ε;γ)dε

}
. (4.6)

Hence, the exact log-likelihood is generally a differentiable function of θ . By contrast, the trun-
cated log-likelihood function, given by:

L(yT
1 ;θ ,γ) = L1(yT

1 ;θ ,γ)1|θ |<1 +L2(yT
1 ;θ ,γ)1|θ |≥1, (4.7)

is only right-differentiable at θ = 1. In practice, however, using the truncated log-likelihood (4.7)
is easier because it does not involve the computation of an integral as in the case of the exact
log-likelihood (4.6), while providing estimators with the same asymptotic properties.

To conclude, in the simple MA(1) case, the maximum likelihood estimation can be conducted
by maximizing the truncated log-likelihood function (4.7). If |θ | 6= 1, the standard asymptotic
theory applies (see e.g. Davidson, 1994). This is however not the case if |θ |= 1.

4.1.2 The Maximum Likelihood approach in the VARMA context

Let us consider the VARMA(p,1) model:

Φ(L)Yt = εt−Θεt−1, (4.8)

where the errors εt are given by:
εt =Cηt , say,

17An exact log-likelihood is for instance used in the Gaussian case, with |θ |< 1, by Chen, Davis, and Song (2011)
to analyze the properties of the ML estimator of a moving-average parameter close to non-invertibility.
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where the ηt are serially and mutually independent, with E(ηt) = 0 and V (ηt) = I. The distribution
of the ηts is non-Gaussian and parameterized with γ , say. Therefore, the p.d.f. of the errors εt is of
the form g(ε,Γ), with Γ = (C,γ). This model is supposed to satisfy Assumptions A.1 to A.6.

To get an approximation of the likelihood function, we need to compute the filtered values of
the errors εt for a given parameterization of the model. To this purpose, we exploit the real Schur
decomposition of matrix Θ:18

Θ = AUA′ = A



U1 U1,2 . . . U1,K

0 U2 U2,3 . . . U2,K
... . . . . . . ...

0 UK−1 UK−1,K

0 . . . 0 UK


A′, (4.9)

where A is orthogonal, U is upper block-triangular, and the diagonal blocks (Uk, k ∈ {1, . . . ,K})
are either 1× 1 or 2× 2 blocks, the 2× 2 blocks corresponding to complex conjugate complex
eigenvalues of Θ. Under Assumption A.5, the roots of U are not on the unit circle. We denote by
nk the dimension of Uk (with nk ∈ {1,2}). We assume, without loss of generality, that U1, . . .Uq

have eigenvalues with modulus strictly larger than 1 whereas Uq+1, . . .UK have eigenvalues with
modulus strictly lower than 1.19

Left-multiplying Φ(L)Yt = εt−Θεt−1 by A−1 = A′, we get:

Wt = ε
∗
t −Uε

∗
t−1, (4.10)

where Wt = A′Φ(L)Yt and ε∗t = A′εt .
Let us denote by ε∗t

(1) and ε∗t
(2) the two vectors that are such that ε∗t = [ε∗t

(1)′,ε∗t
(2)′]′, the

dimension of ε∗t
(1) being equal to m = n1 + · · ·+ nq. In the same way, we define Wt

(1) and Wt
(2)

that are such that Wt = [Wt
(1)′,Wt

(2)′]′, Wt
(1) being of dimension m.

With a clear block decomposition of U , equation (4.10) writes:[
ε∗t

(1)

ε∗t
(2)

]
=

[
Wt

(1)

Wt
(2)

]
+

[
U (1) U (12)

0 U (2)

][
ε∗t−1

(1)

ε∗t−1
(2)

]
,

18One could also use the real Jordan decomposition for this purpose. Formulas would then actually be slightly
simpler. However, the real Jordan decomposition is less commonly available in programming softwares (typically
in R). The relative numerical instability of the real Jordan decomposition may account for its absence from usual
packages (see e.g. Söderlind, 1999).

19In standard softwares, such as R or Matlab, eigenvalues of U are ordered w.r.t. their modulus.
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which leads to:

ε
∗
t
(2) = Wt

(2)+U (2)Wt−1
(2)+ · · ·+U (2)t−1

W1
(1)+U (2)t

ε
∗
0
(2) (4.11)

ε
∗
t
(1) =

{
(U (1))−1

}T−t
ε
∗
T
(1)− (U (1))−1Wt+1

(1)−·· ·−
{
(U (1))−1

}T−t
WT

(1)

−
{
(U (1))−1

}2
U (12)

ε
∗
t+1

(2)−·· ·−
{
(U (1))−1

}T+1−t
U (12)

ε
∗
T
(2). (4.12)

Equation (4.11) shows that, once ε∗0
(2) is known, the ε∗t

(2)’s can be computed by forward recur-
sions. Once all the ε∗t

(2)’s are computed, and if ε∗T
(1) is known, the ε∗t

(1) can then be obtained by
backward recursions using (4.12). The following proposition directly derives from the observation
that the eigenvalues of (U (1))−1 and U (2) lie inside the unit circle.

Proposition 3. For periods t that are far enough from sample boundaries (0 and T ), εt can be

approximated by ε̂t ≡ Ae∗t , with e∗t =
[
e∗t

(1)′,e∗t
(2)′
]′

, where e∗t
(1) and e∗t

(2) are the respective ap-

proximations of ε∗t
(1) and ε∗t

(2) obtained by applying (4.11) and (4.12) with ε∗0
(2) = ε∗T

(1) = 0.

Proof See Appendix B.2.

The previous proposition calls for three remarks.
First, because of the two-sided nature of the filtering algorithm underlying Proposition 3, the

quality of the approximations of εt is relatively poor at both ends of the sample when there are
roots of det(Θ(z)) on both sides of the unit circle.

Second, when the different roots of det(Θ(z)) are on each side of the unit circle, none of the
components of εt corresponds, in general, to the components of the causal innovations. To see this,
consider the bivariate case and a VMA(1) process:[

y1,t

y2,t

]
=

[
ε1,t

ε2,t

]
−Θ

[
ε1,t−1

ε2,t−1

]
,

where Θ is of the form:

Θ =

[
cos(ω) sin(ω)

−sin(ω) cos(ω)

]
︸ ︷︷ ︸

=A

[
u(1) u(12)

0 u(2)

][
cos(ω) −sin(ω)

sin(ω) cos(ω)

]
.

In this case, the fact that the roots of det(I−Θz) are on each side of the unit circle implies that
|u(1)|> 1 and |u(2)|< 1. In the general case where u(2) 6= 0, the asymptotic versions of (4.11) and
(4.12) show that ε∗t is function of both past and future values of Wt , and therefore of Yt . Since
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εt = Aε∗t , and exluding the specific case where ω is a multiple of π

2 , we then obtain that both ε1,t

and ε2,t depend on past and future values of Yt .
A third remark, that relates to the previous one, is that (4.11) and (4.12) can be exploited to

shed light on the conditions under which a (structural) shock of interest can be approximated by
means of a VAR model (see the recent studies by Sims, 2012; Forni and Gambetti, 2014; Beaudry,
Fève, Guay, and Portier, 2015). Take for instance the previous bivariate case and suppose that the
shock of interest is the first structural shock, that is η1,t = γ ′1εt , where we denote by γ ′1 the first row
of matrix C−1. A necessary condition for this shock to be well approximated by means of a VAR
model is that η1,t is included in the information set {Yt ,Yt−1, . . .}. Assuming that |u(1)| > 1 and
|u(2)|< 1, this is the case if and only if γ ′1Aε∗t does not depend on ε∗t

(1), that is if γ1 is orthogonal
to [cos(ω),−sin(ω)]′. The previous reasoning suggests that this is only for a restricted set of ma-
trices C that one can approximate a structural shock of interest by means of VAR models.

Let us denote by L (Y T
1 ;Φ,Θ,Γ) the log-likelihood associated with the observations Y T

1 ≡
{Y1, . . . ,YT}, where (Yt) follows (4.8). Proposition 3 opens the door to the computation of a trun-
cated log-likelihood function:

Proposition 4.

1
T

L (Y T
1 ;Φ,Θ,Γ)≈ 1

T
L(Y T

1 ;Φ,Θ,Γ) =−
K

∑
k=1

log |det(Uk)|1|det(Uk)|≥1 +
1
T

T−1

∑
t=1

logg(ε̂t ,Γ),

(4.13)
where the ε̂t’s are the approximations of the εts defined in Proposition 3.

Proof See Appendix B.2.

The first term on the right-hand side of the previous equation is equal to the opposite of the
sum of the logarithms of the moduli of the eigenvalues of Θ whose modulus is larger than one and,
therefore, this term does not depend on the (Schur) decomposition of matrix Θ.

If Θ(L) is of order q> 1, one can go back to the previous case. For this, define ε̃t = [ε ′t , . . . ,ε
′
t−q+1]

′

and Z̃t = [Z′t , . . . ,Z
′
t−q+1]

′, where Zt = Φ(L)Yt . Using obvious notations, we then have: Z̃t =

(I− Θ̃L)ε̃t . Note that the eigenvalues of Θ̃ are the roots of detΘ(z) (see Davis and Song, 2012;
Gouriéroux and Jasiak, 2017, where the problem is completely treated in the dual case, where the
roots of detΦ(z) can be inside or outside the unit circle). Hence, the computation of the approxi-
mated log-likelihood function can be performed in the general VARMA(p,q) case.
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Because of the discontinuity of the truncated log-likelihood function when the roots of det(Θ(z))

are on the unit circle, the numerical maximization of the truncated log-likelihood may tend to result
in (local) optima with parameters corresponding to the same fundamentalness/non-fundamentalness
regime as the one used to initialize the numerical optimization procedure. To address this potential
problem, one should launch the numerical optimization from initial conditions reflecting different
possible fundamentalness regimes. An alternative, or complementary, approach consists in run-
ning additional numerical optimizations with starting values corresponding to models featuring
the same spectral density as the one resulting from a preliminary-estimated model, but with dif-
ferent fundamentalness regimes; such starting values can be obtained by applying Blaschke-based
transformations to a preliminary-estimated model (see e.g. Lippi and Reichlin, 1994). We employ
this method in our empirical applications.

4.2 Semi-parametric estimation of a non-fundamental SVARMA model

Let us consider a SVARMA(p,1) model:

Yt = µ +Φ1Yt−1 + · · ·+ΦpYt−p +C0ηt +C1ηt−1, (4.14)

where the components of ηt are both serially and cross-sectionally independent with E(ηt) = 0,
V (ηt) = I. For the sake of notational simplicity, we replace C by C0 and −Θ1C by C1. We assume
that the roots of the determinant of the autoregressive polynomial are outside the unit circle, but the
roots of the determinant of the moving average polynomial may be inside or outside the unit circle.
We denote by f j the common probability density function of the independent η j,t’s, t = 1, . . . ,T .
We have to consistently estimate the (true values of the) parameters µ , Φ1, . . . , Φp, C0, C1 as well
as the (true) functional parameters f j, j = 1, . . . ,n. We consider below a 2-step moment method.

The first step consists in 2-Stage Least Squares (2SLS) regressions. In this first step, we regress
Yt on Yt−1, . . . ,Yt−p and a constant, using Yt−2, . . . ,Yt−1−k as instruments (k≥ p), exploiting the fact
that the latter are independent of Zt =C0ηt +C1ηt−1. We denote by µ̂,Φ̂1, . . . ,Φ̂p the correspond-
ing 2SLS parameter estimates (see Appendix C.1 for more details about this 2SLS estimator).

Once µ and Φ are estimated, the associated residuals

Ẑt ≡ Yt− µ̂− Φ̂1Yt−1−·· ·− Φ̂pYt−p, (4.15)

are consistent approximations of Zt =C0ηt +C1ηt−1. Then in a second-step we proceed with the
estimation of C0 and C1 in a pure moving average framework.20

20If C1 = 0, C0 can be directly estimated by ICA (see e.g. Chen, Choi, and Escanciano, 2017; Gouriéroux, Monfort,
and Renne, 2017).
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4.2.1 Moment restrictions for C0, C1

Let us consider the estimation of the moving average parameters as if the true Zt’s were observed
(this is relaxed in the next subsection). To address the lack of second-order identifiability of
C0, C1, the econometric literature has proposed to exploit moments of order 3 and/or 4 (see e.g.
Bonhomme and Robin, 2009, in the special case C1 = 0, Gospodinov and Ng, 2015, in the one-
dimensional case, Lobato and Velasco, 2018, in the one-dimensional case through bi-spectral and
tri-spectral density functions).

Loosely speaking, it is appropriate to consider (cross) moments of order 3 if some compo-
nents of ηt are skewed (i.e. with non-zero third-order cumulants κ3 j) and it is appropriate to use
(cross) moments of order 4 if ηt features kurtotic components (with non-zero fourth-order cumu-
lants κ4 j). The description of the moment conditions associated with cumulants is provided in
Appendix C.2.21

This approach leads to a set of moment restrictions:

E [h(Zt ,Zt−1;β )] = 0, (4.16)

where
β = [vecC0

′,vecC1
′,κ31, . . . ,κ3n,κ41, . . . ,κ4n]

′. (4.17)

The calibrated moments concern linear combinations of Zt and Zt−1 such as:

E
(
[u′Zt + v′Zt−1]

2) , E
(
[u′Zt + v′Zt−1]

3) , or E
(
[u′Zt + v′Zt−1]

4) , (4.18)

for different pairs (u,v). We get an infinite set of moment restrictions but, in practice, a finite
set of pairs has to be selected (see Section 5). Denoting by r the dimension of h(Zt ,Zt−1;β ), the
order condition is, in this case, r ≥ 2n2 + 2n. The rank condition is challenging to analyse in the
multivariate case.22 In practice, difficulties in inverting the asymptotic covariance matrix of the
estimator –derived in Appendix C.3– constitutes a signal of non-identification.

In the spirit of the approach proposed by Lobato and Velasco (2018) who work in the frequency
domain, additional types of moment restrictions might be introduced:23

i) We might consider similar moment restrictions based on a different lag order, i.e. E([u′Zt +

21See Boudt, Cornilly, and Verdonck (2018) for a counting of up-to-order-4 comoments in the multivariate static
case.

22Existing results are only for ARMA(p,q) processes (Gospodinov and Ng, 2015, Lemma 3, and Lobato and Ve-
lasco, 2018, Theorem 1). In Gospodinov and Ng (2015), the conditions pertain to specific cumulants of order p+ q;
in Lobato and Velasco (2018), the conditions are on multi-dimensional integrals of spectral densities.

23The approach of Lobato and Velasco (2018) based on bi-spectral and tri-spectral densities seems difficult to extend
in the multivariate framework.
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v′Zt−k]
2), E([u′Zt + v′Zt−k]

3) or E([u′Zt + v′Zt−k]
4) for some k > 1.

ii) We might also consider quantities such as: E([u′Zt + v′Zt−1 +w′Zt−2]
2), E([u′Zt + v′Zt−1 +

w′Zt−2]
3) or E([u′Zt + v′Zt−1 +w′Zt−2]

4).

These additional moment restrictions are likely to bring additional information when q > 1.

4.2.2 2-step moment method

The first step of our approach, namely the 2SLS estimation, provides us with an estimator of α =

[µ ′,vec(Φ)′]′. The second step of the approach involves the sample counterparts of (4.16), after
replacement of Zt by Ẑt =Yt− µ̂− Φ̂1Yt−1−·· ·− Φ̂pYt−p. In terms of the observation themselves,
the moment restrictions (4.16) become:

E
[
hY (Yt ,Yt−1, . . . ,Yt−p−1;α,β )

]
= 0, (4.19)

where
hY (yt ,yt−1, . . . ,yt−p−1;α,β ) = h(zt(α),zt−1(α);β ), (4.20)

with zt(α) = yt−µ−Φ1yt−1−·· ·−Φpyt−p.
The asymptotic accuracy of this 2-step moment estimator is derived in Appendix C.3.

4.2.3 Nonparametric estimation of the error distribution

Once µ , Φ1, . . . , Φp, C0 and C1 have been estimated, consistent approximations of the errors ηt are
obtained by employing the filtering approach of Proposition 3. The p.d.f. f j can then be estimated
by a kernel density estimator applied to the residuals η̂ j,t , t = 1, . . . ,T .

5 Applications

5.1 Monte Carlo exercises

This subsection illustrates the performances of the estimation approaches by means of Monte-Carlo
experiments. For the sake of simplicity, we focus on a univariate MA(1) processes:

yt = εt−θεt−1, (4.21)

where the εts are serially independent, E(εt) = 0 and V (εt) = 1.
We consider different sample sizes (T = 100, 200 and 500) and different true distributions

of the errors εt . Four distributions are used: the Gaussian distribution, a mixture of Gaussian
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distributions and two Student distributions with respective degrees of freedom of 5 and 10. In all
simulations, we use θ =−2. Hence, data generating processes are non-fundamental.

In order to get the intuition behind our approach, it is instructive to look at the joint distribution
of yt and yt−1. Figure 1 displays contour plots associated with these distributions in the context
of the four different distributions used for εt . While the black solid lines correspond to the non-
fundamental case, the grey lines represent the (pseudo) distribution that would prevail under the
fundamental case, i.e. with θ =−1/2 and V (εt) = 4. In the purely Gaussian case (Panel (a)), the
two distributions coincide, since the two processes are observationally equivalent. By contrast, in
the other three cases –Panels (b), (c) and (d)– the two distributions are different. The case of the
mixture of Gaussian distributions is particularly illustrative. For this distribution, and in the non-
fundamental case, the shock εt is drawn from N (µ1,σ

2
1 ) with probability p and from N (µ2,σ

2
2 )

with probability 1− p. We set: µ1 = −0.7, µ2 = 0.7, σ1 = 0.32, σ2 = 0.95, p = 0.5, which
results in a zero-mean unit-variance distribution with order-3 and order-4 cumulants of 0.85 and 0,
respectively.24

For the ML approach (Subsections 4.1), and for each of the four distributions, we estimate five
parameters: θ , the variance of εt and three parameters specifying a mixture of Gaussian distri-
butions with zero mean and unit variance. As far as the Student distributions are concerned, we
proceed under the assumption that we do not know the true distribution, which is generally the
case in practice. Hence, when the true distributions are Student, the ML approach is, more pre-
cisely, a Pseudo Maximum Likelihood (PML) approach.25 This exercise is in the spirit of Lii and
Rosenblatt (1996) and Wu and Davis (2010), who study the performances of their ML estimators
when using a misspecified distribution in the computation of the log-likelihood function.

In the context of our variant of the GMM approach (Subsection 4.2), we consider the order-2,
order-3 and order-4 moments given in (4.18), with (u,v) ∈ {(1,0),(1,2),(2,1)}.26 Hence, we use
9 restrictions to estimate, for each model, the four following parameters: θ , the variance of εt , κ3

and κ4.
In our discussion of the results, we focus on the estimates of θ . Figure 2 shows the distributions

of the estimators of θ resulting from both approaches. Each of the four rows of plots corresponds to
one of the four considered distributions for εt , that are those distributions represented on Figure 1.
On each panel, the three curves correspond to the three considered sample sizes (T = 100, 200 and
500). The (finite sample) distributions are often bimodal; one mode being close to the true value

24In their Monte-Carlo experiment, Gospodinov and Ng (2015) also consider a distribution characterized by κ3 =
0.85 and κ4 = 0.

25By contrast, when the true distribution is Gaussian or a Gaussian mixture, the approach is not a PML, but a
standard ML approach. (Note that the Gaussian distribution is a special case of Gaussian mixture.)

26The reason why we do not take (u,v) ∈ {(1,0),(1,1)} is that, if (u,v) = (1,1), the moments of uyt + vyt−1 are
the same as those of vyt +uyt−1, thereby preventing the identification of the parameters. Indeed, if yt = εt−θεt−1 and
y∗t =−θεt + εt−1, then yt + yt−1 and y∗t + y∗t−1 have the same distribution, and therefore the same moments.
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of θ –indicated by a vertical bar on each panel– and the other being close to 1/θ .
The results illustrate the fact that, the closer the distribution of the generated shocks is to a

normal one, the weaker the identification. Let us focus for instance on the fraction of estimated
fundamental processes, i.e. with θ estimates that are lower than 1 in absolute value (whereas the
data generating process is non-fundamental since |θ | > 1). In the Gaussian case (Panels a.1 and
a.2 of Figure 2), about half of the estimated processes are fundamental, irrespective of the sample
size or of the estimation approach. Among the three remaining distributions, the one leading to the
largest fractions of estimated fundamental processes is the Student t(10). For the latter distribution
and in the ML case, even for a relatively large sample size (T = 200), about a third of the estimated
θ ’s have a modulus lower than 1, whereas this proportion is of about 13% in the Student-t(5) case
and close to 0% in the Gaussian mixture case. Identification is easier in the Student t(5) and in the
Gaussian mixture cases (Panels b.1, b.2, c.1 and c.2) since, in these cases, the differences between
the distributions of (yt−1,yt) in the fundamental versus non-fundamental regimes are more marked
than for the other two distributions (as illustrated by Figure 1).

Table 1 reports summary statistics associated with the different estimators. The results show
that our GMM approach is less efficient than the (P)ML one. Indeed, Root Mean Squared Er-
rors (RMSEs) are lower with the (P)ML approach. This is the case even when the (P)ML uses
a misspecified distribution, i.e. when the true distributions are Student-t. These lower RMSEs
are accounted for by far smaller standard deviations of the estimator distributions for the (P)ML
approach, which more than compensates the fact that (P)ML-estimator biases are often larger than
in the GMM case.

To the best of our knowledge, this study is the first one to compare GMM and ML estimates
in the context of non-fundamental univariate MA processes. As regards the GMM approach, our
results are comparable to the results in the literature, such as the ones reported by Gospodinov and
Ng (2015) for T = 500, or by Lobato and Velasco (2018) with spectral-density-based estimator for
T = 100, 200 and Student t(5) distribution.27

The last three columns of Table 1 aim at assessing the validity of the asymptotic distribution
of the θ estimators. These columns indicate the fractions of times (among the N simulations)
where the true value of θ lies within the interval [θ̂ − φασasy, θ̂ + φασasy], where σasy denotes
the estimate of the asymptotic standard deviation of the estimator θ̂ and where φα is such that
P(−φα < X < φα) = α , if X ∼ N (0,1). The closer to α the reported fractions, the better the
asymptotic approximation of the estimator distribution. The results indicate that the inference

27Our GMM estimator however appears to be less efficient than the spectral-density-based estimator of Lobato and
Velasco (2018): For T = 200 and when the true distribution is t(5), Lobato and Velasco (2018) report that the absolute
value of their θ estimator is on the right side of 1 in 93% of the cases (last column in their Table 1), while we get an
equivalent percentage of 75% with our GMM estimator. This percentage is of 87% for our PML estimator. Our PML
RMSEs are close to those reported by Lobato and Velasco (2018) in this case (T = 200, t(5) distribution, θ =−2).
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based on the estimated asymptotic distribution is less adequate in the GMM context than in the
(P)ML one. The fact that the wrong fundamentalness regime is more often obtained in the GMM
case than in the (P)ML case accounts for the lower adequacy of GMM-based confidence intervals.

5.2 Univariate real-data example: per capita GDP growth rates

In this subsection, we use the Maximum Likelihood approach to estimate the parameterizations of
ARMA(1,1) processes assumed to be followed by per capita real GDP growth. We consider long
historical samples taken from Bolt and van Zanden (2014).28 As indicated in the second column of
Table 2, the data, which are at the annual frequency, start as soon as 1800 for several countries. For
most samples, the non-Gaussianity of the data is confirmed by the application of two time-series
normality tests: the Bai and Ng (2005) and the Lobato and Velasco (2004) tests. The p-values
of these tests are reported in the third column of the table. According to the latter test, the null
hypothesis of normality is rejected at the 5% level for all countries.

Denoting by yt the demeaned per capita GDP growth rate, the model is as follows:

yt = φyt−1 + cηt−θcηt−1,

where the distribution of ηt is assumed to be a Gaussian mixture. We assume that ηt is drawn from
N (µ1,σ

2
1 ) with a probability p and from N (µ2,σ

2
2 ) with a probability 1− p. Therefore, since

E(ηt) = 0 and V (ηt) = 1, the distribution of ηt is completely defined by γ = [µ1,σ1, p]′.
Because the true distribution of the shocks is not known in practice, the choice of a flexible

parametric type of distributions is important. Though relatively parsimonious, Gaussian mixtures
accommodate various interesting features. In particular, they can attain any possible (skewness,
kurtosis) pair in the whole domain (kurtosis≥ skewness2 +1) and can feature bi-modality.

The results are reported in Table 2. For 9 countries out of 17, the absolute value of the estimate
of θ is larger than one. For these countries, the estimated MA process is non-fundamental.

For an ARMA(1,1) model, the first values of the IRF are: c, (φ − θ)c, (φ − θ)φc, . . . For
instance, for the USA, the first three values of the IRF are 0.5, 4.6 and 0.2. Hence, the nonfunda-
mentalness of the estimated US GDP growth process implies the existence of a bump effect one
period after the shock. It is interesting to compare this IRF to the one associated with the funda-
mental ARMA(1,1) process featuring the same second-order properties as the previous one. The

28The data are available at http://www.ggdc.net/maddison/maddison-project/home.htm. For the 17 considered coun-
tries (see the list of countries in Table 2), the Phillips-Perron test rejects the null hypothesis of the presence of a unit
root in the per capita real GDP growth at the 1% significance level.
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dynamics of the latter process reads:

y∗t = φy∗t−1−θcη
∗
t + cη

∗
t−1.

In the latter case, the first three terms of the IRF are: 4.6, 0.7, 0.03. In particular, for the latter
process, the IRF does not feature a bump one period after the shock. This illustrates the importance
of the estimation of the fundamentalness regime for the IRF analysis.

5.3 Bivariate real-data example: GNP growth and unemployment

For comparison with the literature, we consider the two-variable model of Blanchard and Quah
(1989), referred to as BQ hereafter. The two stationarized endogenous variables are the U.S. real
GNP growth and the (detrended) unemployment rate. BQ fit an 8-lag VAR model to these data for
the period from 1948Q2 to 1987Q4 and impose long-run restrictions to identify demand and supply
shocks. Specifically, they impose that the demand shock has no long-run impact on real GNP. That
is, in their model, the contribution of supply disturbances to the variance of output tends to unity
as the horizon increases.

Using the same dataset and analysing the location of the (complex roots) of the 8-lag VAR
of BQ, Lippi and Reichlin (1994)’s results suggest that this VAR approximates a VARMA(1,1)
model. Further, Lippi and Reichlin (1994) explore the influence of inverting the roots of the lag
polynomial associated with the 8-lag VAR model on the IRFs. They illustrate that fundamental and
non-fundamental versions of the model have different implications, notably in terms of first im-
pacts of the shocks and of variance decompositions. However, their analysis does not allow them
to statistically pinpoint the most suitable model among the different versions they obtain (the non-
fundamental ones and the fundamental one). Nevertheless, as explained in Section 3.1, if the under-
lying structural shocks are non-Gaussian and independent, then the data-generating SVARMA pro-
cess, be it fundamental or not, is identifiable. Preliminary indications regarding the non-normality
of the system can be obtained by applying normality tests on the endogenous variable themselves.
In this regard, the Lütkepohl and Theilen (1991)’s multivariate tests, based on standardized third
and fourth moments of possibly correlated variables, point to the non-Gaussianity of the vectors of
endogenous variables.29

We employ both the ML and the 2SLS-GMM approaches described in Subsections 4.1 and
4.2 to fit VARMA(p,1) models to BQ’s dataset. As in Blanchard and Quah (1989) and Lippi
and Reichlin (1993, 1994), the two endogenous variables follow a stationary process and are not
cointegrated.30 In the context of the ML approach, the distributions of the independent shocks

29The p-value of this test, whose null hypothesis is that the considered variables are Gaussian, is of 3.5%.
30As noted by Lippi and Reichlin (1994), Footnote 1 p. 310, assuming that the dynamics of the two endogenous
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η j,t , for j ∈ {1,2}, are assumed to be Gaussian mixtures. Specifically, we assume that η j,t is
drawn from N (µ j,1,σ

2
j,1) with a probability p j and from N (µ j,2,σ

2
j,2) with a probability 1− p j.

Therefore, if we have E(η j,t) = 0 and V (η j,t) = 1, the distribution of the two-dimensional vector ηt

is completely defined by γ = [µ1,1,µ2,1,σ1,1,σ2,1, p1, p2]
′. As regards the 2SLS-GMM approach,

in the second step of this approach, we consider the order-2, order-3 and order-4 moments given in
(4.18), with:

(u1,u2,v1,v2) ∈ {(2,0,0,0),(0,2,0,0),(1,0,2,0),(2,0,1,0),(1,0,0,2),(2,0,0,1),

(0,1,0,2),(0,2,0,1),(0,1,2,0),(0,2,1,0)} ,

which results in 30 restrictions.31

We consider different values of the order p of Φ(L). Specifically, for p∈ {1, . . . ,6}, we proceed
as follows. We first apply the 2SLS-GMM approach, benefitting from the fact that the numerical
complexity of this approach does not depend on order p of Φ(L). We then use the 2SLS-GMM es-
timates as starting values for the numerical optimization of the truncated log-likelihood function.32

An advantage of the ML approach is to make it possible to use standard lag selection criteria.
Our preferred model is the one minimizing the BIC criteria, leading to p = 4. Parameter estimates
resulting from both the 2SLS-GMM and the ML approach are reported in Table 3. For both ap-
proaches, the roots of det(Φ(z)) are outside the unit circle; the estimated processes are therefore
stationary. Besides, for both estimation methods, the two roots of det(I−Θz) are on each side of
the unit circle. Hence, the estimated processes are nonfundamental. Figure 3 shows the ML esti-
mated parametric distributions of the structural shocks (Gaussian mixtures, represented by dotted
lines). These estimated distributions are fairly close to kernel-based densities associated with the
η j,t’s estimates derived from Proposition 3 (black solid lines).

It is difficult to check ex ante the reasonableness of the assumptions on the structural shocks,
in particular regarding the independence assumption A.1. Tests can however be applied to the
estimated structural shocks. In the present case, the application of Box and Pierce (1970) and Ljung
and Box (1978) tests on the estimated series of structural shocks do not detect auto-correlation in
the estimated series of η j,t , |η j,t |, nor in the η2

j,t , which is a necessary condition for independence.
The normality hypothesis of the η j,t’s is rejected by the Shapiro and Wilk (1965)’s test, with p-

variables is described by a stationary VAR model (as done in Blanchard and Quah, 1989; Lippi and Reichlin, 1993,
1994) amounts to precluding cointegration.

31See Footnote 26 for the reason why the ui’s and vi’s are not only in {0,1}. In the 2SLS step, we use k = p+3 (i.e.
we regress Yt−1 on Yt−2, . . . ,Yt−7), see Appendix C.1.

32As regards starting values for the elements of γ , we do the following: after the 2SLS-GMM estimation, we apply
the algorithm of Proposition 3 to obtain estimates of the structural shocks η j,t . Then, for j ∈ {1,2}, we estimate
parameters (µ1,i,σ1,i, pi) by MLE, which is very fast.
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values below 2%.33 A limitation of these residual tests is however that they do not take into account
the uncertainty regarding the estimation of the η j,t’s; this is left for future research.

Figure 4 displays the impulse response functions resulting from the ML and 2SLS-GMM ap-
proaches and compares them with those obtained with long-run restrictions à la Blanchard and
Quah (1989). Because the ML and 2SLS-GMM approaches do not rely on restrictions based on
economic theory, the resulting structural shocks have no a priori economic interpretation. However,
for comparing the different approaches, we bring the BQ supply shock closer to the ML/2SLS-
GMM-estimated shocks that accounts for the largest part of the GNP long-run variance. We call
this shock the “long-run shock”.

Figure 4 shows that, overall, the different response functions show similarities across the three
estimation approaches. In the ML and 2SLS-GMM approaches, both structural shocks –Shock 1
(first column of charts) and Shock 2 (second column of charts)– have a long-run impact on GNP.
This is not the case with the BQ approach where, by construction, the effect of Shock 1 on GNP
converges to zero. The fact that none of the two structural shocks identified within a bivariate
VAR has a zero impact on output in the long-run was also obtained by, e.g. Cochrane (1994).34

Interestingly, both the ML and 2SLS-GMM approaches result in unemployment IRFs that feature
the same shapes, but they do not agree with the amplitudes of the responses (lower row of plots).
In particular, the bottom-right plot shows that, for both the ML and 2SLS-GMM approaches, the
instantaneous response of unemployment to the second long-run shock is close to zero, reflecting
the fact that the estimated coefficients C2,2 are small (and not statistically different from zero, see
Table 3).35 Besides, while the two approaches (ML and 2SLS-GMM) lead to close responses of
GNP to the long-run shock (upper right plot), they suggest different responses of GNP to the other
shock (upper left plot).

6 Concluding remarks

We have shown in this paper that the static and dynamic identification problems associated with
Gaussian SVARMA processes disappear in the non-Gaussian case. Whenever the shocks are not

33Because no auto-correlation is detected in the residual, there is no need for using autocorrelation-robust normality
tests such as those of Bai and Ng (2005) and of Lobato and Velasco (2004). By contrast, the latter two tests had to be
used on the autocorrelated output growth series used in Subsection 5.2.

34The bivariate model of Cochrane (1994) describes the joint dynamics of GNP and consumption growth. The
structural shocks are identified by means of a short-run restriction (consumption does not respond contemporaneously
to a GNP shock).

35Note that these results could not have been obtained by implementing an identification strategy à la Sims (im-
posing that one structural shock has no contemporaneous impact on the unemployment rate). Indeed, the standard
short-run restriction methodology is based on VAR models and therefore necessarily leads to fundamental models.
By contrast, our approach remains a priori agnostic with respect to the fundamentalness regime. In this regard, our
estimated SVARMA model is non-fundamental.
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Gaussian, the SVARMA becomes identified up to a permutation and sign change of the structural
shocks. This paper further proposes parametric and semi-parametric estimation methods able to
consistently estimate possibly non-fundamental representation in the moving average dynamics.

Our analysis highlights that a dynamic model constructed to derive impulse response func-
tions requires much more structural assumptions on the error terms, namely serial independence,
than a pure forecast model for which uncorrelated errors may be sufficient. In this respect the
conventional econometric toolboxes available for macroeconomists have often been conceived for
forecasting purposes and are not appropriate for the analysis of policy shocks. Moreover, the
instantaneous independence of the structural shocks is also required.

Because it focuses on second-order properties, the standard SVARMA literature often intro-
duces potentially misleading identification assumptions that may entail misspecification and naive
interpretations of VARMA residuals. As shown in the parametric and semi-parametric analysis
developed in Section 4 and in the applications presented in Section 5, such potential pitfalls can be
addressed in the non-Gaussian case, provided that the independence assumptions are valid and the
appropriate estimation methods are used.

The methods developed in this paper might be extended in several directions, which are left for
future research. First testing procedures, in particular tests of fundamentalness, may be obtained.
Second the properties of estimation methods can be analyzed in a neighbourhood of the Gaussian
assumption (see e.g. Gouriéroux and Jasiak, 2016), or in a neighbourhood of unit roots (see e.g.
Chen, Davis, and Song, 2011, for mixed causal/noncausal MA process). Third, the asymptotic
properties of our ML estimate in the presence of cointegration may be derived. Fourth, the iden-
tification and estimation results might be extended to the case of more errors than observables.
Indeed, while identification results exist when the errors are not Gaussian (see e.g. Th 3.1. in
Eriksson and Koivunen, 2004, for the static case, Gouriéroux and Zakoian, 2015, for stable mul-
tivariate processes, or Gagliardini and Gouriéroux, 2018, for a non-Gaussian factor model), the
possibility to identify the dynamics when the number of shocks is larger than the number of en-
dogenous variables and the errors are not Gaussian would be important in the discussion of the
effect of omitted variables (see e.g. Giannone and Reichlin, 2006; Lütkepohl, 2014).
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Identifiability, Reversibility, Estimation and Responses in the Case of a MA(1) Process

A Identifiability, Reversibility, Estimation and Responses in the
Case of a MA(1) Process

The aim of this appendix is to illustrate some of the general results of the paper by considering the
example of the one-dimensional MA(1) process: yt = εt − θεt−1, where the ε ′t s are independent.
We first consider the asymptotic behaviour of the approximated maximum likelihood approach.
Then we illustrate the reason of identifiability in a non-Gaussian case, and consider a moment
estimation method based on (cross) moments up to order 3. Finally we discuss the bias on the IRF
when a misspecified fundamental representation is used.

A.1 Limit optimization problem under the truncated ML method

We assume that the p.d.f. of the ε ′t s belongs to the family g(ε;γ). The truncated log-likelihood
function is:

LT (yT
1 ;θ ,γ) = 1|θ |<1

T

∑
t=1

log

{
g

(
t−1

∑
h=0

θ
hyt−h;γ

)}

+ 1|θ |>1

T

∑
t=1

log

{
1
|θ |

g

(
−

T−t−1

∑
h=0

1
θ h+1 yt+h+1;γ

)}
.

When T goes to infinity,
1
T

LT converges to the limit function:

L∞(θ ,γ) = 1|θ |<1E0 logg

(
∞

∑
h=0

θ
hyt−h;γ

)

+ 1|θ |>1E0[log
1
|θ |

g

(
−

∞

∑
h=0

1
θ h+1 yt+h+1;γ

)
,

where E0 denotes the expectation with respect to the true distribution of the process. We also have:

L∞(θ ,γ) = 1|θ |<1E0 logg
[
yt−Eθ (yt |yt−1

−∞ );γ
]

+ 1|θ |>1E0

{
−1

2
logθ

2 + logg
[
− 1

θ
(yt+1−Eθ (yt+1|y∞

t+2));γ

]}

with Eθ (yt |yt−1
−∞ ) =−

∞

∑
h=1

θ
hyt−h and Eθ (yt+1|y∞

t+2) =−
∞

∑
h=1

1
θ h+1 yt+h+1 (these expectations do not

depend on γ).
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Identifiability, Reversibility, Estimation and Responses in the Case of a MA(1) Process

A.2 Lack of identification in the Gaussian case

In the Gaussian case, where the distribution of εt is N(0,σ2), we get:

L∞(θ ,σ
2) =−1

2
[
1|θ |<1L̃1(θ ,σ

2)+1|θ |>1L̃2(θ ,σ
2)
]
,

with

L̃1(θ ,σ
2) = logσ

2 +
1

σ2 E0

(yt +
∞

∑
h=1

θ
hyt−h

)2
 ,

L̃2(θ ,σ
2) = logθ

2
σ

2 +
1

θ 2σ2 E0

(yt+1 +
∞

∑
h=1

1
θ h yt+h+1

)2
 .

We have to minimize 1|θ |<1L̃1(θ ,σ
2)+1|θ |>1L̃2(θ ,σ

2) w.r.t. (θ ,σ2). Let us denote by θ0 and σ2
0

the true values of θ and σ2.
If |θ0| < 1, we know that E0(yt |yt−1

−∞ ) = ∑
∞
h=1 θ h

0 yt−h and, due to the time-reversibility of a
Gaussian process, we have E0(yt+1|y∞

t+2) = ∑
∞
h=1 θ h

0 yt+h+1. Moreover E0[{yt −E0(yt |yt−1
−∞ )}2] =

E0[{yt+1−E0(yt+1|y∞
t+2)}2] = σ2

0 .
Therefore, L̃1(θ ,σ

2) is minimized on |θ | < 1 at θ̃0 = θ0 and σ̃2
0 = σ2

0 , and the minimum is
logσ2

0 + 1. Similarly, L̃1(θ ,σ
2) is minimized on |θ | > 1 at θ̃0 = 1/θ0 and σ̃2

0 = θ 2
0 σ2

0 and the
minimum is, again, logσ2

0 +1.
This means that, if |θ0|< 1, the asymptotic log-likelihood reaches a maximum of logσ2

0 +1 for
two different values: (θ0,σ

2
0 ) and (1/θ0,θ

2
0 σ2

0 ), and the model is not asymptotically identifiable.
Let us now consider the case |θ0|> 1. We have:(

1− 1
θ0

L−1
)−1

yt+1 =−θ0εt ,

therefore
yt+1 =−θ0εt−

∞

∑
h=1

1
θ h

0
yt+h+1,

and, as a result E0(yt+1|y∞
t+2) = −∑

∞
h=1

1
θ h

0
yt+h+1 and E0({yt+1−E0(yt+1|y∞

t+2)}2) = θ 2
0 σ2

0 . Due

to the time-reversibility of a Gaussian process, we also have E0(yt |yt−1
−∞ ) = −∑

∞
h=1

1
θ h

0
yt−h and

E0({yt+1−E0(yt+1|yt−1
−∞ )}2) = θ 2

0 σ2
0 .

Therefore, L̃1(θ ,σ
2) is minimized on |θ |< 1 at θ̃0 = 1/θ0 and σ̃2

0 = θ 2
0 σ2

0 , and the minimum
is log(θ 2

0 σ2
0 )+ 1. Similarly, L̃1(θ ,σ

2) is minimized on |θ | > 1 at θ̃0 = θ0 and σ̃2
0 = σ2

0 and the
minimum is, also, log(θ 2

0 σ2
0 )+1.
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Again, the asymptotic log-likelihood is maximized at two different points and the model is not
asymptotically identified.

A.3 Identification in the non-Gaussian case

Let us consider the joint distribution of (yt ,yt−1). The characteristic function of this distribution
is:

ψ(u,v) = E exp[i(uyt + vyt−1)]

= E exp(iuεt)E exp[i(v−uθ)εt−1]E[exp(−ivθεt−2)].

Let us for instance assume that εt follows a stable distribution, with stability parameter α , we
get:

ψ(u,v) = exp[−c(|u|α + |v−uθ |α + |vθ |α)].

Is this function of (c,θ) injective? If α = 2, i.e. in the Gaussian case, we verify that

c[u2 +(v−uθ)2 + v2
θ

2] = c[(u2 + v2)(1+θ
2)−2uvθ ]

takes the same value for (c,θ) and (cθ 2,1/θ) and we do not have identifiability. On the contrary
for α 6= 2, we see, for instance, that ψ(u,v) is not differentiable on the lines u = 0, v = 0 and
v−uθ = 0. The latter condition implies the identifiability of θ .

A.4 Moment method

If we do not want to make a parametric assumption about the distribution of εt , we can use a
moment method based on higher-order cross moments (see Section 4.2 and Appendix C).

Let us consider again the one-dimensional MA(1) process. We have:

E(yty2
t−1) =−θEε

3
t ,E(y

2
t yt−1) = θ

2Eε
3
t ,

and therefore:

θ =−E(y2
t yt−1)

E(yty2
t−1)

,

whenever εt has a skewed distribution, i.e. E(ε3
t ) 6= 0. Thus, |θ | is identified from the lack of time

reversibility of the process.
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Proofs

A.5 Impulse Response Functions

The MA(1) case allows to easily illustrates the fact that fundamental and non-fundamental SVARMA
models that feature the same second-order properties entail different IRFs. Consider for instance
the MA(1) processes (yt) and (y∗t ) defined by

yt = σηt−θσηt−1 and y∗t = σθηt−σηt−1.

Although (yt) and (y∗t ) have the same second-order properties, they react differently to shocks to
ηt .

Consider a one-unit increase in ηt . Whereas this shock results in increases in yt , yt+1 and yt+h,
h > 1, by σ , −θσ and 0, respectively, it implies increases in y∗t , y∗t+1 and y∗t+h by σθ , −σ and 0.
In particular, if one of these two IRFs is decreasing (in absolute values), the other is hump-shaped.

B Proofs

B.1 Proof of Proposition 1

Let us first recall Theorem 1 in Chan, Ho, and Tong (2006).

Theorem. Let Yt and Y ∗t be two non-Gaussian processes defined by:

Yt =
∞

∑
k=−∞

Akεt−k,

Y ∗t =
∞

∑
k=−∞

A∗kε
∗
t−k,

where the processes εt and ε∗t are strong white noises with independent components.

Then, Yt and Y ∗t are observationally equivalent if and only if

ε
∗
j,t−m( j) = σ jεπ( j),t (equality in distribution) (a.1)

A∗k, j =
1
σ j

Ak−m( j),π( j), (a.2)

where π is a permutation and Ak, j (respectively A∗k, j) is the jth column of Ak (respectively A∗k)

provided the following condition holds:

The components of εt (resp. ε∗t ) have non-zero rth cumulant, with r ≥ 3 and a finite even

moment of order s greater than r.
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Proofs

If the moving averages are one-sided (Ak = A∗k = 0, ∀k < 0, A0 6= 0,A∗0 6= 0) and εt (resp. ε∗t ) is
replaced by ηt (resp. η∗t ), where the components of ηt (resp. η∗t ) have a unit variance, this implies
that m( j) = 0 and σ j =±1 for all j.

In our case, we have:

Yt = Ψ(L)Cηt ,

Y ∗t = Ψ
∗(L)C∗η∗t ,

with

Ψ(L) = Φ
−1(L)Θ(L) = I +Ψ1L+Ψ2L2 + . . . ,

Ψ
∗(L) = Φ

−1(L)Θ∗(L) = I +Ψ
∗
1L+Ψ

∗
2L2 + . . .

Therefore, we have:

Ak = ΨkC with Ψ0 = I,

A∗k = Ψ
∗
kC∗ with Ψ

∗
0 = I.

The previous theorem implies that the moving average matrix coefficients Ak are identified up to a
permutation and a sign change of the columns. That is, there exist a permutation matrix P and a
diagonal matrix D, whose diagonal elements are either −1 or 1, that are such that:

ΨkC = Ψ
∗
kC∗PD, ∀ k.

For k = 0, this gives C =C∗PD, which further implies that Ψk = Ψ∗k for all k. The Ψk are therefore
identified and C is identified up to a permutation and a sign change of its columns. Since Φ(L) and
Ψ(L) are identified, Θ(L) = Φ(L)Ψ(L) is also identified.
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Proofs

B.2 Proof of Propositions 3 and 4

Replacing the ε∗t
(2)’s appearing in equation (4.12) by their expressions given in (4.11), one obtains:

ε∗0
(1)

...
ε∗T−1

(1)

ε∗1
(2)

...
ε∗T

(2)


︸ ︷︷ ︸

=ε∗

=

[
J1 J12

0 J2

]
︸ ︷︷ ︸

=J



W1
(1)

...
WT

(1)

W1
(2)

...
WT

(2)


︸ ︷︷ ︸

=W

+



{
(U (1))−1

}T
M1

...
...

(U (1))−1 MT

0 U (2)

...
...

0 (U (2))T


︸ ︷︷ ︸

=M

[
ε∗T

(1)

ε∗0
(2)

]
, (a.3)

where J1 is an upper block triangular matrix with
{
−(U (1))−1

}
matrices on its diagonal, where J2

is upper block triangular with identity matrices on its diagonal, and where:

Mt =−
{
(U (1))−1

}2
U (12)(U (2))

t+1
−·· ·−

{
(U (1))−1

}T+1−t
U (12)(U (2))

T
.

Because the eigenvalues of U (2) and of (U (1))−1 are strictly inside the unit circle, the elements
of M corresponding to periods t that are far from sample boundaries (0 and T , assuming that
T is large) are extremely small. As a result, for such periods t, the ε∗t ’s are well approximated
by the corresponding components of JW . (These components correspond to the e∗t defined in
Proposition 3).

The likelihood associated with ε∗ = [e∗(1)0
′
, . . . ,e∗(1)T−1

′
,e∗(2)1

′
, . . . ,e∗(2)T

′
] is:

g∗(ε∗,Γ) = g
ε∗(1)

(
e∗(1)0 ,Γ

)
g

ε∗(2)

(
e∗(2)T ,Γ

)T−1

∏
t=1

g(Ae∗t ,Γ) ,

with e∗t = [e∗(1)t
′
,e∗(2)t

′
]′.

In the limit (for T → ∞), 1/T logg∗(ε∗,Γ) does not depend on a potential conditioning initial
values Y0,Y−1, . . . ,Y−p+1. Accordingly, in the following, we proceed under the assumption that
Y0 = Y−1 = · · ·= Y−p+1 = 0.

Let’s consider the vector V = [Z′1, . . . ,Z
′
T ]
′ where Zt = Φ(L)Yt . If Y = [Y ′1, . . . ,Y

′
T ]
′, we have

V = ΛY where Λ is a lower triangular matrix whose diagonal is filled with ones (and therefore
detΛ = 1).

By definition of Wt , we have AWt = Φ(L)Yt and, therefore, A′Zt = Wt . Hence, with W̃ =

[W ′1,W
′
2, . . . ,W

′
T ]
′, we have:

W̃ = (I⊗A′)V = (I⊗A′)ΛY.
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2SLS-GMM: Estimation and asymptotic properties

Let’s denote by P the permutation that is such that W = PW̃ , where W is defined in equation (a.3).
An approximation of ε∗ is given by E (Y ) := JP(I⊗A′)ΛY (this is Proposition 3).

Because A and P are orthogonal matrices, we have |detA|= |detP|= 1. We also have detΛ= 1.
This implies:

|det(JP[I⊗A′]Λ)|= |det(J)|= 1
|det(U (1))|T

.

Therefore, when multiplied by 1/T , the likelihood associated with Y can be approximated by:

1
T
|det(J)|g∗(E (Y ),Γ) =

1
T

1
|det(U (1))|T

g∗(E (Y ),Γ),

or, neglecting 1
T logg

ε∗(1)(e
∗(1)

0 ,Γ) and 1
T logg

ε∗(2)(e
∗(2)

T ,Γ)), by:

1
T

1
|det(U (1))|T

g̃(AE (Y ),Γ),

where

g̃(ε∗,Γ) =
T−1

∏
t=1

g(Ae∗t ,Γ) ,

with ε∗ = [e∗(1)1
′
, . . . ,e∗(1)T

′
,e∗(2)0

′
, . . . ,e∗(2)T−1

′
] and e∗t = [e∗(1)t

′
,e∗(2)t

′
]′.

C 2SLS-GMM: Estimation and asymptotic properties

C.1 Estimation of µ,Φ1, . . . ,Φp by 2SLS

Consider the model:
Yt = µ +Φ1Yt−1 + · · ·+Φ1Yt−p +Zt ,

where Zt = C0ηt + · · ·+Cqηt−q and where the components of ηt , that are the ηi,t’s, are zero-
mean, unit-variance, serially and mutually independent shocks. Assuming that (Yt) is covariance-
stationary, we denote by m the unconditional expectation of Yt , i.e. m = E(Yt) = (I−Φ1−·· ·−
Φp)

−1µ , and by Γi its auto-covariance matrix of order i, i.e. Γi = E(YtY ′t−i)−E(Yt)E(Yt−i)
′.

Consistent estimates of Π= [µ,Φ1, . . . ,Φp] can be obtained by applying two-stage least squares
(2SLS). For j > 0, Yt−q− j is independent from Zt . As a result, the Yt−q− j’s, j > 0 can be used as
instruments to estimate Π.

Take k≥ p and let us introduce the notations Wt = [1,Y ′t−q−1, . . . ,Y
′

t−q−k]
′, Xt = [1,Y ′t−1, . . . ,Y

′
t−p]

′,
W = [W1, . . . ,WT ]

′, X = [X1, . . . ,XT ]
′, Y = [Y1, . . . ,YT ]

′ and Z = [Z1, . . . ,ZT ]
′. The first step of the
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2SLS approach provides the following fitted value of X:

X̂ = W(W′W)−1W′X.

We then regress the Yt’s on the X̂t’s by OLS and get the 2SLS estimate of Π:

Π̂
′ = (X̂′X̂)−1X̂′Y = [X′W(W′W)−1W′X]−1X′W(W′W)−1W′Y

= Π
′+
[
X′W

(
W′W

)−1 W′X
]−1

X′W(W′W)−1W′Z

= Π
′+

1√
T

[
X′W

T

(
W′W

T

)−1 W′X
T

]−1
X′W

T

(
W′W

T

)−1(√
T

W′Z
T

)
. (a.4)

We have
X′W

T
p→ QXW and

W′W
T

p→ QW , where QXW and QW are given by:

QXW =



1 m′ m′ · · · m′

m Γ̃q Γ̃q+1 · · · Γ̃q+k−1

m Γ̃q−1 Γ̃q · · · Γ̃q+k−2
...

...
m Γ̃q−p+1 · · · Γ̃q+k−p


and QW =



1 m′ m′ · · · m′

m Γ̃0 Γ̃1 · · · Γ̃k−1

m Γ̃−1 Γ̃0 · · · Γ̃k−2
...

...
m Γ̃−k+1 Γ̃−k+2 · · · Γ̃0


,

with Γ̃i = E(YtY ′t−i) = Γi +mm′.
Using the notations α̂T = vec(Π̂) and α = vec(Π), the expansion (a.4) leads to:

√
T (α̂T −α)≈ Qπ

(√
T vec

(
Z′W

T

))
, (a.5)

where
Qπ =

{
[QXW Q−1

W Q′XW ]−1QXW Q−1
W
}
⊗ In×n.

C.2 Cumulant-based identification

The first step provides consistent estimates of µ , Φ1, . . . ,Φp (see C.1). Therefore we can focus on
the identification and the derivation of moments on the pure VMA process: Zt =C0ηt +C1ηt−1.
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The pairwise log-Laplace transform of (Zt ,Zt−1) is:

logE[exp(u′Zt + v′Zt−1)] (a.6)

= logE[exp(u′(C0ηt +C1ηt−1)+ v′(C0ηt−1 +C1ηt−2))]

= log
(
E[exp(u′C0ηt)]×E{exp[(u′C1 + v′C0)ηt−1]}×E[exp(v′C1)ηt−2]

)
=

n

∑
j=1

logE[exp(u′C0 jη j,t)]+
n

∑
j=1

logE{exp[(u′C1 j + v′C0 j)η j,t−1}+
n

∑
j=1

logE[exp(v′C1 jη j,t−2)],

using that the η j,t’s are mutually and serially independent.
Let us denote by Ψξ the log-Laplace transform of a given random variable ξ defined by:

Ψξ (u) = logE[exp(wξ )].

If the moments of ξ exist up to order 4, and if E(ξ )= 0, the log-Laplace transform can be expanded
as:

Ψξ (w)≈
w2

2
E(ξ 2)+

w3

6
E(ξ 3)+

w4

24
[
E(ξ 4)−3E(ξ 2)

]
. (a.7)

In particular, for the η j’s, for which E(η j) = 0 and E(η2
j ) = 1, we have:

Ψη j(w)≈
w2

2
+

w3

6
κ3 j +

w4

24
κ4 j, (a.8)

with κ3 j = E(η3
j,t) and κ4 j = E(η4

j,t)−3.
Using (a.7) with ξ = u′Zt + v′Zt−1 and (a.8), and taking the expansions of both sides of (a.6)

up to order 4, we get the following restrictions, holding for any pair (u,v):

E[(u′Zt + v′Zt−1)
2] = ∑

n
j=1[(u

′C0 j)
2 +(u′C1 j + v′C0 j)

2 +(v′C1 j)
2] (order 2)

E[(u′Zt + v′Zt−1)
3] = ∑

n
j=1 κ3 j[(u′C0 j)

3 +(u′C1 j + v′C0 j)
3 +(v′C1 j)

3] (order 3)
E[(u′Zt + v′Zt−1)

4] = ∑
n
j=1 κ4 j[(u′C0 j)

4 +(u′C1 j + v′C0 j)
4 +(v′C1 j)

4]

+3
(

∑
n
j=1[(u

′C0 j)
2 +(u′C1 j + v′C0 j)

2 +(v′C1 j)
2]
)2

. (order 4)

At order 2, the system concerns the information contained in E(ZtZ′t), E(ZtZ′t−1), which is
not sufficient to identify C0 and C1. The other equations provide additional information whenever
appropriate higher-order cumulants, of order 3 and/or 4, are not zero.
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C.3 Asymptotic accuracy of the 2SLS-GMM approach

In the first step of the 2SLS-GMM approach, α = vec(Π) = vec([µ,Φ1, . . . ,Φp]) is estimated by
implementing the 2SLS approach described in Appendix C.1. The remaining parameters, gathered
in vector β , are then estimated by employing the GMM approach presented in Subsection 4.2.2.
In the context of this second step, the moment restrictions write:

E0
[
h(Yt ;α0,β0)

]
= 0, (a.9)

where Yt = (Yt ,Yt−1,Yt−2) is a stationary process. These moment restrictions overidentify β for a
given α if the size of h is larger than that of β .

For a given first-step 2SLS estimator α̂T of α , the estimator of β is defined as the solution of
the minimization problem:

β̂T = argmin
β

(
1
T

T

∑
t=1

h(yt ; α̂T ,β )

)′
Ω

(
1
T

T

∑
t=1

h(yt ; α̂T ,β )

)
, (a.10)

where Ω is a given (dimh×dimh) positive symmetric matrix.
Under standard regularity conditions, this 2-step estimator is consistent and asymptotically

normal. Its asymptotic covariance matrix has to account for the first-step estimation error. The
derivation of this asymptotic covariance matrix is based on the first-order conditions (FOCs) asso-
ciated with the second step of the approach. These FOCs are:(

1
T

T

∑
t=1

h(yt ; α̂T , β̂T )

)′
Ω

(
1
T

T

∑
t=1

∂h
∂β ′

(yt ; α̂T , β̂T )

)
= 0.

The expansion of the FOCs leads to:

√
T (β̂T −β0) ≈ −

[
E0

(
∂h′

∂β

)
ΩE0

(
∂h
∂β ′

)]−1

E0

(
∂h′

∂β

)
Ω

{
1√
T

T

∑
t=1

ht +E0

(
∂h
∂α ′

)√
T (α̂T −α0)

}
, (a.11)

where

ht = h(yt ;α0,β0), E0

(
∂h′

∂β

)
= E0

(
∂h′

∂β
(Yt ;α0,β0)

)
, E0

(
∂h
∂α ′

)
= E0

(
∂h
∂α

(Yt ;α0,β0)

)
.
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2SLS-GMM: Estimation and asymptotic properties

We deduce from (a.5) and (a.11) that:

√
T

[
α̂T −α0

β̂T −β0

]
≈−

 Qπ 0

I−1
ββ

IβαQπ I−1
ββ

E0

(
∂h′

∂β

)
Ω

 1√
T

T

∑
t=1

[
gt

ht

]
, (a.12)

where gt = vec(ZtW ′t ) (see Subsection C.1 for the notations Zt and Wt) and where

Iββ = E0

(
∂h′

∂β

)
ΩE0

(
∂h
∂β ′

)
, Iβα = E0

(
∂h′

∂β

)
ΩE0

(
∂h
∂α ′

)
.

The expression of the variance-covariance matrix of the 2-step estimator follows by noting
that, under the strict stationarity of Zt , process (g′t ,h

′
t)
′ is also stationary, and by applying the

central limit theorem:
1√
T

T

∑
t=1

[
gt

ht

]
d→N (0,Q),

where

Q =
+∞

∑
k=−∞

Cov0

[(
gt

ht

)
,

(
gt−k

ht−k

)]
=:

[
Qgg Qgh

Qhg Qhh

]
.

With these notations, we have:

√
T (β̂T −β0)

d→N (0,Σ(Ω)),

with

Σ(Ω) = I−1
ββ

E0

(
∂h′

∂β

)[
ΩE0

(
∂h
∂α ′

)
Qπ Ω

]
Q
[

ΩE0

(
∂h
∂α ′

)
Qπ Ω

]′
E0

(
∂h
∂β ′

)
I−1
ββ

=

[
E0

(
∂h′

∂β

)
ΩE0

(
∂h
∂β ′

)]−1

E0

(
∂h′

∂β

)
ΩQ0Ω

′E0

(
∂h
∂β ′

)[
E0

(
∂h′

∂β

)
ΩE0

(
∂h
∂β ′

)]−1

,

with

Q0 =

[
E0

(
∂h
∂α ′

)
Qπ Id

]
Q
[

E0

(
∂h
∂α ′

)
Qπ Id

]′
.

The optimal value for Ω is Ω∗ = Q−1
0 . In this case, we have

Σ(Ω∗) =

[
E0

(
∂h′

∂β

)
Q−1

0 E0

(
∂h
∂β ′

)]−1

.
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2SLS-GMM: Estimation and asymptotic properties

Figure 1: Joint distributions of yt and yt−1 in the fundamental and non-fundamental cases, for
different distributions of the errors εt
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Panel (b) Gaussian Mixture
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Panel (c) Student (df: 5)
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Panel (d) Student (df: 10)
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Note: Each of these four panels displays contour plots associated with the joint distributions of yt and yt−1, where
yt follows an MA(1) process: yt = εt −θεt−1, where the εt are i.i.d.. Whereas the black lines correspond to the case
θ =−2 and V (εt) = 1 (non-fundamental process), the grey lines correspond to θ =−1/2 and V (εt) = θ 2 (fundamental
process with same spectral density). The titles of the panels indicate the distribution types of the εts. For Panel b
(mixture of Gaussian distributions), εt is drawn from the Gaussian distribution N (0,σ2

1 ) with probability p and from
N (0,σ2

2 ) with probability 1− p; specifically, we set: µ1 = −0.7, µ2 = 0.7, σ1 = 0.32, σ2 = 0.95, p = 0.5, which
results in a zero-mean unit-variance distribution with order-3 and order-4 cumulants of 0.85 and 0, respectively.
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2SLS-GMM: Estimation and asymptotic properties

Figure 2: Monte-Carlo experiments: distribution of θ estimators
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Note: These plots display the distributions of the estimates of θ obtained by applying the Maximum Likelihood
approach (Subsection 4.1) and the GMM approach (Subsection 4.2). The model is yt = εt −θεt−1, with θ = −2 and
V (εt) = 1. On each panel, the three distributions correspond to three sample sizes: T = 100, 200 and 500. For each
distribution of the shocks (see Figure 1) and each sample size, we simulate a large number N = 1000 of yt samples of
size T . For each simulated sample, we employ the two approaches to estimate (θ ,V (εt),γ), where γ characterizes the
distribution of εt . For the (P)ML approach, γ is a vector of three parameters specifying a Gaussian mixture distribution
of mean zero and unit variance. When the true distribution is Student, the true and pseudo distributions are different,
hence the ML approach is, more precisely, a Pseudo Maximum Likelihood (PML) approach. For the GMM approach,
γ contains the order-3 and order-4 cumulants of εt . The displayed distributions are obtained by applying Gaussian
kernel on the N estimates of θ . The vertical dotted bar indicates the true value of θ .
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2SLS-GMM: Estimation and asymptotic properties

Table 1: Results of the Monte-Carlo experiment

εt’s distribution: Bias RMSE MAE S.D. σasy α =75% α =90% α =95%
Panel (a) Maximum Likelihood approach

Sample size: T=100
Gaussian 0.74 1.17 0.97 0.91 0.17 0.25 0.31 0.33
Mixture of Gaussian −0.01 0.24 0.17 0.24 0.19 0.67 0.84 0.88
Student (df: 5) 0.35 0.88 0.61 0.80 0.25 0.51 0.60 0.64
Student (df: 10) 0.59 1.14 0.85 0.98 0.22 0.34 0.42 0.45

Sample size: T=200
Gaussian 0.72 1.09 0.86 0.81 0.13 0.30 0.37 0.39
Mixture of Gaussian 0.00 0.14 0.11 0.14 0.13 0.74 0.88 0.92
Student (df: 5) 0.17 0.58 0.35 0.55 0.20 0.63 0.77 0.80
Student (df: 10) 0.46 0.88 0.62 0.74 0.17 0.46 0.56 0.58

Sample size: T=500
Gaussian 0.79 1.09 0.85 0.76 0.08 0.32 0.39 0.41
Mixture of Gaussian 0.00 0.08 0.06 0.08 0.08 0.76 0.89 0.94
Student (df: 5) 0.01 0.22 0.12 0.22 0.14 0.76 0.89 0.93
Student (df: 10) 0.29 0.68 0.39 0.62 0.12 0.62 0.72 0.75

Panel (b) Generalized Method of Moments approach
Sample size: T=100

Gaussian −1.81 50.78 3.24 50.77 189.53 0.34 0.49 0.53
Mixture of Gaussian −0.54 13.02 1.33 13.01 4.82 0.46 0.65 0.74
Student (df: 5) 0.25 1.36 1.05 1.33 0.52 0.38 0.52 0.56
Student (df: 10) −1.86 49.58 3.35 49.57 184.67 0.33 0.48 0.52

Sample size: T=200
Gaussian 0.47 1.10 0.91 1.00 0.26 0.29 0.40 0.46
Mixture of Gaussian 0.00 0.77 0.56 0.77 0.38 0.52 0.70 0.77
Student (df: 5) 0.21 0.97 0.74 0.94 0.32 0.38 0.54 0.61
Student (df: 10) 0.44 1.08 0.87 0.99 0.27 0.33 0.44 0.50

Sample size: T=500
Gaussian 0.53 0.96 0.73 0.81 0.15 0.34 0.45 0.51
Mixture of Gaussian −0.05 0.35 0.25 0.35 0.25 0.67 0.82 0.88
Student (df: 5) 0.10 0.61 0.40 0.60 0.21 0.53 0.69 0.75
Student (df: 10) 0.35 0.84 0.60 0.76 0.17 0.43 0.55 0.60

Note: The model is yt = εt − θεt−1, with θ = −2 and V (εt) = 1. This table reports the results of a Monte-Carlo
experiment based on the simulation of N = 1000 samples for each of the four distributions considered for the errors εt
(see first column) and each of the three considered sample sizes (T = 100, 200 or 500). For each simulated sample, we
employ the Maximum Likelihood approach (Panel (a)) and the GMM approach (Panel (b)) to estimate (θ ,V (εt),γ),
where γ characterizes the distribution of the shocks. In the ML approach, γ contains three parameters defining a Gaus-
sian mixture of mean zero and unit variance. When the true distribution is Student, the true and pseudo distributions
are different, hence the ML approach is, more precisely, a Pseudo Maximum Likelihood (PML) approach. In the
GMM approach, γ contains the order-3 and order-4 cumulants of the shock distribution. Columns 2 to 5 give, respec-
tively: the bias, the root mean-squared error, the mean absolute error and the standard deviation of the estimator of θ .
The next column (σasy) gives the mean (across the N simulations) of the asymptotic standard deviations (based on the
Hessian matrix of the log-likelihood function in the ML case and on the formula given in Appendix C.3 in the GMM
case). The last three columns indicate the fractions of times (among the N simulations) where the true value of θ lies
within the interval [θ̂ − φα σasy, θ̂ + φα σasy] where σasy denotes the estimate of the asymptotic standard deviation of
the estimator θ̂ and where φα is such that P(−φα < X < φα) = α if X ∼N (0,1) (i.e. φα = 1.15, 1.64 and 1.96 for
the last three columns, respectively). 47



Ta
bl

e
2:

Fi
tte

d
M

A
(1

)p
ro

ce
ss

es
fo

rp
er

ca
pi

ta
G

D
P

gr
ow

th
ra

te
s

C
ou

nt
ry

1st
ye

ar
N

or
m

al
.t

es
t

p-
va

lu
es

φ
θ

c
µ

1
σ

1
p

A
us

tr
ia

18
70

0.
09

/0
.0

0
0.

43
(0

.0
8)

−
0.

06
(0

.0
5)

9.
83

(2
.1

8)
−

0.
35

(0
.3

1)
3.

21
(0

.5
3)

0.
08

(0
.0

3)
B

el
gi

um
18

46
0.

00
/0

.0
0

0.
60

(0
.0

4)
2.

56
(0

.2
7)

1.
46

(0
.3

9)
0.

40
(1

.0
9)

4.
39

(1
.1

1)
0.

03
(0

.0
2)

D
en

m
ar

k
18

20
0.

02
/0

.0
0
−

0.
29

(0
.3

1)
−

0.
34

(0
.3

1)
3.

51
(0

.3
2)
−

0.
15

(0
.1

7)
1.

77
(0

.2
0)

0.
24

(0
.0

7)
Fi

nl
an

d
18

60
0.

00
/0

.0
0
−

0.
29

(0
.0

6)
−

1.
66

(0
.1

6)
2.

60
(0

.3
3)
−

0.
59

(0
.3

0)
1.

56
(0

.1
5)

0.
27

(0
.0

9)
Fr

an
ce

18
20

0.
06

/0
.0

0
−

0.
80

(0
.0

6)
−

1.
24

(0
.1

0)
4.

88
(0

.6
6)
−

0.
34

(0
.2

4)
2.

10
(0

.2
7)

0.
16

(0
.0

5)
G

er
m

an
y

18
50

0.
02

/0
.0

0
0.

06
(0

.1
5)

−
0.

33
(0

.1
1)

7.
50

(1
.3

3)
−

0.
63

(0
.3

6)
2.

91
(0

.4
0)

0.
09

(0
.0

3)
It

al
y

18
00

0.
00

/0
.0

0
0.

43
(0

.0
4)

11
.1

0
(6

.6
2)

0.
37

(0
.2

3)
0.

25
(0

.3
8)

2.
51

(0
.5

2)
0.

10
(0

.0
5)

N
et

he
rl

an
ds

18
15

0.
01

/0
.0

0
0.

54
(0

.1
4)

0.
37

(0
.1

4)
5.

95
(1

.4
3)
−

0.
11

(0
.8

7)
4.

47
(1

.0
3)

0.
03

(0
.0

1)
N

or
w

ay
18

30
0.

00
/0

.0
0

0.
15

(0
.1

7)
−

0.
02

(0
.1

8)
3.

54
(0

.3
4)
−

0.
26

(0
.1

5)
1.

77
(0

.1
9)

0.
24

(0
.0

6)
Sw

ed
en

18
00

0.
00

/0
.0

0
0.

05
(0

.0
4)
−

11
.9

4
(7

.8
3)

0.
28

(0
.1

8)
−

0.
11

(0
.0

4)
1.

20
(0

.0
4)

0.
65

(0
.0

6)
Sw

itz
er

la
nd

18
51

0.
02

/0
.0

0
0.

44
(0

.0
8)

1.
76

(0
.2

4)
3.

51
(0

.5
7)
−

0.
14

(0
.1

6)
1.

65
(0

.1
8)

0.
31

(0
.0

9)
U

ni
te

d
K

in
gd

om
18

00
0.

05
/0

.0
0

0.
80

(0
.1

7)
0.

83
(0

.1
5)

3.
30

(0
.2

3)
−

0.
75

(0
.5

7)
1.

61
(0

.2
5)

0.
18

(0
.1

3)
Ir

el
an

d
19

21
0.

22
/0

.0
2

0.
95

(0
.0

2)
0.

17
(0

.0
3)

2.
68

(0
.2

4)
0.

00
(0

.0
0)

1.
16

(0
.0

5)
0.

74
(0

.0
6)

Po
rt

ug
al

18
65

0.
06

/0
.0

0
0.

96
(0

.0
2)

1.
13

(0
.0

9)
3.

47
(0

.4
1)
−

0.
25

(0
.2

0)
1.

65
(0

.2
4)

0.
25

(0
.1

0)
Sp

ai
n

18
50

0.
04

/0
.0

0
0.

38
(0

.2
4)

0.
15

(0
.2

5)
4.

43
(0

.4
5)
−

2.
10

(1
.4

8)
2.

09
(0

.6
2)

0.
04

(0
.0

3)
C

an
ad

a
18

70
0.

01
/0

.0
0
−

0.
24

(0
.0

7)
−

2.
21

(0
.3

2)
2.

20
(0

.3
7)
−

0.
85

(0
.3

6)
1.

52
(0

.1
7)

0.
22

(0
.0

8)
U

SA
18

00
0.

04
/0

.0
0

0.
04

(0
.1

0)
−

9.
11

(7
.7

4)
0.

50
(0

.4
2)
−

0.
05

(0
.1

5)
1.

65
(0

.2
8)

0.
27

(0
.1

3)

N
ot

e:
T

hi
s

ta
bl

e
re

po
rt

s
th

e
re

su
lts

of
es

tim
at

io
ns

of
A

R
M

A
(1

,1
)p

ro
ce

ss
es

fo
rl

on
g

hi
st

or
ic

al
se

ri
es

of
pe

rc
ap

ita
G

D
P

an
nu

al
gr

ow
th

ra
te

s
(d

at
a

fr
om

B
ol

ta
nd

va
n

Z
an

de
n,

20
14

).
T

he
m

od
el

is
y t
=

φ
y t
−

1
+

cη
t
−

θ
cη

t−
1,

w
he

re
th

e
di

st
ri

bu
tio

n
of

η
t

is
a

G
au

ss
ia

n
m

ix
tu

re
,i

.e
.η

t
is

dr
aw

n
fr

om
N

(µ
1,

σ
2 1
)

w
ith

a
pr

ob
ab

ili
ty

p
an

d
fr

om
N

(µ
2,

σ
2 2
)

w
ith

a
pr

ob
ab

ili
ty

1
−

p.
B

ec
au

se
w

e
im

po
se

th
at

E
(η

t)
=

0
an

d
V
(η

t)
=

1,
th

e
di

st
ri

bu
tio

n
of

η
t

is
co

m
pl

et
el

y
de

fin
ed

by
γ
=

[µ
1,

σ
1,

p]
′ .

T
he

m
od

el
is

es
tim

at
ed

by
M

ax
im

um
L

ik
el

ih
oo

d.
T

he
fir

st
ye

ar
of

da
ta

is
gi

ve
n

in
th

e
se

co
nd

co
lu

m
n

an
d,

fo
ra

ll
co

un
tr

ie
s,

th
e

la
st

ye
ar

is
20

10
.T

he
th

ir
d

co
lu

m
n

re
po

rt
s

th
e

p-
va

lu
es

of
tw

o
tim

e-
se

ri
es

no
rm

al
ity

te
st

s:
th

e
fir

st
is

th
e

B
ai

an
d

N
g

(2
00

5)
te

st
,t

he
se

co
nd

is
th

e
L

ob
at

o
an

d
V

el
as

co
(2

00
4)

te
st

.



2SLS-GMM: Estimation and asymptotic properties

Table 3: Estimated SVARMA models (GNP and Unemployment rate)

Approach: GMM ML
param. std dev. param. std dev.

Φ1,[1,1] 0.883 (0.540) 0.665 (0.202)
Φ1,[2,1] −0.425 (0.355) −0.239 (0.098)
Φ1,[1,2] 0.064 (1.323) −0.806 (0.376)
Φ1,[2,2] 1.153 (0.722) 1.727 (0.197)
Φ2,[1,1] 0.210 (0.166) 0.244 (0.083)
Φ2,[2,1] −0.069 (0.088) −0.036 (0.039)
Φ2,[1,2] 1.187 (1.661) 2.034 (0.520)
Φ2,[2,2] −0.565 (0.904) −1.264 (0.249)
Φ3,[1,1] −0.165 (0.172) −0.337 (0.078)
Φ3,[2,1] 0.019 (0.091) 0.037 (0.038)
Φ3,[1,2] −1.763 (0.995) −1.482 (0.438)
Φ3,[2,2] 0.600 (0.688) 0.609 (0.209)
Φ4,[1,1] 0.048 (0.107) 0.169 (0.060)
Φ4,[2,1] 0.016 (0.072) −0.016 (0.032)
Φ4,[1,2] 0.604 (0.490) 0.315 (0.185)
Φ4,[2,2] −0.198 (0.320) −0.093 (0.099)
Θ1,1 0.814 (0.308) 0.406 (0.199)
Θ2,1 −0.468 (0.085) 0.000 (0.098)
Θ1,2 −2.733 (0.941) −2.036 (0.323)
Θ2,2 1.496 (0.455) 1.770 (0.153)
C1,1 0.298 (0.101) −0.558 (0.045)
C2,1 0.172 (0.037) 0.197 (0.017)
C1,2 0.689 (0.080) 0.668 (0.061)
C2,2 0.007 (0.054) −0.012 (0.018)
κ3,1 0.071 (0.308) µ1,1 −0.129 (0.021)
κ3,2 3.136 (0.085) µ2,1 −0.426 (0.221)
κ4,1 1.459 (0.941) σ1,1 0.080 (0.012)
κ4,2 19.828 (0.455) σ2,1 1.247 (0.098)

p1 0.270 (0.040)
p2 0.444 (0.117)

Note: This table reports the results of the estimation of bivariate VARMA(4,1) models. The dataset is the one used
in Blanchard and Quah (1989); it covers the period from 1948Q1 to 1987Q4 at the quarterly frequency. The first
endogenous variable is the U.S. real GNP growth (i.e. ∆gnp, where gnp = log(GNP)) and the second endogenous
variable is the unemployment rate. The model is: Φ(L)Yt = (I−ΘL)Cηt , where, for j ∈ {1,2}, η j,t is drawn from
N (µ j,1σ2

j,1) with probability p j and from N (µ j,2σ2
j,2) with probability 1− p j. We impose E(η j,t) = 0 and V (η j,t) =

1, which implies that µ j,2 and σ j,2 can be deduced from µ j,1, σ j,1 and p j. Both the Maximum Likelihood (ML) and the
2SLS-GMM approaches are employed to estimate the model (see Subsections 4.1.2 and 4.2, respectively). Asymptotic
standard deviations are reported in parentheses. Φk,[i, j] is the (i, j) element of Φk, with Φ(L) = I−Φ1L−·· ·−ΦpLp.
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Figure 3: Estimated shock distributions
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Note: This figure displays the estimated p.d.f. of the structural shocks η j,t , for j ∈ {1,2} resulting from the ML
estimations of a SVARMA(4,1) model using Blanchard and Quah (1989)’s dataset. The dotted lines correspond
to the estimated parametric distributions (mixture of Gaussian distributions): η j,t is drawn from N (µ j,1σ2

j,1) with
probability p j and from N (µ j,2σ2

j,2) with probability 1− p j; µ j,2 and σ j,2 are computed so as to have E(η j,t) = 0
and V (η j,t) = 1. The model parameterization is detailed in the caption of Table 3. The black solid lines correspond to
kernel-based density estimates of the distribution of the (estimated) structural shocks η j,t . The latter are computed by
applying the approach underlying Proposition 3. For the sake of comparison, we also report the N (0,1) p.d.f. (dashed
lines).
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Figure 4: IRFs – GNP and unemployment rate
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Note: This figure compares impulse response functions (IRFs) associated with models resulting from three approaches:
the BQ approach (long-run restrictions à la Blanchard and Quah, 1989, 8-lag VAR model), the Maximum Likelihood
(ML) approach (Subsection 4.1.2, VARMA(4,1) model) and the 2SLS-GMM approach (Subsection 4.2, VARMA(4,1)
model). The dataset is the same as that in Blanchard and Quah (1989). In the context of the BQ approach, whereas
Shock 1 (first column of plots) is interpreted as a demand shock, Shock 2 (second column of plots) is interpreted as a
supply shock. In BQ, by construction, the long-run impact of the demand shock (Shock 1) on real GNP is null. In the
2SLS-GMM and the ML approaches, Shock 1 is defined as the shock having the lower influence on the long-run GNP
variance. For the GNP variable, we report the cumulated impacts of the shocks on the (log) GNP growth rate.
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