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1. Introduction

Econometric methods for simultaneous equation models highlight the importance of verifying the

identification conditions before proceeding to the estimation exercise of the structural parameters.

Namely, it is only if the identification conditions hold that it becomes feasible to estimate all

the structural parameters. In this vein, this paper pursues two objectives. First, we derive the

conditions for local identification of Structural Vector Autoregressive (SVAR) processes through

higher unconditional moments. Second, we develop a tractable method to verify whether a SVAR

process is identified, prior to the estimation of the structural parameters.

SVAR processes represent systems of simultaneous, dynamic, linear equations, in which the

structural parameters reflect the contemporaneous interactions across the current variables of in-

terest and the dynamic feedbacks between these current variables and their lagged values. Such

processes are frequently used in macroeconomics to assess the dynamic responses of the variables

of interest to various structural shocks.

A first strand of the SVAR literature relies on the standard assumption that the structural

shocks are orthogonal and extracts the information contained in the unconditional covariances

of the reduced-form innovations to identify the structural parameters. As is well known, this

information is insuffi cient to identify all the parameters, so that short-run restrictions (e.g. Sims,

1980), long-run restrictions (e.g. Blanchard and Quah, 1989), and/or sign restrictions (e.g. Uhlig,

2005) need to be placed. If the restrictions are economically motivated, then the imposition of

enough restrictions gives rise to economic identification in the sense that the dynamic responses

become interpretable given that the structural shocks are economically meaningful. However, it is

not possible to verify jointly the validity of all the restrictions by applying formal statistical tests.

A second strand of the literature exploits the information related to certain statistical properties

of the data, in addition to the unconditional covariances of the reduced-form innovations (see

Kilian and Lütkepohl, 2017, Chapter 14). If this information is rich enough then this strategy

yields local identification, without resorting to any identifying restrictions, and, hence, the dynamic

response matrices are unique up to changes in sign and permutations of columns.1 It also produces

1Changing the signs of columns means that negative instead of positive structural shocks (and vice versa) are
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statistical (rather than economic) identification as nothing guarantees that the dynamic responses

and structural shocks have an economic interpretation. In this framework, it is possible to verify

the validity of certain classes of restrictions (e.g. short- and long-run restrictions) that would have

been required if only the unconditional covariances of the reduced-form innovations were taken into

account. This is convenient, for example, to formally select among alternative sets of restrictions

reflecting competing economic theories.

One method relying on the statistical properties of the data specifies the time-varying vari-

ances of the structural shocks, while preserving the standard assumption that theses shocks are

orthogonal. In this context, all the structural parameters involved in the SVAR are identified,

without placing any restrictions, when at least all, but one, structural shocks display distinct time-

varying variances. Note, however, that the method requires to take a stand about whether the

time-varying variances are determined by fixing a priori the dates of the structural breaks, are

specified via GARCH processes, or are modeled by regime switching processes with Markov chains

or smooth transitions (e.g. Rigobon, 2003; Normandin and Phaneuf, 2004; Lanne, Lütkepohl, and

Maciejowska, 2010; Lütkepohl and Netšunajev, 2014; Lütkepohl and Schlaak, 2018). Another ap-

proach is based on unconditional non-normal distributions of the structural shocks, but assumes

that these shocks are independent. In this environment, all the structural parameters are identi-

fied, when at least all, but one, structural shocks are non-normally distributed (see Comon, 1994;

Eriksson and Koivunen, 2004; Herwartz, 2015; Gouriéroux, Monfort, and Renne, 2017).2 Observe,

however, that the assumption of independent structural shocks is more restrictive than the standard

one stating that the shocks are orthogonal; that is, it is not always possible to recover independent

structural shocks from non-normal reduced-form innovations through linear transformations.

A key goal of this paper is to determine the local, statistical identification conditions of SVAR

processes through the third and fourth unconditional moments of the reduced-form innovations.

For this purpose, we assume that the structural shocks display zero cross-sectional covariances,

coskewnesses, and excess cokurtoses. Note that this can be viewed as a natural extension to the

considered. Permuting the columns implies alternative orderings of the structural shocks.
2Alternatively, Gouriéroux, Monfort, and Renne (2018) show that all structural parameters are identified under

the assumption that the structural shocks are mutually independent and some conditions on the cumulants of order
three or higher for each structural shock.
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third and fourth unconditional comoments of the standard assumption that the structural shocks

are orthogonal. Moreover, our assumption admits the possibility that the structural shocks exhibit

time-varying conditional variances (although we do need to specify the process governing these

variances) and is milder than the assumption stating that the shocks are independent. In our

context, not only the covariances of the reduced-form innovations, but also the coskewnesses and

excess cokurtoses of these innovations can be exploited to identify extra structural parameters,

and, hence, to relax some of the identifying restrictions required when the information contained

in the third and fourth moments is ignored. Formally, we derive the order (necessary) and rank

(suffi cient) conditions for local, statistical identification, where the latter are obtained by extending

the developments of Lütkepohl (2007, Chapter 9). We further express these conditions in terms

of simple formulas, which exclusively involve the numbers of structural shocks displaying skewness

and excess kurtosis. Given this information, it is most easy for empirical researchers to determine

whether or not the structural system is identified.

Our results regarding the identification of the entire structural system parallel the existing re-

sults. That is, all the structural parameters are identified when at least all, but one, structural

shocks exhibit skewness and/or excess kurtosis. Our findings further provide novel insights when

the entire SVAR process is not identified, as they highlight which subset of structural parameters

is identified and which is not. This leads to three important implications. First, one can estab-

lish which structural subsystem is identified. Note that this subsystem documents the dynamic

responses of all the variables included in the SVAR process to the structural shocks which are

asymmetric and/or non-mesokurtic.3 Hence, these responses can be traced without imposing any

restrictions on the structural parameters. Second, one can determine the structural parameters

for which some restrictions must be placed on in order to achieve the identification of the entire

system. Such restrictions are required to evaluate the dynamic responses to the structural shocks

which are symmetric and mesokurtic. Third, one can test the validity of economic and statistical

restrictions (by treating these as overidentifying restrictions) that are commonly placed on the

3For briefness, throughout the text symmetric (asymmetric) and mesokurtic (non-mesokurtic) variables refer to
variables with symmetric (asymmetric) and mesokurtic (non-mesokurtic) distributions. Also, a symmetric (asym-
metric) distribution implies a zero (non-zero) skewness, whereas a mesokurtic (non-mesokurtic) distribution implies
a zero (non-zero) excess kurtosis.
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structural subsytem that is identified through higher unconditional moments.

Another prime aim of this paper is to elaborate a tractable testing procedure to verify whether

the identification conditions hold, prior to the estimation of the structural parameters involved

in the SVAR process. As stated above, our identification conditions require the knowledge of

the numbers of asymmetric and non-mesokurtic structural shocks. At first glance, this may seem

problematic for practitioners, as the structural shocks become measurable only once the structural

system is estimated.4 However, we demonstrate that the numbers of structural shocks display-

ing skewness and excess kurtosis correspond to the ranks of the coskewness and excess cokurtosis

matrices of the reduced-form innovations, where these matrices are easily constructed from sam-

ple estimates of the moments of the reduced-form residuals – without having to proceed to the

estimation of the structural system.

In this paper, we design a new bootstrap procedure to approximate the finite-sample distribu-

tions in order to test the ranks of the coskewness and excess cokurtosis matrices of the reduced-form

innovations. We show that this procedure allows to overcome size distortions. Specifically, for sym-

metry both the Wald and likelihood-ratio versions of the rank test with bootstrap critical values

feature empirical sizes that are almost identical to the nominal sizes, regardless of the number of

observations in the sample. In comparison, the Wald test with asymptotic distributions has em-

pirical sizes that slightly deviate from the nominal ones, and the likelihood-ratio test with limiting

distributions has empirical sizes that are substantially smaller than the nominal counterparts. For

kurtosis, the bootstrap versions of the Wald and likelihood-ratio test statistics are essentially free

of size distortions for all sample sizes. In sharp contrast, the Wald and likelihood-ratio tests with

asymptotic distributions imply empirical sizes that are systematically close to zero, even for large

samples.

Finally, we illustrate our developments by identifying the effects of fiscal policies on economic

activity; a topic that has received renewed interest in light of the recent Great Recession. For

this purpose, we perform the analysis on a trivariate SVAR process which includes taxes, public

4As a result, existing studies do not verify whether the structural shocks are asymmetric or non-mesokurtic before
proceeding to the estimation of the structural system; see for example Moneta, Entner, Hoyer, and Coad (2013),
Lanne, Meitz, and Saikkonen (2017), and Gouriéroux, Monfort, and Renne (2017).
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spending, and output for the U.S. The empirical results for the Wald and likelihood-ratio bootstrap

versions for the rank tests indicate that all the structural shocks are symmetric and only the tax

shock is non-mesokurtic. Based on this information, the identification conditions reveal that the

subsytem relating all the variables to the tax shock is identified, so that the effects of this shock

can be assessed without imposing any restrictions on the structural parameters. In contrast, the

subsytem relating the variables to the public spending shock is under-identified, and, hence, the

effects of this shock can only be evaluated under certain restrictions. Also, we show that the

restrictions invoked in the seminal study of Blanchard and Perotti (2002) imply that the subsytem

relating the variables to the spending shock becomes over-identified. We further document that

the effects of the spending shock highly depend on the nature of the identifying restrictions used.

This paper is organized as follows. Section 2 motivates, from a simple example, the identifica-

tion through the third and fourth unconditional moments. Section 3 derives the order and rank

conditions for the identification of the structural parameters involved in SVAR processes. Section

4 develops a tractable procedure to test whether the identification conditions hold, before the esti-

mation of the structural parameters. Section 5 presents an application related to the identification

of the structural parameters determining the dynamic responses of output to fiscal shocks. Section

6 concludes.

2. Motivation

This section motivates the strategy of identifying SVAR processes through higher unconditional

moments. To do so, we provide a simple example to gain some intuition about how the information

related to asymmetric and non-mesokurtic distributions can be exploited to achieve identification.

Specifically, we consider the following bivariate SVAR process (in innovation form):

νy,t = −αdνp,t + ωdεd,t, (1)

νp,t = αsνy,t + ωsεs,t. (2)
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This system expresses a downward-sloping demand curve (1) and an upward-sloping (inverse) supply

curve (2) of a good. The terms νy,t and νp,t represent the reduced-form innovations associated

with the quantity and price of the good, while εd,t and εs,t are structural shocks capturing the

demand and supply shocks with the following unconditional scedastic structure: σε,dd = E[ε2d,t] = 1,

σε,ss = E[ε2s,t] = 1, and σε,ds = E[εd,tεs,t] = 0. The positive parameters αd and αs are related to the

slopes of the demand and supply curves, whereas the positive parameters ωd and ωs are related to

the shifts of the curves following demand and supply shocks.

System (1)—(2) involves four parameters that have to be identified: αd, αs, ωd, and ωs. As

usual, three of these parameters, say for illustration purposes, αd, ωd, and ωs, can potentially be

identified through the distinct elements of the unconditional covariance matrix of the reduced-form

innovations: σν,yy = E[ν2
y,t], σν,pp = E[ν2

p,t], and σν,yp = E[νy,tνp,t]. Importantly, the remaining

parameter, αs, can potentially be identified through higher unconditional moments, reflecting, for

example, asymmetric and non-mesokurtic distributions.

As a starting point, Figures 1 and 2 depict the densities and the scatter plot of simulated

shocks for the case where εd,t and εs,t are normally distributed. The simulations are generated for

the following parametrization of equations (1)—(2): αd = αs = 0.5, ωd = ωs = 1, εd,t ∼ N(0, 1), and

εs,t ∼ N(0, 1). As expected, νy,t and νp,t are also normally distributed and the realizations of these

innovations form a spherical cloud in the (νy,t, νp,t) plan. In this context, shifts in the demand

and supply curves are as likely to generate the realizations of νy,t and νp,t. Consequently, these

realizations are not informative about the slope of either of the two curves, so that αs cannot be

identified. In this context, possible identification strategies are to impose one short-run or long-run

restriction to identify αs.

Figures 1 and 2 also show the case where εd,t follows a mixture of normal distributions: 2.1755×

εd,t ∼ N(1, 1) with probability 0.7887 and 2.1755 × εd,t ∼ N(−3.7326, 1) with probability 0.2113,

whereas εs,t ∼ N(0, 1). The resulting density of εd,t is mesokurtic as it is characterized by a zero

excess kurtosis, as for the normal distribution, but it displays an asymmetry given that it is left

skewed.5 This third moment of εd,t implies a negative skewness that is more pronounced for νy,t
5The unconditional moments of the demand shock are as follows: the expectation is E[εd,t] = 0, the variance is
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than for νp,t. As a result, the scatter plot of νy,t and νp,t exhibits an elliptical shape along the

supply curve. This occurs because large negative values are more often observed for εd,t (than for

εs,t), and this induces substantial leftward shifts of the demand curve (relative to those associated

with the supply curve). These shifts of the demand curve imply movements along the supply curve,

so that it becomes possible to identify the slope of the supply curve, αs.

Finally, Figures 3 and 4 display the case where εd,t follows a Student’s t-distribution: 1.291 ×

εd,t ∼ t(5) and εs,t ∼ N(0, 1). For this parametrization, the density of εd,t is symmetric, similarly

to the normal distribution, but it is leptokurtic given that it has fat tails.6 The fourth moment of

εd,t translates into a large positive excess kurtosis for νy,t and a small excess kurtosis for νp,t. This

leads to an elliptical shape along the supply curve, where the extreme realizations of εd,t (compared

to those of εs,t) generate pronounced leftward and rightward shifts of the demand curve (relative to

those associated with the supply curve). Again, these shifts of the demand curve imply movements

along the supply curve, so the slope parameter αs is identified.

The examples presented so far highlight that the parameter αs is identified when the uncon-

ditional distribution of the demand shock εd,t is either asymmetric or non-mesokurtic. Note that

αs is also identified when εd,t exhibits a time-varying conditional variance. This is because condi-

tional heteroskedasticity typically implies unconditional leptokurtic (even for the case of conditional

mesokurtic distributions), and, as discussed above, it is precisely the presence of unconditional non-

mesokurtic demand shock that leads to the identification of αs.

Taken altogether, these examples suggest that exploiting the information of the structural shocks

related to higher unconditional moments, such as the third and fourth moments, help to identify

additional parameters of a SVAR process (relative to the case where only the second unconditional

moments are considered).

E[ε2d,t] = 1, the skewness is sε,d,dd = E[ε3d,t] = −0.9907, and the excess kurtosis is κeε,dd,dd = E[ε4d,t] − 3 = 0. Also,
the demand and supply shocks display zero covariance, E[εd,tεs,t] = 0, coskewnesses, E[ε2d,tεs,t] = E[εd,tε

2
s,t] = 0, and

excess cokurtoses, E[ε3d,tεs,t] = E[εd,tε
3
s,t] = 0 and E[ε2d,tε

2
s,t]− 1 = 0.

6Specifically, the unconditional moments of the demand shock are the following: the expectation is E[εd,t] = 0, the
variance is E[ε2d,t] = 1, the skewness is sε,d,dd = E[ε3d,t] = 0, and the excess kurtosis is κeε,dd,dd = E[ε4d,t]− 3 = 6. Also,
the demand and supply shocks display zero covariance, E[εd,tεs,t] = 0, coskewnesses, E[ε2d,tεs,t] = E[εd,tε

2
s,t] = 0, and

excess cokurtoses, E[ε3d,tεs,t] = E[εd,tε
3
s,t] = 0 and E[ε2d,tε

2
s,t]− 1 = 0.
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3. Identification

In this section, we first present the SVAR specification. We then derive the order and rank condi-

tions of local identification through higher unconditional moments.

3.1 Specification

We consider a structural system that takes the form of the following p-order SVAR process:

Φxt = Φ0 +

p∑
τ=1

Φτxt−τ + εt. (3)

The (n × 1) vector xt includes the variables of interest. The (n × 1) vector εt contains the struc-

tural shocks. These shocks are assumed to display zero cross-sectional unconditional covariances,

coskewnesses, and excess cokurtoses. The (n× 1) vector Φ0 incorporates n unrestricted intercepts.

The non-singular (n× n) matrix Φ captures n2 unrestricted contemporaneous interactions among

the variables.7 The (n × n) matrix Φτ contains n2 unrestricted dynamic feedbacks between the

variables.

The first four unconditional moments of the structural shocks of system (3) are obtained from

the following expressions:

Mε = E[εt], (4)

Σε = E[εtε
′
t], (5)

Sε = E[εtε
′
t ⊗ ε′t], (6)

Ke
ε = Kε −Kε̃ = E[εtε

′
t ⊗ ε′t ⊗ ε′t]− E [̃εtε̃

′
t ⊗ ε̃′t ⊗ ε̃′t], (7)

where E is the unconditional expectation operator and ⊗ denotes the Kronecker product. As is

common practice, the (n × 1) vector of expectations is fixed to Mε = [µε,i] = 0 and the (n × n)

covariance matrix is set to Σε = [σε,ij ] = I (for i, j = 1, . . . , n), where the latter expression implies

that all covariances are assumed to be null, σε,ij = 0 (for i 6= j). Also, the (n × n2) coskewness

matrix concatenates n symmetric (n× n) submatrices: Sε = [Sε,1, . . . , Sε,n], where Sε,k = [sε,k,ij ] =

E[εk,tεi,tεj,t]. The n unconstrained skewnesses of the structural shocks may be non-zero, sε,k,kk 6= 0,

7The assumption of non singularity ensures that there is no redundant variables included in the SVAR process.
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whereas all coskewnesses are assumed to be null, sε,k,ii = sε,k,ij = 0 (for i, j 6= k). Finally, the

(n × n3) excess cokurtosis matrix, Ke
ε , is the difference between the cokurtosis matrix, Kε, of the

true structural shocks, εt, and the cokurtosis matrix, Kε̃, associated with hypothetical mesokurtic

structural shocks, ε̃t. The excess cokurtosis matrix stacks n2 symmetric (n×n) submatrices: Ke
ε =

[Ke
ε,11, . . . ,K

e
ε,1n, . . . ,K

e
ε,n1, . . . ,K

e
ε,nn], where Ke

ε,k` = [κeε,k`,ij ] = E[εk,tε`,tεi,tεj,t]− E [̃εk,tε̃`,tε̃i,tε̃j,t].

The n unconstrained excess kurtoses may be non-zero, κeε,kk,kk 6= 0, whereas the excess cokurtoses

are assumed to be null, κeε,kk,ii = κeε,kk,ki = κeε,kk,ij = κeε,k`,ij = 0.8

Next, the reduced form associated with system (3) corresponds to the following p-order VAR

process:

xt = Γ0 +

p∑
τ=1

Γτxt−τ + νt, (8)

where Γ0 = ΘΦ0, Γτ = ΘΦτ , and the non-singular matrix Θ = Φ−1 captures the impact responses

of the variables of interest to the various structural shocks, whereas νt includes the reduced-form

innovations. These innovations are related to the structural shocks as follows:

νt = Θεt. (9)

Also, the first four unconditional moments of the reduced-form innovations are:

Mν = E[νt],= ΘMε, (10)

Σν = E[νtν
′
t] = ΘΣεΘ

′, (11)

Sν = E[νtν
′
t ⊗ ν ′t] = ΘSε(Θ

′ ⊗Θ′), (12)

Ke
ν = Kν −Kν̃ = E[νtν

′
t ⊗ ν ′t ⊗ ν ′t]− E[ν̃tν̃

′
t ⊗ ν̃ ′t ⊗ ν̃ ′t] = ΘKe

ε (Θ′ ⊗Θ′ ⊗Θ′). (13)

Here, Mν = [µν,i] = 0 given that Mε = 0 and Σν = [σν,ij ] = ΘΘ′ since Σε = I. Moreover,

Sν = [Sν,1, . . . , Sν,n] with Sν,k = [sν,k,ij ] and Kυ = [Kυ,11, . . . ,Kυ,1n, . . . ,Kυ,n1, . . . ,Kυ,nn] with

Kυ,k` = [κυ,k`,ij ] for υt = νt, ν̃t, where νt captures the true reduced-form innovations and ν̃t contains

hypothetical mesokurtic reduced-form innovations. As is well known, the symmetric matrix Σν

8As an example, the bivariate system (1)—(2) implies that all the elements of Sε are null, except potentially the
(1,1) and (2,4) elements which correspond to the skewnesses of the demand shock, sε,d,dd, and supply shock, sε,s,ss.
Also, all the elements of Ke

ε are null, with the possible exceptions of the (1,1) and (2,8) elements which capture the
excess kurtoses of the demand shock, κeε,dd,dd = (κε,dd,dd − 3), and supply shock, κeε,ss,ss = (κε,ss,ss − 3).
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contains n(n+1)
2 distinct elements. Furthermore, the matrices Sν and Ke

ν include
n(n+1)(n+2)

6 and

n(n+1)(n+2)(n+3)
24 distinct elements.9

3.2 Identification Conditions

We now determine the order and rank conditions for local identification, which establish the con-

ditions for identifying the parameters associated with the structural form (3) from the distinct

elements and the rank associated with the reduced form (8). For expositional purposes, these con-

ditions are mainly derived from two cases; the first case exploits the skewness of the structural

shocks, whereas the second case focuses on the excess kurtosis of the structural shocks. This pre-

sentation accords with our simple illustration highlighting that identification can be achieved when

the unconditional distributions of the structural shocks are either asymmetric or non-mesokurtic

(see Section 2). For each case, we elaborate the conditions required to identify the impact responses

involved in Θ and the skewnesses or excess kurtoses of the structural shocks included in Sε or Ke
ε

from the unconditional moments of the reduced-form innovations contained in Σν and Sν or Ke
ν .
10

For completeness, note that, once these parameters are identified, it is trivial to identify the other

structural parameters included in Φ0 and Φτ (where τ = 1, . . . , p) through the relations Φ0 = Θ−1Γ0

and Φτ = Θ−1Γτ .

3.2.1 Order Conditions

We denote by η and ρ the number of parameters involved in the structural form and the number of

distinct elements in the reduced form. The order conditions are given by ρ = η and ρ > η, which

represent necessary conditions for the exact- and over-identification of the entire structural system.

We begin by examining our first case, which exploits the skewness of the structural shocks. On

the one hand, the number of parameters in the structural form is η = n2 +ms, given that there are

n2 and ms parameters to identify in the impact response and skewness matrices, Θ and Sε – where

ms is the number of asymmetric structural shocks. Note that Θ contains n2 − (n − ns)ms non-

9For example, the bivariate system (1)—(2) implies that Σν incorporates 3 distinct elements, namely σν,yy, σν,yp,
and σν,pp. Also, Sν includes 4 distinct elements: sν,y,yy, sν,y,yp, sν,y,pp, and sν,p,pp. Finally, Ke

ν involves 5 distinct
elements: κeν,yy,yy, κ

e
ν,yy,yp, κ

e
ν,yy,pp, κ

e
ν,yp,pp, and κ

e
ν,pp,pp.

10Note that under local identification the matrix Θ is unique up to changes in sign and permutations of columns.
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zero parameters and (n− ns)ms zero elements – where ns is the number of skewed reduced-form

innovations. To clarify this, we partition relation (9) as:

(
νs,t
νns,t

)
=

(
Θs,s Θs,ns

Θns,s Θns,ns

)(
εs,t
εns,t

)
, (14)

where νs,t and νns,t are subvectors that collect, respectively, the ns and (n − ns) skewed and

non-skewed reduced-form innovations, εs,t and εns,t contain the ms and (n −ms) asymmetric and

symmetric structural shocks, and Θi,j are conformable submatrices of impact responses (for i, j =

s, ns).11 We then consider the configuration where n > ns ≥ms.
12 In this environment, the (n−ns)

reduced-form innovations contained in νns,t are symmetric, as long as they are not related to the

ms skewed structural shocks included in εs,t. This absence of relation occurs when Θns,s = 0, which

implies that Θ involves (n−ns)ms zero elements. For instance, when n = 2 and ns = ms = 1 (where,

say, εs,t = ε1,t is the only asymmetric structural shock so that sε,1,11 6= 0), then the coskewnesses

sν,2,ij = (θ21θi1θj1)sε,1,11 (for i, j = 1, 2) obtained form (12) are null only if Θns,s = θ21 = 0.

On the other hand, the number of distinct elements from the reduced from is ρ =
[
n(n+1)

2

]
+[

n(n+1)(n+2)
6

]
. As already mentioned, there are n(n+1)

2 and n(n+1)(n+2)
6 distinct elements in Σν and

Sν . Intuitively, the information contained in Sν helps to identify the parameters in Θs,s, Θns,s,

and Sε, whereas Σν helps to identify the parameters in Θs,ns and Θns,ns. To see this, let’s come

back to the configuration where n = 2 and ns = ms = 1 (where εs,t = ε1,t is skewed). In this

case, the four distinct elements involved in Sν – which corresponds to sν,1,11 = θ3
11sε,1,11 6= 0,

sν,1,12 = θ2
11θ21sε,1,11 = 0, sν,1,22 = θ11θ

2
21sε,1,11 = 0, and sν,2,22 = θ3

21sε,1,11 = 0 – lead to the over-

identification of the three structural parameters incorporated in Θs,s = θ11 6= 0, Θns,s = θ21 = 0,

and Sε. Also, the three distinct elements in Σν – which are σν,11 = θ2
11+θ2

12, σν,12 = θ11θ21+θ12θ22,

and σν,22 = θ2
21 + θ2

22 – yield the over-identification of the remaining two parameters Θs,ns = θ12

and Θns,ns = θ22.

We now turn to the second case which focuses on the excess kurtosis of the structural shocks.
11Note that all the elements included in νs,t and εs,t are asymmetric, but some of these elements may also be

non-mesokurtic. Moreover, the elements in νns,t and εns,t are symmetric, but possibly non-mesokurtic.
12This configuration satisfies the conditions n ≥ ns ≥ ms, which ensure that the impact response matrix Θ is

non-singular.
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In this context, the partitioned representation of relation (9) becomes:

(
νκ,t
νnκ,t

)
=

(
Θκ,κ Θκ,nκ

Θnκ,κ Θnκ,nκ

)(
εκ,t
εnκ,t

)
, (15)

where νκ,t and νnκ,t are subvectors that collect, respectively, the nκ and (n − nκ) non-mesokurtic

and mesokurtic reduced-form innovations, while εκ,t and εnκ,t contain the mκ and (n −mκ) non-

mesokurtic and mesokurtic structural shocks.13

Invoking analogous arguments as those elaborated above implies that η = n2 + mκ – there

are n2 parameters in the impact response matrix Θ, among which Θnκ,κ includes (n − nκ)mκ

zero parameters, and mκ non-zero excess kurtosis in Ke
ε . Also, ρ =

[
n(n+1)

2

]
+
[
n(n+1)(n+2)(n+3)

24

]
,

because there are n(n+1)
2 and n(n+1)(n+2)(n+3)

24 distinct elements in Σν andKe
ν . Here, the information

contains in Ke
ν helps to identify the parameters in Θκ,κ, Θnκ,κ and Ke

ε , whereas Σν helps to identify

the parameters in Θκ,nκ and Θnκ,nκ.

Finally, we present the general case which takes into account both the skewness and excess

kurtosis of the structural shocks. To do so, the relation (9) is partitioned according to the charac-

teristics of the reduced-form innovations and structural shocks as following:
νss,t
νκκ,t
νsκ,t
νnsκ,t

 =


Θss,ss Θss,κκ Θss,sκ Θss,nsκ

Θκκ,ss Θκκ,κκ Θκκ,sκ Θκκ,nsκ

Θsκ,ss Θsκ,κκ Θsκ,sκ Θsκ,nsκ

Θnsκ,ss Θnsκ,κκ Θnsκ,sκ Θnsκ,nsκ



εss,t
εκκ,t
εsκ,t
εnsκ,t

 , (16)

or more compactly

νt =
(
Θss Θκκ Θsκ Θnsκ

)
εt. (17)

Here, νss,t, νκκ,t, νsκ,t, and νnsκ,t are subvectors that collect, respectively, the nss, nκκ, nsκ, and

(n− nss − nκκ − nsκ) reduced-form innovations that are exclusively skewed, only non-mesokurtic,

both asymmetric and non-mesokurtic, and both symmetric and mesokurtic. The numbers of skewed

and non-mesokurtic reduced-form innovations correspond to ns = nss + nsκ and nκ = nκκ + nsκ.

Likewise, the subvectors εss,t, εκκ,t, εsκ,t, and εnsκ,t contain, respectively, the mss, mκκ, msκ,

and (m −mss −mκκ −msκ) structural shocks that are exclusively skewed, only non-mesokurtic,

13All the terms incorporated in νκ,t and εκ,t are non-mesokurtic, but some of these terms may also be asymmetric.
Furthermeore, the terms in νnκ,t and εnκ,t are mesokurtic, but possibly asymmetric.
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both asymmetric and non-mesokurtic, and both symmetric and mesokurtic. The numbers of

skewed and non-mesokurtic structural shocks are ms = mss + msκ and mκ = mκκ + msκ. We

also define Θss =
(
Θ′ss,ss Θ′κκ,ss Θ′sκ,ss Θ′nsκ,ss

)′
, Θκκ =

(
Θ′ss,κκ Θ′κκ,κκ Θ′sκ,κκ Θ′nsκ,κκ

)′
,

Θsκ =
(
Θ′ss,sκ Θ′κκ,sκ Θ′sκ,sκ Θ′nsκ,sκ

)′
, and Θnsκ =

(
Θ′ss,nsκ Θ′κκ,nsκ Θ′sκ,nsκ Θ′nsκ,nsκ

)′
–

where the elements of the matrices Θκκ,ss, Θnsκ,ss, Θss,κκ, Θnsκ,κκ, Θss,sκ, Θsnκ,sκ, Θκκ,sκ and

Θnsκ,sκ are equal to zero.14 In this environment, η = n2 + [ms + mκ] and ρ =
[
n(n+1)

2

]
+[

n(n+1)(n+2)
6

]
+
[
n(n+1)(n+2)(n+3)

24

]
. Intuitively, Sν and Ke

ν help to identify the parameters in Θss,

Θκκ, Θsκ, Sε, and Ke
ε , whereas Σν helps to identify the parameters in Θsnκ.

3.2.2 Rank Condition

In this section, we formally derive the rank condition and simple formulas which allow practitioners

to evaluate easily this rank condition. The rank condition r = η represents the suffi cient condi-

tion for the local identification of the entire structural system, where r corresponds to the rank

associated with the unconditional moment matrices of the reduced-form innovations. Extending

the developments of Lütkepohl (2007, Chapter 9), we derive this condition from the ranks of the

Jacobian matrices associated with the structural parameters to identify.

If it turns out that the entire structural system is not identified, then our approach further allows

to establish which structural parameters are identified and which are not. This gives rise to two

important implications. First, it permits to assess which structural subsystem is identified. This

subsystem documents the effects induced by the asymmetric and/or non-mesokurtic structural

shocks. Second, it enables to determine the structural parameters for which some restrictions

must be placed on in order to achieve the identification of the entire system. This is required to

document the effects of the symmetric and mesokurtic structural shocks. As far as we know, these

key implications have never been examined in previous studies.

Again, we first consider the case which exploits the asymmetry of the structural shocks. As

14System (16) is related to (14) as νs,t =
(
νss,t νsκ,t

)′
, νns,t =

(
νκκ,t νnsκ,t

)′
, εs,t =

(
εss,t εsκ,t

)′
, and

εns,t =
(
εκκ,t εnsκ,t

)′
. Likewise, system (16) is related to (15) as νκ,t =

(
νκκ,t νsκ,t

)′
, νnκ,t =

(
νss,t νnsκ,t

)′
,

εκ,t =
(
εκκ,t εsκ,t

)′
, and εnκ,t =

(
εss,t εnsκ,t

)′
. For system (16), note further that the reduced-form innovations

involved in νss,t are mesokurtic. It can be shown that this occurs because νss,t is a linear combination of the
structural shocks contained in εss,t and εnsκ,t, where these shocks display zero excess kurtoses and zero excess
cokurtoses. Similarly, the statistical innovations collected in νκκ,t are symmetric.
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explained above, the number of parameters involved in the structural form is η = n2 + ms. Also,

the rank associated with the reduced form is equal to the rank of the following Jacobian matrix:

J =
[
Jθs Jθns Jsε

]
=

[
Jσν ,θs Jσν ,θns Jσν ,sε
Jsν ,θs Jsν ,θns Jsν ,sε

]
. (18)

Here, Jθs =
[
J ′σν ,θs J ′sν ,θs

]′
, Jθns =

[
J ′σν ,θns J ′sν ,θns

]′
, Jsε =

[
J ′σν ,sε J ′sν ,sε

]′
, and Jy,x = ∂y

∂x′ .

Moreover, the vector σν vectorizes the lower triangular part of the symmetric covariance matrix

Σν , and the vector sν collects the distinct elements of the coskewness matrix Sν . Finally, the vector

θs stacks the columns of the matrix Θs =
(
Θ′s,s Θ′ns,s

)′
in system (14), the vector θns contains the

elements of the matrix Θns =
(
Θ′s,ns Θ′ns,ns

)′
, and the vector sε includes the non-zero elements of

the skewness matrix Sε. The analytical derivatives involved in (18) are detailed in the Appendix.

The rank of the Jacobian matrix (18), r = rk[J ], can be evaluated from the analytical deriva-

tives. From these derivatives, we deduce simple formulas to evaluate the rank r, which can be easily

assessed from the number of variables involved in the system, n, and the number of skewed structural

shocks, ms. Specifically, the rank corresponds to the sum of three components: r = rs + rns + rsε ,

with rs = rk[Jθs ] = n×ms, rns = rk[Jθns ] =
∑n−ms

i=0 (n− i)−ms, and rsε = rk [Jsε ] = ms.

The components rs = n × ms and rsε = ms reveal that the information contained in the

second and third moments of the reduced-form innovations, Σν and Sν , allows to identify all the

n ×ms elements of the matrix Θs relating the reduced-form innovations to the skewed structural

shocks, as well as all the ms non-zero elements of the skewness matrix Sε. The intuition for this

result can be gained from the two following features. First, rk[Jsν ,θs ] = n ×ms and rk[Jsν ,sε ] =

ms, but rk
[
Jsν ,θs Jsν ,sε

]
= n × ms. This implies that the coskewness matrix Sν identifies the

elements of Θs and Sε jointly, but not separately. To illustrate this, consider the configuration

where n = 2 and ns = ms = 1 (where εs,t = ε1,t is skewed), so that Θs =
(
Θ′s,s Θ′ns,s

)′
with

Θs,s = θ11 and Θns,s = θ21 = 0. In this context, the four distinct elements involved in Sν – which

corresponds to sν,1,11 = θ3
11sε,1,11 6= 0, sν,1,12 = θ2

11θ21sε,1,11 = 0, sν,1,22 = θ11θ
2
21sε,1,11 = 0, and

sν,2,22 = θ3
21sε,1,11 = 0 – identify the parameters θ11, θ21, and sε,1,11 jointly, but not individually.

Second, Jσν ,θs 6= 0 whereas Jσν ,sε = 0. This implies that the covariance matrix Σν disentangles

the parameters involved in Θs from those contained in Sε, so that it becomes possible to identify
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individually each parameter in Θs and Sε. Coming back to the previous example, the three distinct

elements in Σν – which are σν,11 = θ2
11 + θ2

12, σν,12 = θ11θ21 + θ12θ22, and σν,22 = θ2
21 + θ2

22 –

disentangle the parameters θ11 and θ21 from sε,1,11, given that the variances and covariance are

related to θ11 and θ21 but not to sε,1,11.

The component rns =
∑n−ms

i=0 (n−i)−ms indicates whether the remaining information contained

in the second moments of the reduced-form innovations, Σν , allows to identify all the n× (n−ms)

elements of the matrix Θns relating the reduced-form innovations to the symmetric structural

shocks. The intuition for this result is obtained from the following features: Jsν ,θns = 0 and

Jσν ,θns 6= 0. This implies that only the information captured in Σν , independent of that already

used to identify Θs, can be exploited to identify the parameters included in Θns.

Our findings parallel the existing results. These results highlight that, under the more restrictive

assumption of independent structural shocks, all the structural parameters are identified when at

least all, but one, structural shocks are non-normally distributed (see Comon, 1994; Eriksson and

Koivunen, 2004; Herwartz, 2015; Gouriéroux, Monfort, and Renne, 2017). Our findings state that

the entire structural system is identified when at least all, but one, structural shocks are skewed.

Specifically, when all structural shocks are asymmetric, ms = n, then all the structural parameters

are identified as η = r = n2 + n – where η = n2 + ms = n2 + n and r = rs + rns + rsε , with

rs = n2, rns = 0, and rsε = n. When all, but one, structural shocks are skewed, ms = n − 1, then

all the structural parameters are identified as η = r = n2 + n − 1, where rs = n(n − 1), rns = n,

and rsε = n− 1.

Importantly, our approach further provides insights when the entire structural system is not

identified. In particular, as already explained above, the moments Σν and Sν allow to identify

the n × ms structural parameters included in Θs and the ms distinct elements involved in Sε.

Hence, the subsystem relating all the reduced-form innovations to the skewed structural shocks is

always identified. This subsystem traces the effects generated by the structural shocks displaying

skewness. For example, the impact responses of the variables associated with the skewed reduced-

form innovations are given by Θs,s, whereas those of the variables related to the symmetric reduced-

form innovations are equal to Θns,s = 0. Hence, if the structural shocks of interest are skewed, then
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their effects can be assessed without imposing any restrictions on the structural parameters.

Moreover, the under-identification of the entire structural system occurs when the moments

Σν do not permit to identify all the n × (n −ms) elements contained in Θns. As a result, certain

restrictions on these structural parameters must be imposed. For illustration purposes, consider the

following (linear) short-run restrictions Rθns = q. In this context, the rank condition holds when:

rk[J+] = rk
[
J+
θs

J+
θns

J+
sε

]
= rk

Jσν ,θs Jσν ,θns Jσν ,sε
Jsν ,θs Jsν ,θns Jsν ,sε

0 R 0

 = η, (19)

where J+ is the augmented Jacobian matrix, J+
θs

=
[
J ′σν ,θs J ′sν ,θs 0′

]′
, J+

θns
=
[
J ′σν ,θns J ′sν ,θns R′

]′
,

and J+
sε =

[
J ′σν ,sε J ′sν ,sε 0′

]′
. The rank condition (19) states that (η − r) linearly independent

restrictions on θns are needed to identify the entire structural system. Hence, if the structural

shocks of interest are symmetric, then their effects can only be gauged when (η − r) restrictions

are placed on θns. In expression (19), the short-run restrictions imply (η − r) constraints on the

impact responses of the variables to the symmetric structural shocks. It is straightforward to show

that relevant long-run restrictions imply (η − r) constraints on the dynamic responses (evaluated

over an infinite horizon) of the variables to the symmetric shocks.

We next analyze the case which focuses on the excess kurtosis of the structural shocks. Under

the short-run restrictions Rθnκ = q, the rank condition is verified if:

rk[J+] = rk
[
J+
θκ

J+
θnκ

J+
κeε

]
= rk

Jσν ,θκ Jσν ,θnκ Jσν ,κeε
Jκeν ,θκ Jκeν ,θnκ Jκeν ,κeε

0 R 0

 = η. (20)

Here, the vectors κeν and κ
e
ε incorporate the distinct elements of the matrices K

e
ν and K

e
ε . Also,

the vector θκ collects the parameters of the matrix Θκ =
(
Θ′κ,κ Θ′nκ,κ

)′
in system (15), while

the vector θnκ includes the elements of the matrix Θnκ =
(
Θ′κ,nκ Θ′nκ,nκ

)′
. Again, the analytical

derivatives involved in (20) are relegated in the Appendix.

Recall that the number of structural parameters to identify in this case is η = n2 + mκ. We

first consider the eventuality that no restrictions are placed on the structural parameters, that is

R = 0. Then, the rank of J+ corresponds to r = rκ + rnκ + rκeε with rκ = rk[J+
θκ

] = n×mκ, rnκ =

rk[J+
θnκ

] =
∑n−mκ

i=0 (n−i)−mκ, and rκeε = rk
[
J+
κeε

]
= mκ. Consequently, the entire structural system

is identified, that is η = r, when at least all, but one, structural shocks display excess kurtosis.
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Also, invoking analogous arguments as those developed above reveals that, whether or not η = r,

the subsystem relating all the reduced-form innovations to the non-mesokurtic structural shocks

is identified, as the information contained in Σν and Ke
ν always allows to recover the structural

parameters involved in Θκ and Ke
ε . Hence, if the structural shocks of interest display excess

kurtosis, then their effects can be documented without imposing any restrictions on the structural

parameters.

We now contemplate the eventuality that some restrictions are imposed on the structural pa-

rameters (R 6= 0). These restrictions are required when the remaining information captured in Σν

does not allow to identify all the structural parameters in Θnκ. In this context, the entire structural

system is identified when (η − r) linearly independent restrictions are imposed on these structural

parameters, where the restrictions can take the form of the short-run restrictions Rθnκ = q. Thus,

if the structural shocks of interest do not exhibit excess kurtosis, then their effects can only be

determined when (η − r) restrictions are placed on Θnκ.

Finally, we establish a proposition providing the rank condition for the identification of the

structural parameters, under short-run restrictions, for the general case where the structural shocks

display skewness and/or excess kurtosis.

Proposition 1 Given the unconditional moments of the reduced-form innovations, Σν , Sν , and

Ke
ν , the system of equations (11)—(13) has a locally unique solution if and only if

rk[J+] = rk
[
J+
θss

J+
θκκ

J+
θsκ

J+
θnsκ

J+
sε J+

κeε

]
= rk


Jσν ,θss Jσν ,θκκ Jσν ,θsκ Jσν ,θnsκ Jσν ,sε Jσν ,κeε
Jsν ,θss Jsν ,θκκ Jsν ,θsκ Jsν ,θnsκ Jsν ,sε Jsν ,κeε
Jκeν ,θss Jκeν ,θκκ Jκeν ,θsκ Jκeν ,θnsκ Jκeν ,sε Jκeν ,κeε

0 0 0 R 0 0

 = η, (21)

where the vector θss stacks by columns the n×mss parameters involved in the matrix Θss relating

the reduced-form innovations to the structural shocks displaying only skewness in system (17), the

vector θκκ contains the n×mκκ parameters of the matrix Θκκ linking the reduced-form innovations

to the structural shocks exhibiting exclusively excess kurtosis, the vector θsκ includes the n ×msκ

parameters of the matrix Θsκ associating the reduced-form innovations to the structural shocks

featuring both skewness and excess kurtosis, θnsκ incorporates the n × [n − (mss + mκκ + msκ)]
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parameters of the matrix Θnsκ relating reduced-form innovations to the structural shocks which are

both symmetric and mesokurtic, and the matrix R forms the short-run restrictions Rθnsκ = q.

The analytical derivatives involved in (21) are reported in the Appendix. As explained above,

the number of structural parameters to identify is η = n2 + ms + mκ. When no restrictions are

imposed on the structural parameters (R = 0), then rk [J+] = r with r = rss+rκκ+rsκ+rnsκ+rsε+

rκeε , rss = rk[J+
θss

] = n×mss, rκκ = rk[J+
θκκ

] = n×mκκ, rsκ = rk[J+
θκκ

] = n×msκ, rnsκ = rk[J+
θnsκ

] =∑n−(mss+mκκ+msκ)
i=0 (n−i)−(mss+mκκ+msκ), rsε = rk

[
J+
sε

]
= ms, and rκeε = rk

[
J+
κeε

]
= mκ. In this

context, Proposition 1 has two implications. First, the entire structural system is identified, that is

η = r, when at least all, but one, structural shocks exhibit skewness and/or excess kurtosis. Second,

whether or not η = r, the subsystem relating all the reduced-form innovations to the asymmetric

and/or non-mesokurtic structural shocks is identified, given that the information contained in Σν ,

Sν , and Ke
ν always allows to recover the structural parameters involved in Θss, Θκκ, Θsκ, Sε, and

Ke
ε – that is [rss + rκκ + rsκ] + [rsε + rκeε ] = [n×mss + n×mκκ + n×msκ] + [ms +mκ]. When

some restrictions are placed on the structural parameters (R 6= 0), these restrictions are required if

the remaining information captured in Σν does not allow to identify all the structural parameters

contained in Θnsκ – that is rnsκ < n× [n− (mss+mκκ+msκ)]. In this environment, Proposition

1 states that the entire structural system becomes identified only if (η − r) linearly independent

restrictions are imposed on Θnsκ. Overall, these results reveal that the rank condition can be readily

evaluated from the number of variables involved in the system, n, and the numbers of asymmetric

and/or non-mesokurtic structural shocks, mss, mκκ, and msκ.

4. Testing Procedure

In this section, we elaborate, for the first time in the literature, a testing procedure to verify the

symmetry and excess kurtosis of the structural shocks, prior to the estimation of the SVAR process.

Specifically, we develop a tractable procedure to verify whether the order and rank conditions hold

by assessing the numbers of asymmetric and/or non-mesokurtic structural shocks. We then outline

a bootstrap procedure to improve the small-sample properties of rank tests designed to verify the

numbers of structural shocks displaying skewness and/or excess kurtosis.
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4.1 Verification of the Order and Rank Conditions

The order and rank conditions for identification are useful as long as they are verified before

proceeding to the estimation of the SVAR (3); it is only if they hold that it becomes feasible

to estimate all the structural parameters involved in the system. As explained above, the order

conditions, ρ ≥ η, and the rank condition, r = η, can be verified from the numbers of asymmetric

and/or non-mesokurtic structural shocks.

However, the structural shocks become measurable only once the SVAR is estimated.15 To

circumvent this problem, we develop a method to test the number of asymmetric and/or non-

mesokurtic structural shocks, which relies exclusively on the reduced-form innovations – where

the latter can be evaluated from the reduced form (8) before the estimation of the structural

form (3). Specifically, the number of skewed structural shocks, ms, corresponds to the rank of

the coskewness matrix of the reduced-form innovations, Sν . To see this, note that expression (12)

implies that rk[Sν ] = rk[Sε] given that Θ is a non-singular matrix and, as a result, (Θ′ ⊗ Θ′) is a

full-rank matrix. Also, rk[Sε] = ms because the assumption of zero cross-sectional coskewnesses

of the structural shocks implies that the quadratic form of the corresponding skewness matrix is

SεS
′
ε = diag

(
s2
ε,1,11 · · · s2

ε,n,nn

)
, and s2

ε,i,ii 6= 0 only for i = 1, . . . ,ms when ms structural shocks

are skewed.

Analogously, the number of non-mesokurtic structural shocks, mκ, is given by the rank of

the excess cokurtosis matrix of the reduced-form innovations, Ke
ν . That is, equation (13) im-

plies that rk[Ke
ν ] = rk[Ke

ε ] given that Θ is a non singular. Also, rk[Ke
ε ] = mκ since the as-

sumption of zero cross-sectional excess cokurtoses of the structural shocks leads to Ke
εK

e′
ε =

diag
(
κe

2

ε,11,11 · · · κe
2

ε,nn,nn

)
, and κe

2

ε,ii,ii 6= 0 only for i = 1, . . . ,mκ.

15Empirically, asymmetric (either postive or negative skewness) and leptokurtic behaviors have been extensively
documented for stock and bond returns as well as for exchange rates and commodity prices (see for example, Clark,
1973; Boothe and Glassman, 1987; Bekaert and Harvey, 1997; Fujiwara, Körber, and Nagakura, 2013). Likewise,
positive excess kurtosis have been detected for several macroeconomic series, including indicators related to the
economic activity – e.g. real GDP, the components of the real aggregate expenditure, industrial production, and
unemployment – as well as a variety of indices of the cost of living – e.g. GDP deflator and CPI (see for example,
Blanchard and Watson, 1986; Kilian, 1998; Bai and Ng, 2005; Lanne, Meitz, and Saikkonen, 2017; Gouriéroux,
Montford, and Renne, 2017). Note that the studies just reported highlight the existence of skewness and/or excess
kurtosis for the variables of interest or for the reduced-form innovations related to these variables, but never for the
structural shocks.
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Based on the arguments developed above, we present a proposition to determine the number of

structural shocks displaying either skewness, excess kurtosis, or both.

Proposition 2 Given the unconditional third and fourth moments of the reduced-form innova-

tions, Sν and Ke
ν , the full rank of the impact matrix Θ and the assumption of zero cross-sectional

coskewnesses and excess cokurtoses of the structural shocks imply that the number of asymmet-

ric and/or non-mesokurtic structural shocks, mss + mkk + msk, is equal to the rank of the matrix

Ψν =
(
Sν Ke

ν

)
.

Proposition 2 is obtained as follows. First, equations (12) and (13) are used to highlight that

rk[Ψν ] = rk[Ψε] with Ψν =
(
ΘSε(Θ

′ ⊗Θ′) ΘKe
ε (Θ′ ⊗Θ′ ⊗Θ′)

)
and Ψε =

(
Sε Ke

ε

)
, given

that Θ is a non-singular matrix. Then, rk[Ψε] = mss + mκκ + msκ because the assumption of

zero cross-sectional coskewnesses and excess cokurtoses of the structural shocks leads to ΨεΨ
′
ε =

diag
(
s2
ε,1,11 + κe

2

ε,11,11 · · · s2
ε,n,nn + κe

2

ε,nn,nn

)
, and s2

ε,i,ii+κe
2

ε,ii,ii 6= 0 for the mss structural shocks

displaying exclusively skewness, the mκκ shocks exhibiting only excess kurtosis, and the msκ shocks

featuring both shewness and excess kurtosis.

In summary, the ranks of Sν , Ke
ν , and Ψν allow to determine ms, mκ, and mss + mκκ + msκ

before the estimation of the structural form (3). Then, the numbers of structural shocks displaying

exclusively skewness, mss, excess kurtosis, mκκ, and both, msκ, are readily deduced – given that

ms = mss +msκ and mκ = mκκ +msκ.
16

4.2 Bootstrap Procedure

In the rank test to determine ms, mκ, or mss + mκκ + msκ, we use the following likelihood-ratio

(LR) and Wald (W) statistics:17

16Specifically, msκ is determined from mss +mκκ +msκ = (ms −msκ) + (mκ −msκ) +msκ, where mss +mκκ +
msκ = rk[Ψν ], ms = rk[Sν ], and mκ = rk[Ke

ν ]. Then, mss and mκκ are determined from mss = ms − msκ and
mκκ = mκ −msκ.
17See Anderson (1951) and Robin and Smith (2000).
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ĈRT
LR

r∗ = (T − p)
n∑

i=r∗+1

ln(1 + λ̂i), (22)

ĈRT
W

r∗ = (T − p)
n∑

i=r∗+1

λ̂i, (23)

where λ̂i are the estimates of the eigenvalues of the quadratic form of the matrix Su, Ke
u, or Ψu (with

λ̂1 ≥ . . . ≥ λ̂n ≥ 0) and r∗ is the rank of this matrix under the null hypothesis. The matrices Su, Ke
u,

andΨu are constructed from the sample estimates of the coskweness ŝu,k,ij = 1
T−p

∑T
t=p+1 ûk,tûi,tûj,t

and cokurtosis κ̂u,k`,ij = 1
T−p

∑T
t=p+1 ûk,tû`,tûi,tûj,t of the estimated normalized reduced-form in-

novations, as well as the cokurtoses κũ,kk,kk = 3, κũ,kk,ii = σũ,kkσũ,ii = 1 (for i 6= k), and

κũ,kk,ki = κũ,kk,ij = κũ,k`,ij = 0 (for `, i, j 6= k) of hypothetical normal reduced-form innovations.

Moreover, the estimate of the normalized reduced-form innovations corresponds to ût = Ω̂−1ν̂t,

where ν̂t represents the OLS residuals of the reduced form (8) and Ω̂ is a lower triangular matrix

obtained from the Cholesky decompostion of the estimated covariance matrix of the OLS residuals;

i.e. Σ̂ν = Ω̂Ω̂′.18 Robin and Smith (2000) show that, under some regularity conditions, the statistics

(22) and (23) have limiting distributions that are weighted sums of independent chi-squared vari-

ables, despite that the estimators of vec(Su), vec(Ke
u), and vec(Ψu) have not full rank asymptotic

covariance matrices.19 These distributions are used to find the asymptotic critical values for the

statistics CRTLRr∗ and CRTWr∗ under the null hypothesis that the rank is r
∗.

From analytical approximations of the first four moments, it can be shown that ŝu,i,ii has a

symmetric leptokurtic distribution which fairly rapidly tends to a normal distribution as the sam-

ple size increases, but κ̂u,ii,ii has a very skewed distribution that hardly converges to a normal

distribution (see Mardia, 1980). This implies that the finite-sample critical values to test the null

hypothesis of no excess kurtosis converge extremely slowly to their asymptotic counterparts. Nu-

merical simulations of the Jarque-Bera tests for kurtosis further suggest that the use of asymptotic

critical values leads to severe size distortions, as the empirical size often substantially deviates from

18Note that rk[Su] = rk[Sν ] = ms, rk[Ke
u] = rk[Ke

ν ] = mκ, and rk[Ψu] = rk[Ψν ] = mss + mκκ + msκ given that
Su = Ω−1Sν(Ω−1′ ⊗ Ω−1′) and Ke

u = Ω−1Ke
ν(Ω−1′ ⊗ Ω−1′ ⊗ Ω−1′), where νt = Ωut.

19Note that most rank tests require non-singular asymptotic covariance matrices (see Camba-Méndez and Kapetan-
ios, 2008).
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the nominal size even for samples as large as T = 5, 000 (see Kilian and Demiroglu, 2000; Bai and

Ng, 2005).

To circumvent this problem, Kilian and Demiroglu (2000) develop a bootstrap procedure to

compute finite-sample critical values of the Jarque-Bera tests for symmetry and kurtosis. Monte

Carlo analyses highlight that the tests are virtually free of size distortions when the critical values

are computed from the bootstrap procedure, even for samples as small as T = 125.

In this vein, we design a bootstrap procedure to compute the finite-sample critical values for

the statistics CRTLRr∗ and CRTWr∗ . We illustrate the various steps of the procedure by focusing on

the rank of Su in order to determine ms.

Step 1. Under the null hypothesis rk[Su] = r∗ (i.e. r∗ is the assumed number of asymmetric

structural shocks), the vector u∗t =
(
u∗
′
r∗,t u∗

′
n−r∗,t

)′
is generated as follows. The elements contained

in the (r∗×1) subvector u∗r∗,t are obtained by bootstraping those included in the vector wr∗,t = C ′r∗ ût

for t = (p + 1), . . . , T , where Cr∗ is a (n × r∗) matrix stacking the eigenvectors associated with

the r∗ largest eigenvalues of the quadratic form Su S
′
u and ût is the (n × 1) vector collecting the

estimated normalized reduced-form innovations. This implies that the elements contained in wr∗,t

correspond to linear combinations of the normalized reduced-form innovations which are the most

asymmetric. The elements contained in the [(n− r∗)× 1] subvector u∗n−r∗,t are drawned from the

symmetric and mesokurtic distribution u∗n−r∗,t ∼ N(0, I) for t = (p+ 1), . . . , T.

Step 2. The bootstrap sample is generated recursively from the VAR process (8) as:

x∗t = Γ̂0 +

p∑
τ=1

Γ̂τx
∗
t−τ + Ω̂u∗t , (24)

for t = (p+ 1), . . . , T. To do so, the starting values of x∗t for t = 1, . . . , p are generated by randomly

drawing a block of the actual data of length p, while Γ̂0, Γ̂τ , and Ω̂ are the estimates of the reduced-

form parameters obtained by applying OLS on the actual sample. Following Bose (1988), these

estimates are treated as the population values of the reduced-form parameters.

Step 3. The VAR process is estimated to yield:

x∗t = Γ̂∗0 +

p∑
τ=1

Γ̂∗τx
∗
t−τ + Ω̂∗û∗t , (25)
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where Γ̂∗0, Γ̂∗τ , and Ω̂∗ are the estimates obtained by performing OLS on the bootstrap sample,

whereas û∗t corresponds to the normalized residuals.

Step 4. The normalized residuals û∗t are used to compute the bootstrap analogues of the statistics

(22) and (23).

Step 5. Steps 1 to 4 are repeated 2, 000 times to compute the empirical distributions of the

statistics (22) and (23). Selecting the appropriate quantiles of these empirical distibutions yield

the finite-sample critical values to test the null hypothesis that the rank is equal to r∗ against the

alternative hupothesis that the rank is larger than r∗.

Step 6. Steps 1 to 5 are repeated for r∗ = 0, 1, . . . , n − 1. If the null hypothesis rk[Su] = r∗ is

rejected for r∗ = 0, 1, . . . ,m − 1 but is not rejected for r∗ = m with m < n, then the number of

skewed structural shocks corresponds to ms = m. However, if the null hypothesis rk[Su] = r∗ is

rejected for r∗ = 0, 1, . . . , n− 1, then ms = n.20

This bootstrap procedure can also be performed to compute the finite-sample critical values for

the ranks of Ke
u and Ψu to determine mκ and mss +mκκ +msκ.

To document the possible size distortions of rank tests with asymptotic and finite-sample dis-

tributions, we focus on the ranks of Su and Ke
u to deduce ms and mκ. The empirical sizes of these

rank tests are evaluated by simulating 10, 000 samples of size T from the bivariate system (1)—(2),

where the supply shock follows a normal distribution whereas the demand shock is either generated

by a normal distribution under the null hypothesis r∗ = 0 or by non-normal distributions (i.e. a

mixture of normal distributions when the shock is asymmetric and a Student’s t-distribution when

the shock is non-mesokurtic) under r∗ = 1.

Table 1 presents the empirical sizes of the Wald and likelihood-ratio versions of the rank tests

for symmetry with asymptotic distributions, where the limiting critical values are computed as

in Robin and Smith (2000). For the Wald test, the results indicate the existence of a mild size

20The last step of the bootstrap procedure is similar to the sequential procedure proposed by Robin and Smith
(2000). These authors show that, asymptotically, such a sequential procedure never selects a value of r∗ that is
smaller than the true rank of the matrix of interest. Admittedly, in such a sequential procedure there exists a
probability, corresponding to the empirical size, to falsely reject the null hypothesis, as is common to usual testing
procedures. Moreover, even for a sequential procedure providing a consistent estimate of the rank, Leeb and Pötscher
(2005) show that the finite sample distribution for the subsequent inferences may not be well approximated by the
pointwise asymptotic. However, this corresponds to the worst possible outcome when conducting inference, not the
likely outcome (see Killian and Lutkepohl, 2017, Chapter 2).
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distortion when T = 100, but this distortion quickly vanishes as T increases. For example, the

empirical sizes of 3.92 percent under the null hypothesis r∗ = 0 and 5.79 percent under r∗ = 1

reported for T = 100 become almost equal to the nominal size of 5 percent when T ≥ 200. For the

likelihood-ratio test, however, the size distortion documented for small samples is more important

than that reported for the Wald test, and such distortion is still observed for samples as large

as T = 1, 000. Table 2 shows the empirical sizes of the Wald and likelihood-ratio versions of the

rank tests for kurtosis with asymptotic distributions. For both the Wald and LR tests, the size

distortions are severe under the null hypotheses r∗ = 0 and r∗ = 1. Specifically, the empirical sizes

are systematically close to zero, and, as such, they are substantially smaller than the nominal sizes

even for samples as large as T = 5, 000.

Tables 3 and 4 display the empirical sizes related to the rank tests for symmetry and kurtosis

with finite-sample distributions, where the critical values are constructed from the bootstrap pro-

cedure developed above. For symmetry, both the Wald and likelihood-ratio tests are essentially

free of size distortions; the empirical sizes are very close to the nominal sizes for all T . Note

that, although the empirical sizes of the Wald tests with finite-sample and asymptotic distributions

are similar, the empirical sizes of the likelihood-ratio test with finite-sample distributions deviate

markedly from those obtained from the asymptotic counterpart. For kurtosis, the empirical sizes

of the Wald and likelihood-ratio tests with finite-sample distributions are almost identical to the

nominal sizes, regardless of the sample size T . Importantly, these findings are strikingly different

than those reported for tests with asymptotic distributions.

Finally, we document the empirical powers of the tests with finite-sample distributions for the

ranks of Su and Ke
u. For this purpose, we simulate the bivariate system (1)—(2) for the cases in

which i) the supply shock is symmetric and the demand shock is skewed when we consider the null

hypothesis r∗ = 0, and ii) the supply and demand shocks are both asymmetric when we contemplate

that r∗ = 1 – where the skewness is moderate (sε = −0.5253) or pronounced (sε = −0.9907).

Likewise, we perform simulations for cases in which i) the supply shock is mesokurtic and the

demand shock displays excess kurtosis under when we consider the null hypothesis r∗ = 0, and ii)

the supply and demand shocks are both non-mesokurtic when we contemplate that r∗ = 1 – where
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the excess kurtosis is moderate (κeε = 1) or pronounced (κeε = 6).

Tables 5 and 6 highlight two main features. First, as expected, the powers of the tests substan-

tially improve as the sample size increases. For example, for the cases of moderate skewnesses and

excess kurtoses, the Wald and likelihood-ratio tests for skewness (kurtosis) correctly reject, at the

5 percent level, the null hypothesis that r∗ = 0 about 11 percent (22 percent) of the time when

T = 100, and almost 98 percent (90 percent) of the time when T = 1, 000. Second, the powers

of the tests considerably increase as the skewnesses and excess kurtoses become more pronounced.

For instance, considering a sample size of T = 200, the Wald and likelihood-ratio tests for skewness

(kurtosis) correctly reject, at the 5 percent level, the null hypothesis that r∗ = 0 around 26 percent

(35 percent) of the time when sε = −0.5253 (κeε = 1), and about 96 percent (80 percent) of the

time when sε = −0.9907 (κeε = 6).

Overall, our bootstrap procedure for rank tests always overcomes size distortions and often yields

good power properties.21 Consequently, this procedure is most useful to determine the numbers

of asymmetric and/or non-mesokurtic structural shocks, in order to assess whether the order and

rank conditions hold.

5. Application

We now apply the developments presented above to document the effects of fiscal policies on eco-

nomic activity. The effectiveness of fiscal policies represents a classical question in macroeconomics.

Also, it has received renewed interest in light of the recent Great Recession and the ongoing debate

about which type of government interventions stimulate the most the economy.

We consider a trivariate SVAR process implying the relation:

ντ ,tνg,t
νy,t

 =

θ11 θ12 θ13

θ21 θ22 θ23

θ31 θ32 θ33

ε1,tε2,t
ε3,t

 , (26)

where ντ ,t, νg,t, νy,t represent the reduced-form innovations capturing the unanticipated movements

21Note that when the sample size is small and/or the structural shocks exhibit negligible skewnesses and excess
kurtoses, then the powers of rank tests decrease. This leads to conservative analyses: it is likely that an analyst
would conclude that the entire system is under-identified (even if it is actually identified) or would under-evaluate
the size of the subsystem that is identified (when the entire system is actually under-identified).
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in taxes, government spending, and output, whereas ε1,t, ε2,t, and ε3,t correspond to the structural

shocks.

The relation (26) is evaluated for quarterly U.S. data from 1980-I to 2015-III.22 Output corre-

sponds to the logarithm of real GDP per capita, taxes are defined as the logarithm of real total

government receipts net of transfer payments per capita, and government spending is the logarithm

of the sum of real consumption and gross investment expenditures per capita. The series are ex-

pressed in real terms using the GDP deflator and in per capita terms using total population. Also,

taxes and government spending are measured for the general government, i.e. the sum of federal

(defense and non-defense), state, and local governments.23

As explained previously, it is crucial to verify whether the identification conditions hold before

proceeding to the estimation of the structural parameters. To do so, we apply the rank tests where

the finite-sample critical values are computed by the bootstrap procedure discussed in Section 4.2.24

The results reveal that the hypothesis stipulating that the structural shocks are symmetric is not

rejected (at all conventional levels) and only one shock is non-mesokurtic (i.e. mss = msκ = 0

and mκκ = 1), given that the likelihood-ratio and Wald versions of the tests imply that rk[Su] =

ms = 0, rk[Ke
u] = mκ = 1, and rk[Ψu] = mss + mκκ + msκ = 1. In this context, the number of

structural parameters is η = n2 +mκ = 10, whereas the number of distinct elements in the reduced

form is ρ =
[
n(n+1)

2

]
+
[
n(n+1)(n+2)(n+3)

24

]
= 21 and the rank associated with the reduced form is

r = rκ + rnκ + rκeε = 9 – with rκ = n × mκ = 3, rnκ =
∑n−mk

i=0 (n − i) − mκ = 5, and rκeε =

mκ = 1. This implies that, although the order (necessary) conditions ρ ≥ η are satisfied, the rank

(suffi cient) condition r = η is violated so that the entire system is not identified.

Empirically, the estimates of the parameters θ11, θ21, and θ13 of system (26) are 0.0916, 0.0001,

and 0.0002.25 The estimate of θ11 is statistically different from zero, whereas the hypotheses that the

22A similar starting date of the sample is selected by Perotti (2004), Favero and Giavazzi (2009), and Bouakez,
Chihi, and Normandin (2014).
23The data are seasonally adjusted at the source and are taken from the National Income and Products Accounts

(NIPA), except for total population which is obtained from the Federal Reserve Bank of Saint-Louis’FRED database.
24The reduced-form innovations are measured by the OLS residuals of (8). This reduced form includes a linear

deterministic trend and eight lags, which correspond to the most parsimonious lag structure for which all reduced-form
residuals are serially uncorrelated.
25The 10 parameters (θij for i, j = 1, 2, 3 and κeε,11,11) involved in system (26) are estimated from the 10 following

unconditional moments: σν,ττ , σν,τg, σν,τy, σν,gg, σν,gy, σν,yy, κeν,ττ,ττ , κ
e
ν,ττ,τg, κ

e
ν,ττ,τy, and κ

e
ν,ττ,gy – where the

moments are evaluated by the sample estimates from the reduced-form residuals. The confidence intervals of the
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true values of θ21 and θ31 are zero cannot be rejected (at all conventional levels). Note that the true

values θ21 = θ31 = 0 mean that ντ ,t exhibits excess kurtosis, while νg,t and νy,t are mesokurtic.26

Also, the true values imply that, at impact, the structural shock ε1,t only affects taxes, so that this

shock can be interpreted economically as a tax shock.

The results lead to the important implication that the subsytem relating all the reduced-form

innovations to the tax shock is identified. Consequently, the responses of output, taxes, and gov-

ernment spending following a tax shock can be evaluated without imposing any restrictions on the

structural parameters. Empirically, the response of output suggest that the effectiveness of the tax

policy is weak. That is, the tax multiplier (i.e. the dollar change in output occuring in quarter t+ i

resulting from a dollar cut in the exogenous component of taxes) is small; it is −0.01 at impact

and it reaches a peak of 0.59 at 14 quarters (see Table 7).

In contrast, the subsytem relating the reduced-form innovations to the structural shocks ε2,t and

ε3,t is under-identified. To achieve the idenfication of this subsystem, (η − r) = 1 restriction must

be imposed. This restriction is required to assess the responses of output, taxes, and government

spending following the structural shocks ε2,t and ε3,t, where one of these shocks may correspond to

the government spending shock.

To deepen the analysis of the effectiveness of the spending policy, we rely on the specification

invoked in the seminal paper of Blanchard and Perotti (2002):

ντ ,t = α1νy,t + α2ωgεg,t + ωτ ετ ,t, (27)

νg,t = β1νy,t + β2ωτ ετ ,t + ωgεg,t, (28)

νy,t = γ1ντ ,t + γ2νg,t + ωyεy,t. (29)

The structural shocks ετ ,t and εg,t represent the tax and spending shocks that reflect unexpected,

exogenous, discretionary changes in taxes and government expenditures, whereas εy,t captures the

non-fiscal shocks that affect output. Equations (27) and (28) describe the government’s tax and

estimated parameters are computed from 5,000 bootstrap samples.
26These results are confirmed by applying Jarque-Bera tests for the reduced-form innovations, where the finite-

sample critical values are approximated by Kilian and Demiroglu’s (2000) bootstrap procedure. Specifically, we find
that the hypothesis of symmetry is not rejected for all reduced-form innovations, whereas the hypothesis of zero excess
kurtosis is rejected only for the reduced-form innovation associated with taxes, ντ,t. This implies that nss = nsκ = 0
and nκκ = 1.
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spending rules. Specifically, the rule (27) highlights that taxes may vary in response to changes in

output or to spending shocks. The rule (28) has an analogous interpretation for public spending.

In these rules, the parameters α1 and β1 potentially measure the automatic and government’s

systematic responses of taxes and government spending to changes in output, whereas α2 and β2

allow for interactions between tax and spending policies. Equation (29) relates changes in output

to changes in taxes and government expenditures, and to non-fiscal shocks. Finally, the terms ωτ ,

ωg, and ωy are scaling parameters.

The specification (27)—(29) can be expressed in the form of relation (26) as:ντ ,tνg,t
νy,t

 =
1

∆

 (1 + α1β2γ2 − β1γ2)ωτ (α2 + α1γ2 − α2β1γ2)ωg α1ωy
(β2 + β1γ1 − α1β2γ1)ωτ (1 + α2β1γ1 − α1γ1)ωg β1ωy

(γ1 + β2γ2)ωτ (α2γ1 + γ2)ωg ωy

ετ ,tεg,t
εy,t

 , (30)

where ∆ = (1 − α1γ1 − β1γ2). Here, the element θij of the marix (26) corresponds to the (i, j)

element of the matrix in (30) divided by ∆, whereas ε1,t = ετ ,t, ε2,t = εg,t, and ε3,t = εy,t.27

Blanchard and Perotti (2002) elaborate two sets of identifying restrictions. The first set fixes

α2 = 0 such that taxes do not vary following a spending shock. It also calibrates α1 = 2.08

and β1 = 0 using institutional information about tax and transfer systems, where such information

allows to measure automatic adjustments of taxes and public spending rather than the government’s

systematic responses to fluctuations in output (see Blanchard and Perotti, 2002). In principle, this

identification strategy may allow for θ21 6= 0 and θ31 6= 0. In practice, however, this apparent

flexibility is illusive in the sense that the estimates of β2 and γ1 are close to zero to recover the true

values θ21 = θ31 = 0.28 Moreover, the misleading case θ21 6= 0 and θ31 6= 0 forces to impose three

restrictions: two restrictions are required to compensate for the ‘pseudo’deviations of θ21 and θ31

from zero (despite that the true values are θ21 = θ31 = 0) and, as stated above, one restriction

is needed to identify the subsystem linking the reduced-form innovations to the structural shocks

εg,t and εy,t. Here, the three restrictions, implying that θ12 = α1θ32, θ13 = α1θ33, and θ23 = 0, are

placed on the subsystem relating the reduced-form innovations to the structural shocks εg,t and

εy,t, so that it becomes over-identified.
27Recall that the identified subsystem implies that the structural shock ε1,t corresponds to the tax shock ετ,t. Also,

the shocks ε2,t and ε3,t are ordered such that they can be interpreted as a spending shock εg,t and a non-fiscal shock
εy,t.
28These estimates are available upon request.
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The second set of identifying restrictions invoked by Blanchard and Perotti (2002) imposes

β2 = 0 so that government spending is not affected by tax shocks, as well as α1 = 2.08 and

β1 = 0 to capture only automatic adjustments. Again, this identification strategy allows for

θ31 6= 0. However, the estimate of γ1 is negligible to yield the true value θ31 = 0.29 Moreover,

two restrictions, namely θ13 = α1θ33 and θ23 = 0, lead to the over-identification of the subsystem

allowing to trace the responses of the variables to a spending shock.

Empirically, we place only one of the restrictions θ12 = α1θ32, θ13 = α1θ33, or θ23 = 0 at a time,

so that the subsystem linking the reduced-form innovations to the structural shocks εg,t and εy,t is

just identified. This exercise reveals that the evaluation of the effectiveness of the spending policy

represents a challenging task. That is, the spending multiplier (i.e. the dollar change in output

occuring in quarter t+ i resulting from a dollar increase in the exogenous component of government

spending) highly depends on the nature of the restriction; it is between 0.73 and 2.00 at impact,

and it reaches a peak that ranges between 0.73 and 2.91 (see Table 7).

6. Conclusion

In this paper, we first derived the local identification conditions of SVAR processes through higher

unconditional moments. These conditions are solely related to the numbers structural shocks that

display skewness and/or excess kurtosis. Furthermore, these conditions establish which structural

parameters are identified and which are not. For practitioners, this yields useful guidances about

which structural parameters need to be restricted to achieve the identification of the entire system.

We then developed a tractable procedure to verify whether a SVAR process is identified, prior

to the estimation of the structural parameters. In particular, the numbers of structural shocks ex-

hibiting skewness and excess kurtosis correspond to the ranks of the third and fourth unconditional

moment matrices of the reduced-form innovations. A bootstrap procedure is designed to improve

the small-sample properties of these rank tests. The bootstrap version of the tests are virtually

free of size distortions, whereas existing tests with asymptotic distributions suffer from severe size

distortions even for large samples.

29This estimate is available upon request.
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Conceptually, the validity of economic and statistical restrictions that are commonly placed on

the entire structural system or subsystem that is identified through higher unconditional moments

could be tested. However, there exists a possibility that some of the parameters are weakly iden-

tified. This calls for the development of tests (including overidentification tests), where these tests

could be robust to weakly identified systems. We leave this for future research.
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7. Appendix

This Appendix details the analytical partial derivatives involved in the Jacobians matrices (19),

(20), and (21). First, the partial derivatives of the second unconditional moments of the reduced-

form innovations with respect to the structural parameters are:

Jσν ,θi = 2D+
σ (Θ⊗ In)Υθi ,

Jσν ,sε = 0,

Jσν ,κeε = 0,

where i = s, ns in (19), i = κ, nκ in (20), and i = ss, κκ, sκ, nsκ in (21). The vectorization

of the distinct elements of the second moments yields σν = D+
σ vec(Σν), where σν = vech(Σν),

D+
σ = (D′σDσ)−1D′σ, and Dσ is the

(
n2 × n(n+1)

2

)
duplication matrix such that Dσσν = vec(Σν).

Using this vectorization, we obtain ∂σν
∂θ′i

= D+
σ
∂vec(Σν)
∂vec(Θ)′

∂vec(Θ)
∂θ′i

. Equation (11) leads to vec(Σν) =

(Θ⊗Θ)vec(In), so that ∂vec(Σν)
∂vec(Θ)′ = 2(Θ⊗ In) (see Lütkepohl, 2007, p. 363). Also, ∂vec(Θ)

∂θ′i
= Υθi is

a matrix containing the values one and zero such that only the partial derivatives with respect to

the elements of the vector θi are selected. As an example, consider the relation (14) with n = 2 and

ms = 1 (where the asymmetric reduced-form innovation and structural shock are ordered first),

then the (n2 × nms) selection matrix corresponds to Υθs =

(
1 0 0 0
0 1 0 0

)′
and θs = vec(Θs).

Moreover, ∂σν
∂s′ε

= D+
σ
∂vec(Σν)
∂vec(Sε)′

∂vec(Sε)
∂s′ε

, where ∂vec(Σν)
∂vec(Sε)′

= 0 given that Σν is not a function of the

skewnesses of the structural shocks. Likewise, ∂σν∂κe′ε
= D+

σ
∂vec(Σν)
∂vec(Ke

ε )′
∂vec(Ke

ε )
∂κe′ε

with ∂vec(Σν)
∂vec(Ke

ε )′ = 0.

Next, the partial derivatives of the third unconditional moments of the reduced-form innovations

with respect to the structural parameters are:

Jsν ,θi = D+
s {(In2 ⊗ΘSε)[(In ⊗ Cn,n ⊗ In)[(In2 ⊗ vec(Θ′)) + (vec(Θ′)⊗ In2)]Cn,n] + [(Θ⊗Θ)S′ε ⊗ In]}Υθi ,

Jsν ,sε = D+
s (Θ⊗Θ⊗Θ)Υsε ,

Jsν ,κeε = 0,

where i = s, ns in (19) and i = ss, κκ, sκ, nsκ in (21). The vectorization of the distinct elements

of the third moments corresponds to sν = D+
s vec(Sν), where D+

s = (D′sDs)
−1D′s, and Ds is the
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(
n3 × n(n+1)(n+2)

6

)
matrix such that Dssν = vec(Sν). As an example, for a bivariate system with

n = 2, then:

Ds =



1 0 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1


.

Using the above vectorization, we have ∂sν
∂θ′i

= D+
s
∂vec(Sν)
∂vec(Θ)′

∂vec(Θ)
∂θ′i

with ∂vec(Θ)
∂θ′i

= Υθi . Rewriting

equation (12) as vec(Sν) = [(Θ ⊗ Θ) ⊗ Θ]vec(Sε), then
∂vec(Sν)
∂vec(Θ)′ = (In2 ⊗ ΘSε)

∂vec(Θ′⊗Θ′)
∂vec(Θ)′ + [(Θ ⊗

Θ)S′ε ⊗ In], where ∂vec(Θ′⊗Θ′)
∂vec(Θ)′ = (In ⊗ Cn,n ⊗ In)[(In2 ⊗ vec(Θ′)) + (vec(Θ′) ⊗ In2)]

∂vec(Θ′)
∂vec(Θ)′ with

∂vec(Θ′)
∂vec(Θ)′ = Cn,n (see Magnus and Neudecker, 2007, pp. 208—209), and Cn,m is a (nm × nm)

commutation matrix implying that Cn,mvec(A) = vec(A′) for the arbitrary (n×m) matrix A. Note

that ∂sν
∂θ′i

= 0 for i = ns in (19) and for i = κκ, nsκ in (21), since Sν is not a function of the

structural parameters relating the reduced-form innovations to the symmetric structural shocks.

Furthermore, ∂sν
∂sε

= D+
s
∂vec(Sν)
∂vec(Sε)′

∂vec(Sε)
∂sε′

, where ∂vec(Sν)
∂vec(Sε)′

= (Θ ⊗ Θ ⊗ Θ) and ∂vec(Sε)
∂sε′

= Υsε is a

(n3 ×ms) matrix selecting the partial derivatives with respect to the non-zero elements of sε. In

particular, for a system with n = ms = 2, then Υsε has values one for the (1,1) and (8,2) elements,

and zero elsewhere. For the system with n = 2 and ms = 1, then Υsε has values one for the (1,1)

element, and zero elsewhere. Moreover, ∂sν∂κeε
= D+

s
∂vec(Sν)
∂vec(Ke

ε )′
∂vec(Ke

ε )
∂κeε
′ , where ∂vec(Sν)

∂vec(Ke
ε )′ = 0 given that

Sν is not a function of the excess kurtoses of the structural shocks.

Finally, the partial derivatives of the fourth unconditional moments of the reduced-form inno-

vations with respect to the structural parameters are:

Jκeν ,θi = D+
κ {(In2 ⊗ΘKe

ε )(In2 ⊗ Cn,n2 ⊗ In)[(In4 ⊗ vec(Θ′))(In ⊗ Cn,n ⊗ In)

×[(In2 ⊗ vec(Θ′) + (vec(Θ′)⊗ In2)]Cn,n + (vec(Θ′ ⊗Θ′)⊗ In2)Cn,n] + [(Θ⊗Θ⊗Θ)Ke′
ε ⊗ In]}Υθi ,

Jκeν ,sε = 0,

Jκeν ,κeε = D+
κ (Θ⊗Θ⊗Θ⊗Θ)Υκeε ,

where i = κ, nκ in (20) and i = ss, κκ, sκ, nsκ in (21). The vectorization of the distinct ele-
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ments of the fourth moments is κeν = D+
κ vec(K

e
ν), where D+

κ = (D′κDκ)−1D′κ, and Dκ is the(
n4 × n(n+1)(n+2)(n+3)

24

)
matrix such that Dκκ

e
ν = vec(Ke

ν). For example, when n = 2, then:

Dκ =



1 0 0 0 0
0 1 0 0 0
0 1 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 1 0 0
0 0 1 0 0
0 0 0 1 0
0 1 0 0 0
0 0 1 0 0
0 0 1 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 1 0
0 0 0 1 0
0 0 0 0 1



.

Using the above vectorization, we have ∂κeν
∂θ′i

= D+
κ
∂vec(Ke

ν)
∂vec(Θ)′

∂vec(Θ)
∂θ′i

with ∂vec(Θ)
∂θ′i

= Υθi . Given that

equation (13) implies vec(Ke
ν) = [(Θ⊗Θ⊗Θ)⊗Θ]vec(Ke

ε ), then ∂vec(Ke
ν)

∂vec(Θ)′ = (In2⊗ΘKe
ε )∂vec(Θ

′⊗Θ′⊗Θ′)
∂vec(Θ)′ +

[(Θ′ ⊗ Θ′ ⊗ Θ′)Ke′
ε ⊗ In], where ∂vec(Θ′⊗Θ′⊗Θ′)

∂vec(Θ)′ = (In2 ⊗ Cn,n2 ⊗ In)[
(In4 ⊗ vec(Θ′))

∂vec(Θ′⊗Θ′)
∂vec(Θ)′ + [vec(Θ′ ⊗Θ′)⊗ In2 ]

]
∂vec(Θ′)
∂vec(Θ)′ , and, as shown above,

∂vec(Θ′⊗Θ′)
∂vec(Θ)′ =

(In ⊗ Cn,n ⊗ In)[(In2 ⊗ vec(Θ′)) + (vec(Θ′) ⊗ In2)]
∂vec(Θ′)
∂vec(Θ)′ and

∂vec(Θ′)
∂vec(Θ)′ = Cn,n. Note that

∂κeν
∂θ′i

= 0

for i = nκ in (20) and for i = ss, nsκ in (21), since Ke
ν is not a function of the structural pa-

rameters relating the reduced-form innovations to the mesokurtic structural shocks. Moreover,

∂κeν
∂sε

= D+
κ
∂vec(Ke

ν)
∂vec(Sε)′

∂vec(Sε)
∂sε′

, where ∂vec(Ke
ν)

∂vec(Sε)′
= 0 given that Ke

ν is not a function of the skewnesses of

the structural shocks. In addition, ∂κ
e
ν

∂κeε
= D+

κ
∂vec(Ke

ν)
∂vec(Ke

ε )′
∂vec(Ke

ε )
∂κeε
′ , where ∂vec(Ke

ν)
∂vec(Ke

ε )′ = (Θ⊗Θ⊗Θ⊗Θ)

and ∂vec(Ke
ε )

∂κeε
′ = Υκeε is a (n4 × mκ) matrix selecting the partial derivatives with respect to the

non-zero elements of κeε . For example, when n = mκ = 2, then Υκeε has values one for the (1,1) and

(16,2) elements, and zero elsewhere. For the system with n = 2 and mκ = 1, then Υκeε has values

one for the (1,1) element, and zero elsewhere.
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Table 1. Empirical Sizes of Rank Tests with Asymptotic Distributions: Symmetry

r∗ = 0
Wald LR

T 10 % 5% 1% 10 % 5% 1%
100 8.72 3.92 0.53 2.68 0.63 0.01
200 9.99 4.66 0.80 5.81 1.91 0.12
500 9.93 4.69 0.81 7.97 3.36 0.41

1, 000 9.73 4.63 0.70 8.65 3.94 0.52
5, 000 10.03 5.22 1.09 9.90 4.97 1.02

r∗ = 1
Wald LR

T 10 % 5% 1% 10 % 5% 1%
100 11.83 5.79 1.52 7.86 3.22 0.51
200 10.87 5.30 1.18 8.60 3.66 0.53
500 10.89 5.20 1.06 9.74 4.42 0.63

1, 000 9.97 4.82 1.03 9.45 4.36 0.86
5, 000 10.61 5.59 1.02 10.05 5.47 0.99

Notes. Entries are the empirical sizes (in percentage) of the rank tests with asymptotic distributions under the

null hypothesis that rk[Su] = r∗. The empirical sizes are evaluated for the bivariate specification (1)—(2), where

the parameters are set as follows: αd= αs= 0.5 and ωd= ωs= 1. Also, the distributions are εs,t∼ N(0, 1), and i)

εd,t∼ N(0, 1) under r∗= 0 or ii) 2.1755× εd,t∼ N(1, 1) with probability 0.7887 and

2.1755× εd,t∼ N(−3.7326, 1) with probability 0.2113 under r∗= 1. For each parametrization, 10,000 simu-

lated samples of size T are generated to compute the proportions of time that the Wald statistic ĈRT
W

r∗ and the

likelihood-ratio (LR) statistic ĈRT
LR

r∗ associated with Su exceed the asymptotic critical values, where the latters

are computed as in Robin and Smith (2000).
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Table 2. Empirical Sizes of Rank Tests with Asymptotic Distributions: Kurtosis

r∗ = 0
Wald LR

T 10 % 5% 1% 10 % 5% 1%
100 0.70 0.10 0.00 0.00 0.00 0.00
200 0.00 0.00 0.00 0.00 0.00 0.00
500 0.00 0.00 0.00 0.00 0.00 0.00

1, 000 0.00 0.00 0.00 0.00 0.00 0.00
5, 000 0.00 0.00 0.00 0.00 0.00 0.00

r∗ = 1
Wald LR

T 10 % 5% 1% 10 % 5% 1%
100 1.19 0.53 0.08 0.37 0.07 0.00
200 1.05 0.38 0.04 0.33 0.06 0.00
500 0.68 0.21 0.02 0.36 0.12 0.00

1, 000 0.54 0.21 0.05 0.32 0.09 0.00
5, 000 0.36 0.10 0.02 0.32 0.08 0.02

Notes. Entries are the empirical sizes (in percentage) of the rank tests with asymptotic distributions under the null

hypothesis that rk[Ke
u] = r∗. The empirical sizes are evaluated for the bivariate specification (1)—(2), where the

parameters are set as follows: αd= αs= 0.5 and ωd= ωs= 1. Also, the distributions are εs,t∼ N(0, 1), and i)

εd,t∼ N(0, 1) under r∗= 0 or ii) 1.291× εd,t∼ t(5) under r∗= 1. For each parametrization, 10,000 simulated

samples of size T are generated to compute the proportions of time that the Wald statistic ĈRT
W

r∗ and the likelihood-

ratio (LR) statistic ĈRT
LR

r∗ associated withKe
u exceed the asymptotic critical values, where the latters are computed

as in Robin and Smith (2000).
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Table 3. Empirical Sizes of Rank Tests with Finite-Sample Distributions: Symmetry

r∗ = 0
Wald LR

T 10 % 5% 1% 10 % 5% 1%
100 9.42 4.65 0.98 9.56 4.85 1.01
200 10.17 5.25 0.98 10.19 5.20 1.00
500 10.14 5.04 1.10 10.29 4.99 1.12

1, 000 9.82 4.91 0.92 9.87 4.90 0.92
5, 000 10.02 5.10 1.12 9.98 5.11 1.11

r∗ = 1
Wald LR

T 10 % 5% 1% 10 % 5% 1%
100 11.41 6.35 1.47 11.41 6.35 1.47
200 9.11 4.86 1.42 9.11 4.86 1.42
500 9.29 4.55 1.07 9.29 4.55 1.07

1, 000 8.39 4.26 1.02 8.39 4.26 1.02
5, 000 9.20 4.68 0.96 9.20 4.68 0.96

Notes. Entries are the empirical sizes (in percentage) of the rank tests with finite-sample distributions under the

null hypothesis that rk[Su] = r∗. The empirical sizes are evaluated for the bivariate specification (1)—(2), where

the parameters are set as follows: αd= αs= 0.5 and ωd= ωs= 1. Also, the distributions are εs,t∼ N(0, 1), and i)

εd,t∼ N(0, 1) under r∗= 0 or ii) 2.1755× εd,t∼ N(1, 1) with probability 0.7887 and

2.1755× εd,t∼ N(−3.7326, 1) with probability 0.2113 under r∗= 1. For each parametrization, 10,000 simu-

lated samples of size T are generated to compute the proportions of time that the Wald statistic ĈRT
W

r∗ and the

likelihood-ratio (LR) statistic ĈRT
LR

r∗ associated with Su exceed the finite-sample critical values, where the latters

are computed by the bootstrap procedure elaborated in Section 4.2.
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Table 4. Empirical Sizes of Rank Tests with Finite-Sample Distributions: Kurtosis

r∗ = 0
Wald LR

T 10 % 5% 1% 10 % 5% 1%
100 10.12 5.00 0.99 10.43 4.93 1.09
200 9.74 5.14 1.23 9.75 5.19 1.21
500 9.81 4.91 1.01 9.86 4.87 1.00

1, 000 9.71 4.60 1.04 9.75 4.58 1.03
5, 000 9.84 4.88 1.02 9.83 4.89 1.03

r∗ = 1
Wald LR

T 10 % 5% 1% 10 % 5% 1%
100 9.90 4.98 0.93 9.90 4.98 0.93
200 10.65 5.67 1.19 10.65 5.67 1.19
500 9.88 5.08 1.15 9.88 5.08 1.15

1, 000 10.10 4.95 0.95 10.10 4.95 0.95
5, 000 9.71 4.76 0.95 9.71 4.76 0.95

Notes. Entries are the empirical sizes (in percentage) of the rank tests with finite-sample distributions under the

null hypothesis that rk[Ke
u] = r∗. The empirical sizes are evaluated for the bivariate specification (1)—(2), where

the parameters are set as follows: αd= αs= 0.5 and ωd= ωs= 1. Also, the distributions are εs,t∼ N(0, 1),

and i) εd,t∼ N(0, 1) under r∗= 0, and ii) 1.291× εd,t∼ t(5) under r∗= 1. For each parametrization, 10,000

simulated samples of size T are generated to compute the proportions of time that the Wald statistic ĈRT
W

r∗ and

the likelihood-ratio (LR) statistic ĈRT
LR

r∗ associated with Ke
u exceed the finite-sample critical values, where the

latters are computed by the bootstrap procedure elaborated in Section 4.2.
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Table 5. Empirical Powers of Rank Tests with Finite-Sample Distributions: Skewness

Skewness = −0.5231 Skewness = −0.9907

r∗ = 0 r∗ = 0
Wald LR Wald LR

T 10 % 5% 1% 10 % 5% 1% 10% 5% 1% 10% 5% 1%
100 20.71 11.44 2.42 20.88 11.46 2.53 72.05 46.66 10.43 69.95 44.82 10.53
200 41.02 26.70 8.50 40.58 26.40 8.15 99.35 96.85 74.28 99.23 96.33 67.90
500 82.98 71.28 42.66 82.82 70.93 41.24 100.0 100.0 100.0 100.0 100.0 100.0

1, 000 99.11 97.66 88.94 99.10 97.64 88.51 100.0 100.0 100.0 100.0 100.0 100.0

r∗ = 1 r∗ = 1
Wald LR Wald LR

T 10 % 5% 1% 10 % 5% 1% 10% 5% 1% 10% 5% 1%
100 16.35 8.05 1.31 16.35 8.05 1.31 88.27 78.73 41.91 89.15 78.75 41.91
200 41.12 27.24 8.06 41.12 27.24 8.06 99.70 99.20 94.65 99.70 99.20 94.65
500 86.85 78.10 53.80 86.85 78.10 53.80 100.0 100.0 100.0 100.0 100.0 100.0

1, 000 99.49 98.65 94.17 99.49 98.65 94.17 100.0 100.0 100.0 100.0 100.0 100.0

Notes. Entries are the empirical powers (in percentage) of the rank tests with finite-sample distributions under the null

hypothesis that rk[Su] = r∗. The empirical powers are evaluated for the bivariate specification (1)—(2), where the

parameters are set as follows: αd= αs= 0.5 and ωd= ωs= 1. For r∗= 0, the distributions are: i) εs,t∼ N(0, 1) as

well as 1.6808× εd,t∼ N(1, 1) with probability 0.5 and 1.6808× εd,t∼ N(−1, 2.65) with probability 0.5 when

the demand shock exhibits a skewness of −0.5231, and ii) εs,t∼ N(0, 1) as well as 2.1755× εd,t∼ N(1, 1) with

probability 0.7887 and 2.1755× εd,t∼ N(−3.7326, 1) with probability 0.2113 when the demand shock exhibits

a skewness of−0.9907. For r∗= 1, the distributions are: i) 1.6808× εs,t∼ N(1, 1) and 1.6808× εd,t∼ N(1, 1)

with probability 0.5 as well as 1.6808× εs,t∼ N(−1, 2.65) and 1.6808× εd,t∼ N(−1, 2.65) with probability

0.5 when each shock exhibits a skewness of−0.5231, and ii) 2.1755× εs,t∼ N(1, 1) and 2.1755× εd,t∼ N(1, 1)

with probability 0.7887 as well as 2.1755× εs,t∼ N(−3.7326, 1) and 2.1755× εd,t∼ N(−3.7326, 1) with

probability 0.2113 when each shock exhibits a skewness of −0.9907. For each parametrization, 10,000 simu-

lated samples of size T are generated to compute the proportions of time that the Wald statistic ĈRT
W

r∗ and

the likelihood-ratio (LR) statistic ĈRT
LR

r∗ associated with Su exceed the finite-sample critical values, where the

latters are computed by the bootstrap procedure elaborated in Section 4.2.

42



Table 6. Empirical Powers of Rank Tests with Finite-Sample Distributions: Kurtosis

Excess Kurtosis = 1 Excess Kurtosis = 6

r∗ = 0 r∗ = 0
Wald LR Wald LR

T 10 % 5% 1% 10 % 5% 1% 10% 5% 1% 10% 5% 1%
100 32.46 22.77 10.40 32.00 22.41 10.23 64.00 54.52 37.60 63.17 53.69 36.42
200 45.88 36.18 19.45 45.39 35.64 18.74 85.58 80.00 65.25 84.96 79.23 64.38
500 73.88 65.63 46.76 73.86 65.06 45.81 99.28 98.73 96.46 99.22 98.66 96.06

1, 000 93.20 89.67 78.58 93.20 89.41 78.41 100.0 100.0 100.0 100.0 100.0 100.0

r∗ = 1 r∗ = 1
Wald LR Wald LR

T 10 % 5% 1% 10 % 5% 1% 10% 5% 1% 10% 5% 1%
100 18.96 12.57 3.90 18.96 12.57 3.90 53.18 44.34 23.81 53.18 44.34 23.81
200 32.72 24.31 10.27 32.72 24.31 10.27 80.78 74.44 55.78 80.78 74.44 55.78
500 99.09 98.58 95.55 99.09 98.58 95.55 99.09 98.58 95.55 99.09 98.58 95.55

1, 000 100.0 99.99 99.94 100.0 99.99 99.94 100.0 99.99 99.94 100.0 99.99 99.94

Notes. Entries are the empirical powers (in percentage) of the rank tests with finite-sample distributions un-

der the null hypothesis that rk[Ke
u] = r∗. The empirical powers are evaluated for the bivariate specification

(1)—(2), where the parameters are set as follows: αd= αs= 0.5 and ωd= ωs= 1. For r∗= 0, the distributions

are: i) εs,t∼ N(0, 1) and 1.118× εd,t∼ t(10) when the demand shock exhibits an excess kurtosis of 1, and ii)

εs,t∼ N(0, 1) and 1.291× εd,t∼ t(5) when the demand shock exhibits an excess kurtosis of 6. For r∗= 1, the

distributions are: i) 1.118× εs,t∼ t(10) and 1.118× εd,t∼ t(10) when each shock exhibits an excess kurtosis

of 1, and ii) 1.291× εs,t∼ t(5) and 1.291× εd,t∼ t(5) when each shock exhibits an excess kurtosis of 6. For

each parametrization, 10,000 simulated samples of size T are generated to compute the proportions of time that the

Wald statistic ĈRT
W

r∗ and the likelihood-ratio (LR) statistic ĈRT
LR

r∗ associated with Ke
u exceed the finite-sample

critical values, where the latters are computed by the bootstrap procedure elaborated in Section 4.2.
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Table 7. Multipliers

Quarter Tax Spending
θ12 = α1θ32 θ13 = α1θ33 θ23 = 0

1 −0.01 0.73∗ 1.75∗ 2.00∗

4 0.03 0.23 2.14∗ 2.60∗

8 0.22 −0.14 1.57 1.94
Peak 0.59 0.73∗ 2.51∗ 2.91∗

[14] [1] [3] [3]

Notes. Entries correspond to the tax (spending) multipliers: the dollar change in output at a given horizon that

results from a dollar decrease (increase) in the exogenous component of taxes (government spending). An asterisk

indicates that the 90 percent confidence interval does not include zero, where the confidence intervals are computed

from 5,000 bootstrap samples. Numbers between brackets indicate the quarters in which the maximum value of the

multiplier is reached.
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Figure 1. Densities of simulated series for the zero and negative skewness cases. Notes: The blue lines corre-

spond to the estimates of the density functions (using a gaussian kernel and a bandwidth of 0.79Q/T 1/5 where

Q is the range between the 25% and 75% quantiles and T is the sample size) associated with the zero skew-

ness case, where the parametrization of equations (1) and (2) is αd= αs= 0.5, ωd= ωs= 1, εd,t∼ N(0, 1), and

εs,t∼ N(0, 1). The red bars form the histograms associated with the negative skewness case, where the parame-

trization of equations (1) and (2) is αd= αs= 0.5, ωd= ωs= 1, 2.1755× εd,t∼ N(1, 1) with probability 0.7887

and 2.1755× εd,t∼ N(−3.7326, 1) with probability 0.2113, whereas εs,t∼ N(0, 1). For each parametrization,

the simulated series are generated from 10,000 draws.
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Figure 2. Scatter plots of simulated series for the zero and negative skewness cases. Notes: The blue dots corre-

spond to the zero skewness case, where the parametrization of equations (1) and (2) is αd= αs= 0.5, ωd= ωs= 1,

εd,t∼ N(0, 1), and εs,t∼ N(0, 1). The red dots correspond to the negative skewness case, where the parametriza-

tion of equations (1) and (2) is αd= αs= 0.5, ωd= ωs= 1, 2.1755× εd,t∼ N(1, 1) with probability 0.7887 and

2.1755× εd,t∼ N(−3.7326, 1) with probability 0.2113, whereas εs,t∼ N(0, 1). For each parametrization, the

simulated series are generated from 10,000 draws. The black lines represent the downward demand curve and the

upward supply curve. The green lines illustrate shifts of the demand curve.
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Figure 3. Densities of simulated series for the zero and positive excess kurtosis cases. Notes: The blue lines correspond

to the estimates of the density functions (using a gaussian kernel and a bandwidth of 0.79Q/T 1/5 where Q is the

range between the 25% and 75% quantiles and T is the sample size) associated with the zero excess kurtosis case, where

the parametrization of equations (1) and (2) is αd= αs= 0.5, ωd= ωs= 1, εd,t∼ N(0, 1), and εs,t∼ N(0, 1). The

red bars form the histograms associated with the positive excess kurtosis case, where the parametrization of equations

(1) and (2) is αd= αs= 0.5, ωd= ωs= 1, 1.291× εd,t∼ t(5), and εs,t∼ N(0, 1). For each parametrization, the

simulated series are generated from 10,000 draws.
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Figure 4. Scatter plots of simulated series for the zero and positive excess kurtosis cases. Notes: The blue dots

correspond to the zero excess kurtosis case, where the parametrization of equations (1) and (2) is αd= αs= 0.5,

ωd= ωs= 1, εd,t∼ N(0, 1), and εs,t∼ N(0, 1). The red dots correspond to the positive excess kurtosis case,

where the parametrization of equations (1) and (2) is αd= αs= 0.5, ωd= ωs= 1, 1.291× εd,t∼ t(5), and

εs,t∼ N(0, 1). For each parametrization, the simulated series are generated from 10,000 draws. The black lines

represent the downward demand curve and the upward supply curve. The green lines illustrate shifts of the demand

curve.
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