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Abstract

Data snooping is a major concern in empirical asset pricing. By exploiting the “blessings of

dimensionality” we develop a new framework to rigorously perform multiple hypothesis testing in

linear asset pricing models, while limiting the occurrence of false positive results typically associated

with data-snooping. We first develop alpha test statistics that are asymptotically valid, allow for

weak dependence in the cross-section, and are robust to the possibility of omitted factors. We

then combine them in a multiple-testing procedure that ensures that the rate of false discoveries

is ex-ante bounded below a prespecified 5% level. We also show that this method can detect all

positive alphas with reasonable strength. Our procedure is designed for high-dimensional settings

and works even when the number of tests is large relative to the sample size, as in many finance

applications. We illustrate the empirical relevance of our methodology in the context of hedge

fund performance (alpha) evaluation. We find that our procedure is able to select – among more

than 3,000 available funds – a subset of funds that displays superior in-sample and out-of-sample

performance compared to the funds selected by standard methods.
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1 Introduction

Multiple testing is pervasive in empirical finance. It takes place, for example, when trying to identify

which among hundreds of factors add explanatory power for the cross-section of returns, relative to

an existing model. It also appears when trying to identify which funds are able to produce positive

alpha (i.e., have “skill”), among thousands of existing funds – a central question in asset management.

In all these examples, the standard approach is to perform many individual statistical tests on the

alphas of the factors or funds relative to the benchmark model, and then make a selection based on

the significance of these individual tests.

With multiple testing comes the concern – closely related to data snooping – that as more and

more tests are performed, an increasing number of them will be positive purely due to chance. Even if

each test individually has a low probability of being due to chance alone, a potentially large fraction

of the tests that ex post appear positive will be “false discoveries.” A high “false discovery rate” (that

is, when a large fraction of the tests that appear significant ex-post are expected to be due to chance)

decreases the confidence we have in the testing procedure; in the extreme case, if the false discovery

rate of a procedure approaches 100%, the significance of the individual tests becomes completely

uninformative. To complicate things, the probability of false discoveries associated with any selection

procedure is hard to quantify ex-ante, because it depends on the true (unknown) parameters of the

model. For example, in the case of the evaluation of fund alphas, the false discovery rate depends on

the true underlying distribution of alphas across funds, which is unobservable.

The existing literature in asset pricing is aware of these data-snooping concerns with multiple

testing, and has taken in response two alternative approaches. One has been to abandon the multiple

testing problem altogether: for example, rather than trying to identify which funds or factors have

alphas, an alternative is to ask whether any fund beats the benchmark, or whether funds on average

beat the benchmark. This approach can overcome the multiple-testing problem, since it replaces a

multitude of null hypotheses (one per fund) with one joint null hypothesis; but it throws the baby

out with the bathwater, as it cannot tell us which of the funds actually produce alpha. The second

approach, proposed by the pioneering work of Barras et al. (2010), Bajgrowicz and Scaillet (2012),

Harvey et al. (2015), etc, applies statistical methods that directly control the false discovery rate.

While the recent statistical advances on false discovery control have been successful in many fields

(like biology and medicine), their general applicability to finance is still not well understood. The main

issue at play is that many of the assumptions on which these methods are based are clearly violated

in finance settings.

In this paper we propose a rigorous framework to address the data snooping issue that arises in a

specific, but fundamental, finance setting: testing for multiple alphas in linear asset pricing models.

We build upon the multiple-testing procedures proposed in the statistical literature, but extend them

to the context of asset pricing, a task that requires additional estimation steps and new asymptotic

2



theory.

The key idea on which our method is based is the concept of false discovery rate (FDR) control,

introduced by Benjamini and Hochberg (1995) (hereinafter B-H), and advocated in the context of asset

pricing by Harvey et al. (2015). The idea of the FDR control procedure is to optimally set different

significance thresholds across the different individual tests in such a way that the false discovery rate

of the procedure is bounded below a pre-specified level, for example 5%. The standard B-H procedure

takes as input the set of t-statistics corresponding to N independent tests and compares them with

appropriate thresholds to decide which of the N hypotheses to reject (in the case of funds, for example,

to choose which alphas are significantly positive). The key insight behind the B-H procedure is that it

effectively uses all the observed test statistics to “estimate” the number of true positives, and calibrates

the significance threshold to achieve in expectation a false discovery rate below the pre-determined

level.

Unfortunately, standard FDR control procedures like B-H cannot be applied directly to the con-

text of asset pricing models, because of several fundamental challenges that our procedure aims to

overcome. First of all, returns of hedge funds in excess of the standard benchmarks appear to be

highly cross-sectionally correlated, suggesting that fund managers may trade common factors that are

not observable. This means that there are plausibly omitted priced factors in the benchmark that can

bias the resulting alpha estimates, and at the same time produce strong cross-sectional dependence in

the excess returns over the benchmarks. Both issues invalidate the standard FDR control methods,

which rely on consistency of the estimators and independence among the test statistics.

A second challenge is that the B-H procedure is designed for a fixed number of test hypotheses N :

the theory assumes that length of the time series T → ∞, but N does not grow asymptotically. In

most finance application, however, the number of tests to be run is overwhelmingly large relative to

the available sample size. For example, in our baseline empirical analysis we have around 290 months

to evaluate more than 3,000 hedge funds. Even worse, many funds have short histories or missing

records, which further diminishes the effective sample sizes. In this “large N , large T” context, many

of the statistical tests for alpha face limitations. For example, GLS estimators and the GRS statistic

become invalid, because it is infeasible to estimate the inverse of the covariance matrix of the residuals.

The B-H procedure is no exception. While its properties are affected by the large dimensionality of

the cross-section, little work has been done to explore them. This is what we directly tackle in the

paper.

The fixed-N assumption of the B-H test poses a third challenge related to asset pricing tests. To

evaluate alpha of a factor or a fund relative to a benchmark model, the risk premia of the benchmark

factors need to be estimated. When the factors are nontradable, their estimates need to be obtained

from cross-sectional regressions like Fama-MacBeth. But when N is fixed, the risk premia estimates

are biased, since in any finite sample the orthogonality of the betas (the regressors in the cross-sectional

regression) and the alphas (the residuals of the cross-sectional regression) is not guaranteed, even if
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they are orthogonal in population.1 The bias in the risk premia spills over into biased estimates of

the alphas, and ultimately invalidates the FDR control test.

Our procedure tackles these challenges by exploiting the “blessing” of dimensionality – the other

side of the “curse” of dimensionality (Donoho et al. (2000)) – that obtains as both N,T → ∞. Our

FDR control test proceeds as follows. We first estimate latent factors that drive the comovement of

returns in excess of any observable factors, and augment the benchmark model with these estimated

latent factors. We then use the cross-section of returns to estimate the risk premia of all factors

(tradable, non-tradable, and latent) and all the individual alphas. Next, we compute asymptotic t-

statistics that are weakly dependent in the cross-section, and use them in the B-H procedure. Finally,

to further enhance the power of the FDR control procedure, we apply a screening method recently

developed in the machine learning literature prior to the B-H step.2 In the paper, we develop general

asymptotic theory for our FDR control test in the high-dimensional asset-pricing setting.

The high dimensionality of the data on which our procedure relies helps us address the challenges

described above in several ways. It allows us to consistently estimate any latent or omitted factors

driving returns, which is possible only as N → ∞ (see for example Giglio and Xiu (2017)). This

both eliminates the omitted factor bias and removes this source of common variation in the residuals.

The high dimensionality also removes the bias in the cross-sectional estimation of risk premia of

nontradable factors, since as we show in the paper the bias vanishes as N →∞. Finally, exploiting the

large dimensionality, we develop asymptotically valid alpha test statistics that are weakly dependent

in the cross-section. And of course, a procedure designed for large cross-sections allows us to tackle

real-world situations, in which N is much larger than T .

We illustrate this procedure using the Lipper TASS data of hedge fund returns. We show empiri-

cally that hedge fund returns are highly correlated in the cross-section, even after controlling for the

standard models, like the Fung-Hsieh 7-factor model or the Carhart 4-factor model. This is perhaps

not surprising, as it is to be expected that many hedge fund strategies load on factors beyond these

standard ones; but it needs to be accounted for when measuring funds’ alphas. We show that our

procedure – which bounds the false discovery rate below 5% – selects a significantly smaller number

of funds based on their alpha compared to a standard set of individual t-tests. We therefore identify a

variety of funds that consistently beats the benchmarks and delivers excess returns that are likely due

to managerial skills instead of pure luck. In addition, the funds that are selected by our procedure

yield superior out-of-sample performance compared to funds that are selected by individual t-tests.

1Having T →∞ is of no help, because the risk premia are slopes in a cross-sectional regression for which the relevant

sample size is N .
2The screening step removes funds with ex-post particularly negative alphas from the set of candidate hypotheses,

thus helping contrast the increase in N . The same idea based on screening was previously used in related literature by

Hansen (2005); Chernozhukov et al. (2013b) and Romano and Wolf (2018). Our theory shows that asymptotically the

new alpha-screening B-H procedure has a larger power on detecting positive alphas, and can consistently identify all

positive alphas with reasonably strong signals.

4



Our paper sits at the confluence of studies of asset pricing anomalies and fund managerial per-

formance. All of these literatures perform multiple testing of alphas relative to a benchmark model.

Studies of anomalies interpret the alphas as either risk premia from a new factor or evidence of mis-

pricing, whereas studies of fund alphas typically interpret them as reflecting managerial skills.

Data snooping has been a central topic in statistics ever since the early 1950s. Earlier work mainly

focus on using Bonferroni-type procedures to control the family wise error rate (FWER), see, e.g.,

Simes (1986), Holm (1979). These procedures guard against any single false discovery and hence is

overly conservative in particular when testing many hypotheses. Instead of targeting the question

whether any error was made, the approach of FDR control, developed by Benjamini and Hochberg

(1995), takes into account the number of erroneous rejections and control the expected proportion of

errors among the rejected hypotheses. While this seminal work relies on the independence assumption

among test statistics, following-up studies such as Benjamini and Yekutieli (2001) and Storey et al.

(2004) demonstrate the robustness of this procedure to certain forms of dependence. Nevertheless,

the literature, e.g., Schwartzman and Lin (2011), Fan et al. (2012), have recognized the drawbacks

of the standard FDR approach in the presence of dependence, including overly conservativeness, high

variance of the estimated FDR, etc, and proposed alternative procedures, e.g., Leek and Storey (2008),

Romano and Wolf (2005), and Fan and Han (2016). Our procedure shares the spirit with the recent

statistical literature, but differs substantially because our solution is specifically designed for empirical

asset pricing models.

Data snooping bias has long been recognized as a serious concern in empirical asset pricing. Lo and

MacKinlay (1990) point out and quantify such a bias in tests of asset pricing models with portfolios

formed by sorting on some empirically motivated characteristics. White (2000) propose a reality check

approach that summarizes in a single statistic the significance of the best-performing model after

accounting for data-snooping in many individual tests. Sullivan et al. (1999) apply this reality check

approach to investigate the profitability of technical trading rules. Harvey et al. (2015) and Harvey

and Liu (2016) shed light on the data snooping issue in the proliferation of factors, and suggest various

procedures, such as the use of reality check, FDR, and higher thresholds of significance level, to guard

against false discoveries and promote reproducible research.

Data mining is pervasive in machine learning. Armed with flexible models and efficient algorithms,

machine learning is well suited for prediction with countless potential covariates. However, because

chance can lead to suspicious associations between some covariates and the outcome of interest, variable

selection mistakes inevitably arise, to the extent that the best predictive model rarely coincides with

the true data generating process. There is a burgeoning body of research that applies machine learning

methods to push the frontiers of empirical asset pricing, see, e.g., Kozak et al. (2017), Freyberger et al.

(2017), Giglio and Xiu (2017), Feng et al. (2017), Kelly et al. (2017), Gu et al. (2018). These papers

employ variable selection or dimension reduction techniques to analyze a large number of covariates.

These procedures, however, do not directly control the number of false discoveries. Our paper proposes
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a rigorous FDR procedure that allows for a large number of alpha tests relative to the sample size.

Finally, our empirical results directly speak to a long literature dedicated to evaluating the per-

formance of the hedge fund industry. Contrary to the case of mutual funds, for which net alpha is

estimated to be zero or negative for the vast majority of funds (with some exceptions, evidenced in

the recent work of Berk and Van Binsbergen (2015)), there is more evidence that hedge funds are

able to generate alpha. An important first step in this empirical exercise has been the exploration of

hedge fund strategies and their risk exposures (see Fung and Hsieh (1997, 2001, 2004); Agarwal and

Naik (2000, 2004); Agarwal et al. (2009); Patton and Ramadorai (2013); Bali et al. (2014)); we use

many of the benchmarks proposed in this literature as observable factors in our analysis. At the same

time, the literature has explored whether hedge funds are able to produce alpha in excess of these

benchmarks, using different statistical methodologies (Liang (1999); Ackermann et al. (1999); Liang

(2001); Mitchell and Pulvino (2001); Baquero et al. (2005); Kosowski et al. (2007); Fung et al. (2008);

Jagannathan et al. (2010); Aggarwal and Jorion (2010); Bali et al. (2011)).

Section 2 discusses the detailed procedure for FDR control. Section 3 presents Monte Carlo simu-

lations, followed by an empirical study in Section 4. Section 5 concludes. The appendix provides the

asymptotic theory and technical details.

2 Methodology

Our framework is based on a combination of three key ingredients, each essential to execute multiple

testing correctly in the asset pricing context: Fama-MacBeth regressions, principal component analysis

(PCA), and FDR control. Our approach proceeds as follows. In a first step, we use time-series

regressions to estimate fund exposures to (observable) fund benchmarks. Since these benchmarks

do not fully capture the common comovement of fund returns, hiding for example unobservable risk

exposures, we further apply PCA to the residuals to recover the missing commonalities. This results

in a model where, effectively, both observable and estimated latent factors coexist.

Next, we implement the cross-sectional regressions like Fama-MacBeth to estimate the risk premia

of the factors and the alphas relative to the augmented benchmark model that includes both observable

and estimated latent factors. Finally, we build t-statistics for these alphas, and apply the FDR control

to determine which alphas are significantly positive. In what follows, we describe each ingredient in

details; we then derive the statistical properties of our procedure, and show formally that it indeed

achieves the desired false discovery rate in the multiple test of alpha, and identifies all positive alphas

with reasonable strengths.
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2.1 Model Setup

We begin with a description of the model. We assume the N × 1 vector of excess returns rt follows a

linear factor model:

rt = α+ βλ+ β(ft − E(ft)) + ut, (1)

where ft is a K×1 vector of factors and ut is the idiosyncratic component. The parameter λ is a K×1

vector of factor risk premia, which is identical to the expected return of ft only if ft is tradable.3

The objective is to find individual funds with truly positive alphas. To do so, we formulate a

collection of null hypotheses, one for each fund:

Hi
0 : αi ≤ 0, i = 1, . . . , N. (2)

Importantly, the alpha testing problem we consider is fundamentally different from the standard GRS

test, in which the null hypothesis is a single statement that

H0 : α1 = α2 = . . . = αN = 0. (3)

The former is a multiple testing problem that addresses which funds have significantly positive alphas.

In contrast, the latter addresses whether there exists (at least one) fund whose alpha is significantly

different from zero. While the latter is the natural way to test asset pricing models (which implies

that all alphas should be zero), it is not the right one if the objective is to identify which funds are

able to generate positive alpha.

Simultaneous testing of multiple hypotheses – like the test we propose – is prone to a false discovery

problem, also referred to as data snooping bias: the possibility that many of the tests will look

significant by pure chance, even if their true alpha is zero. To understand why, recall that for each

5%-level test, there is a 5% chance that the corresponding null hypothesis is falsely rejected. This is

the so-called Type-I error. In other words, there is a 5% chance that a fund with no alpha realizes a

significant test statistics and is therefore falsely recognized as one with real alpha.

This error exacerbates substantially when testing many hypotheses. For example, suppose there

are 1,000 funds available, with only 10% of them having positive alphas. Conducting 1,000 tests

independently would yield 1, 000× (1− 10%)× 5% = 45 false positive alphas, in addition to 1, 000×
10% = 100 true positive alphas (assuming ideally a zero Type-II error). Consequently, among the

100 + 45 = 145 “skilled” fund managers we find, almost 1/3 of them are purely due to luck. The false

discovery rate of the test is the 1/3 number that reflects how many of the significant tests are expected

to be false discoveries.

3Throughout we impose an unconditional factor model in which both α and β are time-invariant. This is a practical

trade-off between efficiency and robustness (to model misspecification) in light of the limited sample size in our empirical

analysis. That said, it is straightforward to extend our theory to conditional models à la Ang and Kristensen (2012).
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The multiple testing problem is one of the central concerns in statistics and machine learning. Since

the 1950s, the literature has proposed various alternatives for assessing and correcting data-snooping

bias. One of the classical approaches is to control the probability of one or more false rejections, i.e.,

the family-wise error rate (FWER), instead of the Type-I Error. One such approach is the Bonferroni

procedure, which suggests rejecting the null of individual hypothesis at the 5%/N level, where N is

the total number of tests. However, this method is overly conservative when the number of hypotheses

N is large relative to the sample size T , in that the level of the test shrinks to zero asymptotically.

That is because to ensure that the probability that even just one of the N tests is a false discovery

stays below a certain level, say 5%, it requires the procedure to adopt a higher and higher threshold

as the number of tests N increases; this will result in an unfeasibly high bar for the t-statistic of each

test.

A more suitable procedure in this scenario is to control the false discovery rate (FDR) instead, i.e.,

the expected fraction of false rejections; this is the purpose of the original B-H procedure (Benjamini

and Hochberg, 1995), that has been the most popular since it was introduced and has been widely used

across disciplines. We now turn to describing the B-H procedure and showing under what conditions

it can be applied in an asset pricing context.

2.2 Controlling the False Discovery Rate

We start by setting up some notation. Suppose ti is a test statistic for the null Hi
0 (often taken as

the t-statistic), and a corresponding test which rejects the null whenever ti > ci under a prespecified

cutoff ci. Let H0 ⊂ {1, ..., N} denote the set of indices for which the corresponding null hypotheses

are true. In addition, let R be the total number of rejections in a sample, and F be the number of

false rejections in that sample:

F =

N∑
i=1

1{i ≤ N : ti > ci and i ∈ H0},

R =
N∑
i=1

1{i ≤ N : ti > ci}.

Both F and R are random variables. Note that, in a specific sample, we can obviously observe R, but

we cannot observe F . However, we can design a test to effectively limit how large F is in expectation

relative to R. More formally: we write the false discovery proportion (FDP) and its expectation,

FDR, as

FDP =

(
F

max{R, 1}

)
, FDR = E(FDP).

For comparison, we can also write the per test error rate E(F)/N and the FWER P(F ≥ 1). The

naive procedure that tests each individual hypothesis at a predetermined level τ ∈ (0, 1) guarantees

that E(F)/N ≤ τ . But note that it does not guarantee any limits on the false discovery rate, which

can be much larger than τ . The Bonferroni procedure, instead, tests each hypothesis at a level τ/N .
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This guarantees that P(F ≥ 1) ≤ τ , and implies false discovery rates below τ , at the cost of reducing

the power of the test in detecting the true alphas (in the limit, if a test is so strict that it never rejects,

the false discovery rate is zero! But that test will have no power.).

The FDR control procedure (B-H procedure) strikes a balance between these two approaches. It

accepts a certain number of false discoveries as the price to pay to gain power in detecting true rejec-

tions. Analogously to standard individual tests (that control the size of type-I error), this procedure

controls the size of the FDR: it ensures that it satisfies FDR ≤ τ .

We now describe the details of the B-H procedure.

Algorithm 1 (B-H procedure).

S1. Sort the collection of p-values, {pi : i = 1, . . . , N}, of the individual test statistics {ti}. Denote

p(1) ≤ . . . ≤ p(N) as the sorted p-values.

S2. For i = 1, . . . , N , reject Hi
0 if pi ≤ p(k̂)

, where k̂ = max{i ≤ N : p(i) ≤ τi/N}.

Although Benjamini and Hochberg (1995) establish the validity of the procedure under certain

conditions, a crucial assumption they make – typically violated in the asset pricing context – is that

the test statistics {ti : i ≤ N} are independent.4 Violation of this assumption induces two fundamental

problems: it deteriorates the power of the FDR test, and it magnifies the variance of the FDP, see,

e.g., Schwartzman and Lin (2011), Fan et al. (2012). To apply the B-H procedure, therefore, we must

construct test statistics that are weakly dependent or nearly independent.

2.2.1 Alpha Screening

The other side of a testing problem is power, i.e., the ability to detect false null hypotheses. For

each fixed hypothesis Hi
0, the critical value of the t-statistic is based on an asymptotic distribution

that αi = 0, although negative values of αi also conform with the null hypotheses. This enlarged

critical value makes the popular FDR control test (B-H procedure) often overly conservative; this

is particularly true when the dimension N is very large, because the B-H compares the i th largest

p-value p(i) with the critical value τi/N where the critical value is very small when all hypotheses are

being considered. So the power of the B-H procedure adversely depends on the number of candidate

hypotheses. We tackle this problem by using a simple yet powerful dimension reduction technique –

the screening method. The idea is that when some of the alphas are “overwhelmingly negative” (which

we call “deep in the null”), they should be simply removed from the set of candidate hypotheses. Based

on this idea, we propose to reduce the set of funds to

Î =
{
i ≤ N : ti > −

√
log(logN)

}
.

4To remedy this Benjamini and Yekutieli (2001) revise the use of k̂ in S2 by k̂ = max{i ≤ N : p(i) ≤ τi/(NCN )}.
where CN =

∑N
i=1 i

−1, which they show guarantees FDR control under certain form of dependence. Nonetheless, because

of CN ≈ log(N) + 0.5, C1,000 ≈ 7.4, the method remains too conservative, limiting the power of the procedure.
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Our theory (presented in the appendix) shows that with probability approaching one, for any i such

that α̂i /∈ Î, the true αi < 0, indicating that we can simply accept this null hypothesis without further

considering it in the B-H procedure. Hence we can focus on a much smaller set Î to conduct the FDR

control procedure.

Algorithm 2 (Alpha-screening B-H procedure). Let |Î| denote the number of elements in I.

S1. Sort the p-values, p(1) ≤ . . . ≤ p(|Î|) for {pi : i ∈ I}.

S2. For i ∈ I, reject Hi
0 if pi ≤ p(k̂)

, where k̂ = max{i ∈ Î : p(i) ≤ τi/|Î|}. Accept all other Hi
0.

The critical value now becomes τi/|Î| which is potentially much smaller. We formally show in the

appendix that asymptotically the new alpha-screening B-H procedure has a larger power on detecting

positive alphas, and can consistently identify all positive alphas with reasonably strong signals.

In a setting similar to ours, Harvey and Liu (2018) propose to increase statistical power by dropping

funds that appear for few periods. Alternatively, Barras et al. (2010) apply a simple adjustment

proposed by Storey (2002) to improve the power of the B-H procedure. Specifically, they suggest

replacing iτ/N in the cutoff value by iτ/N0, where N0 is the number of true null hypotheses that

can be estimated using N̂0 = (1− λ)−1
∑N

i=1{pi > λ}, where λ ∈ (0, 1) is a user-specified parameter.

The intuition behind this adjustment is that under the zero-alpha nulls, the p-values are uniformly

distributed on (0, 1), therefore one would expect N0(1 − λ) of the p-values to lie within the interval

(λ, 1). Replacing N by N0 < N thereby increases the power of the procedure. In our context, however,

this adjustment is not applicable because our null hypotheses are inequalities, under which the p-values

are no longer uniformly distributed. The deviation from the uniform distribution becomes very severe

when many alphas are very negative, which would substantially overestimate N0, eventually resulting

in conservative discoveries. In contrast, our proposal is specifically designed to deal with the scenario

of large negative alphas, hence is effective in this setting.

It is interesting to think about our screening procedure in relation to the problem of selection

bias in hedge fund reporting (which affects our empirical application). A well known problem with

standard hedge fund datasets (see for example Agarwal et al. (2013)) is that it is likely that “bad”

funds (either funds with particularly negative alpha or realized performance) will simply not report

to the dataset. This is of course an important issue for understanding the average alpha (denoted by

α0) of hedge funds (in our context, α0 will be biased upwards). But when the objective is to identify

funds with skill, this bias is much less relevant. The fact that funds with truly negative alpha, and

funds that would have anyway displayed a negative t-statistic, are excluded from consideration, has

the same effect as our screening step: it increases the power of the methodology to identify good funds

among those that do report.
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2.2.2 Intuitions of the FDR control

A natural question about the FDR control procedure is how it can correctly control the false discovery

rate if it depends on the unobservable distribution of alternatives (i.e. true positives). Here we provide

a brief discussion on the intuition of this procedure.

We aim to identify a cutoff value p∗, so that the null Hi
0 is rejected for all pi < p∗. Intuitively, p∗

should be the largest cutoff value p ∈ (0, 1) so that the FDP is controlled:

F(p)

max{R(p), 1}
≤ τ, (4)

where F(p) denotes the number of false discoveries, and R(p) the number of significant tests, in the

given sample for any given p:

F(p) =

N∑
i=1

1{i ≤ N : pi < p and αi ≤ 0},

R(p) =
N∑
i=1

1{i ≤ N : pi < p}.

Note that for any given p, R(p) is known. While F(p) is not, it can be “estimated” from the data.

Let N0 be the number of true null hypotheses. We have the following approximation:

F(p) ≈ N0P(pi < p|αi ≤ 0)

≤(1) N0P(pi < p|αi = 0)

=(2) N0p, (5)

where (1) follows from the fact that p-values pi’s are larger under αi ≤ 0 than under αi = 0; (2)

follows since under the null of αi = 0, p-values are uniformly distributed. We still do not know N0, so

we replace it with some upper bound M . We then have

F(p) ≤Mp.

The choice of M determines the degree of conservativeness of the FDR-control, which we shall discuss

later. Replace F(p) with such upper bound. Therefore, (4) is preserved so long as:

p ≤ τR(p)

M
=
τ
∑N

i=1 1{i ≤ N : pi < p}
M

. (6)

We can then find p∗ as the largest p to satisfy (6):

p∗ = max

{
p ∈ (0, 1) : p ≤

τ
∑N

i=1 1{i ≤ N : pi < p}
M

}
= p

(k̂)
, where

k̂ = max

{
i ≤ N : p(i) ≤

τi

M

}
.

Let us consider three choices for M .
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Case 1. Set M = N . It then corresponds to the B-H procedure in Algorithm 1, but may be

conservative.

Case 2. Set M = N̂0, as an estimated N0. This is applied by Storey (2002), in an effort to boost

the power of the original B-H when N0 is much smaller than N . But the estimated N0 can also be

very conservative when null hypotheses are inequalities.

Case 3. Set M = |Î|. If we further replace i ≤ N in the definition of k̂ with i ∈ Î, it then

corresponds to the Alpha-screening B-H in Algorithm 2. This is the most powerful among the three

choices if there are many true negatives that are “deep in the null.” By screening off many true

negatives, it allows us to focus on a much smaller set Î, and consequently boost the power of the test.

2.3 Issues with Classical Alpha Tests

There are two main issues that need to be solved in order to properly test for the alphas of asset or fund

returns (either using multiple nulls or a single null on all alphas): the estimation of the risk premia of

the benchmark factors, and the choice of the benchmark itself, with the possibility of omitted factors.

As discussed in detail in Cochrane (2009), when the benchmark includes non-tradable factors,

estimating (1) requires two-pass Fama-MacBeth regressions. The first stage estimates β using time

series regressions of individual fund returns onto the benchmark factors, and the second stage involves a

cross-sectional regression of average returns onto the estimated β, where the residuals of this regression

yield estimates of alpha. We can write this estimator explicitly as:

α̂ = r̄ − β̂λ̂, (7)

where r̄ is the N × 1 time series average return, β̂ is the time series estimates, and λ̂ is the slope

estimated in the cross-sectional regression.

The classical setting assumes a fixed dimension N , so that the asymptotic theory is developed

under T →∞ only. In this case, the asymptotic covariance matrix of α̂ (see Cochrane (2009)) is:

Cov(α̂) =
1

T

(
IN − β(β′β)−1β′

)
Σu

(
IN − β(β′β)−1β′

)
. (8)

Here Σu is the covariance of the idiosyncratic components. A closer scrutiny of the derivation of this

formula suggests that even in the absence of latent factors, it actually only holds under the GRS null

hypothesis H0 : α1 = α2 = . . . = αN = 0. When we examine the Fama-MacBeth estimator of alpha,

we can see that more generally,

α̂− α = −β(β′M1Nβ)−1β′M1Nα+OP (T−1/2), (9)

where M1N = IN −N−11N1′N , which indicates that there exists a dominant bias term that prohibits a

consistent estimator of α. We give a formal statement on the inconsistency for fixed N in Proposition

1 in the appendix. Importantly, α̂i is inconsistent even if αi = 0 for any i, as long as βi 6= 0. The bias

arises from the cross-sectional correlation between betas and alphas. This is not surprising since the
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cross-sectional regression requires an exact orthogonality condition between residual and regressors,

which is not satisfied if some alphas are not zero. Consequently, when the dimension N is fixed,

the two-pass regression does not apply to the tests of multiple hypotheses. Since we cannot exclude

that some of the alphas are actually nonzero when testing the hypotheses one by one, this creates

fundamental obstacles to the estimation and testing of alphas.

A potential solution to this problem is to estimate and test alphas using only time series regres-

sions. This approach appears viable but only in the case in which all factors are excess returns; this

assumption is often violated in practice, for example in the case of one of the main models used to

evaluate hedge fund performance (the 7-factor model of Fung and Hsieh (2004)).

A second concern relates to the choice of the benchmark and the possibility that some important

factors are omitted, thus attributing to alpha what truly is just exposure to the omitted risk factors.

More explicitly, consider a specific example of (1):

rt = α+
[
βo βl

] [ fo,t

fl,t

]
+ ut = α+ βlEfl,t︸ ︷︷ ︸

“alpha”

+βofo,t + βl(fl,t − Efl,t) + ut︸ ︷︷ ︸
“idiosyncratic” error

, (10)

where fo,t is the observed benchmark model and fl,t is the vector of omitted factors missing from the

benchmark. To make things simple in this example (but both conditions are not required in our general

specification below), assume that both fl and fo are excess returns and that they are uncorrelated.

The “alpha” computed relative to the benchmark model that just includes fo (and thus omits fl)

includes the risk premium associated with the missing factor fl. As long as the latent factors in fl

contribute to the total risk premia, then a bias βlEfl,t would arise in the estimated “alpha.”

Moreover, even if fl is not priced, it plays the role of “idiosyncratic” error. Since the idiosyncratic

error covariance matrix appears in the asymptotic covariance matrix of the alpha estimates, the

presence of fl in the residuals produces strong correlation among the alpha test statistics, which

invalidates the independence assumption of the B-H procedure.

In practice, it is difficult to obtain a benchmark model that possibly summarizes all commonal-

ities in the trading strategies of the universe of hedge funds. Indeed, close scrutiny of time series

regressions of various factor models in our empirical analysis suggests the existence of common factors

in the residuals. Again, we will exploit the blessings of dimensionality to correct for this potentially

unobserved commonality.

2.4 Estimating Alpha

In this section, we explain how our new test statistics overcome these obstacles by exploiting the

blessings of dimensionality. Our framework is developed for a model more general than (10):

rt = α+
[
βo βl

] [ λo

λl

]
+
[
βo βl

] [ fo,t − Efo,t
fl,t − Efl,t

]
+ ut, (11)
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where fo,t is a Ko×1 vector of observable factors, and fl,t is a Kl×1 vector of latent factors, respectively.

Both factors can be non-tradable.

To better explain the intuition, we start with two special cases. For convenience, we introduce

some additional notation. In what follows, we use capital letter A to denote the matrix (a1, a2, . . . , aT ),

where at is a time series of vectors. We use MB = Ip −B(B′B)−1B to denote the annihilator matrix

for any p × q matrix B. Let F be the Ko × T matrix of {fo,t : t ≤ T}, V be the K × T matrix of

{ft −Eft : t ≤ T}, R be the N × T matrix of {rt : t ≤ T} and U be the N × T matrix of {ut : t ≤ T}.

2.4.1 Observable Factors Only

When all factors are observable, we can directly estimate α using the classical two-pass regression:

Algorithm 3 (Observable Factors Only).

S1a. Run time series regressions and obtain the OLS estimator β̂.

β̂ = (RM1TF
′)(FM1TF

′)−1. (12)

S2. Run a cross-sectional regression of r̄ on the estimated β̂ and a constant regressor 1N to obtain

the slopes λ̂:

λ̂ = (β̂′M1N β̂)−1(β̂′M1N r̄). (13)

S3. Estimate α by subtracting the estimated risk premia from average returns:

α̂ = r̄ − β̂λ̂. (14)

As a side note, by including an intercept term in the cross-sectional regression, S2 allows for a

possibly nonzero cross-sectional mean for α, α0. Its estimator can be written explicitly as α̂0 =

N−11′N α̂. It is also interesting to test if α0 is non-negative or not, which addresses whether on average

hedge fund alphas are positive.

2.4.2 Latent Factors Only

Now suppose that all factors are latent, hence first-step time series regressions are not applicable.

This latent factor model is in fact quite general in that we can always assume all factors being latent

without using any observable factors, and estimate them from the data. In this case, we follow Giglio

and Xiu (2017) and proceed by rewriting (11) into a statistical factor model:

R̄ = βV̄ + Ū ,

where Ā = AM1T for A = R, V , and U .

Simply replacing S1a in Algorithm 3 by S1b below leads to a new algorithm for estimating α in

this scenario:
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Algorithm 4 (Latent Factors Only).

S1b. Let SR = 1
T R̄R̄

′ be the N × N sample covariance of SR. Conduct the principal components

analysis (PCA) of SR: set

β̂ =
√
N(b1, . . . , bK),

where b1, . . . , bK are the K eigenvectors of SR, corresponding to its largest K eignvalues.

S2. & S3. are the same as in Algorithm 3.

This procedure therefore uses the principal components of returns as factors and uses them as a

benchmark to estimate the alphas. Note that Algorithm 4 requires the number of latent factors as an

input, which can be estimated using a variety of procedures in the literature, such as those based on

information criteria (Bai and Ng (2002)), or based on eigenvalue ratios (Ahn and Horenstein (2013)),

etc. Alternatively, we can treat the number of latent factors as a tuning parameter, which can be

selected based on the eigenvalue scree plot. We adopt this procedure in practice for convenience.

2.4.3 General Case

To estimate α in the general case (11), we combine S1a and S1b, and then proceed with S2 and S3

as in Algorithm 3. Specifically, we first obtain β̂o from time series regressions using observable factors

alone, and then obtain β̂l by applying PCA to the covariance matrix of residuals from time series

regressions. The estimated β̂o and β̂l are stack together as β̂. The algorithm is summarized as follows.

Algorithm 5 (Estimating α in Model (11)).

S1. a. Run time series regressions and obtain the OLS estimator β̂o and residual matrix Z:

β̂o = (RM1TF
′
o)(FoM1TF

′
o)
−1, Z = R̄− β̂oF̄o, (15)

where Fo = (fo,1, fo,2, . . . , fo,T ).

b. Let SZ = 1
T ZZ

′ be the N ×N sample covariance matrix of Z. Let

β̂l =
√
N(b1, . . . , bKl

),

where b1, . . . , bKl
are the Kl eigenvectors of SZ , corresponding to its largest Kl eigenvalues.

The resulting β̂ is given by

β̂ = (β̂o, β̂l).

S2. & S3. The same as S2 & S3 in Algorithm 3.

It is worth mentioning that β̂o is a consistent estimator of βo only if fo and fl are uncorrelated.

But in our general setting, this condition is not imposed, so β̂o is actually inconsistent due to the
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omitted variable (latent factors) bias. However, one of our theoretical contributions is to show that

the presence of such bias does not affect the inference for alphas, thanks to the invariance of alpha

to the rotation of the factors. Formally, note that β̂o
P−→ βo + βlw for some matrix w, where βlw

denotes the omitted variable bias. Hence the probability limit of β̂o is still inside the space spanned

by β = (βo, βl), while the probability limit of the PCA estimator β̂l is also inside the space spanned

by β. As a result, we show that there is a rotation matrix H so that

β̂ = (β̂o, β̂l)
P−→ βH.

The resulting alpha estimate remains consistent because it is invariant to rotations and is thus not

affected by the omitted variable bias.

2.5 Constructing Valid Test Statistics for FDR Control

After estimating the alphas, we now build test statistics. One of our theoretical contributions is that

we formally show in Theorem 1 of Appendix A.2, the two-pass regression yields: as N,T → ∞ for

each i ≤ N ,

σ−1
i,NT (α̂i − αi)

d−→ N (0, 1),

σ2
i,NT =

1

T
Var(uit(1− vtΣ−2

f λ)) +
1

N
Var(αi)

1

N
β′iS
−1
β βi, (16)

where vt := ft − Eft, Σf := Cov(ft) and Sβ = 1
N β
′M1Nβ. This formula holds true for all three

cases: (observable factors only, latent factors only and the general case). The asymptotic result

(16) can be used for inference about each individual alpha. Note that the variance σ2
i,NT consists of

two components: in addition to the 1/T term that arises from time series estimations, the second

term 1
N Var(αi)

1
N β
′
iS
−1
β βi directly reflects the statistical estimation errors from the cross-sectional

regression.

When T logN = o(N), the second component in the expansion of σ2
i,NT vanishes, and in this case

we have the following asymptotic expansion of α̂:

√
T (α̂i − αi) =

1√
T

T∑
t=1

uit(1− v′tΣ−1
f λ) + oP (1/

√
logN),

therefore the estimated alphas are cross-sectionally weakly dependent.

Let se(α̂i) be the standard error of α̂i, with which we can calculate the t-statistics:

ti =
α̂i

se(α̂i)
, i = 1, . . . , N.

Using these t-statistics, we then apply the proposed alpha-screening B-H procedure (Algorithm 2) to

select the positive alphas.

Algorithm 6 below provides standard errors in the general case.
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Algorithm 6 (Construction of the Test Statistics).

S1. & S2. & S3. are the same as those in Algorithm 5.

S4. Calculate the standard error as

se(α̂i) =
1√
T
σ̂i, σ̂2

i =
1

T

T∑
t=1

û2
it(1− v̂′tΣ̂−1

f λ̂)2, (17)

where ûit = zit − β̂′l,iv̂l,t is the residual, and

v̂t =

(
fo,t − f̄o,t

v̂l,t

)
, v̂l,t =

1

N

N∑
i=1

β̂l,i(zit − z̄i), Σ̂f =
1

T

T∑
t=1

v̂tv̂
′
t.

Here zit is the (i, t) th component of Z in Algorithm 5.

The asymptotic covariance matrix of the vector of t-statistics (t1, . . . , tN )′ is given by ΣT :=

(ΣT ,ij)N×N , where, writing σ2
i = Eu2

it(1− v′tΣ
−1
f λ),

ΣT ,ij =
1

σiσj
E(1− v′tΣ−1

f λ)2E(uitujt).

Note that the idiosyncratic error uit’s are weakly dependent in the cross-section, so that ΣT ,ij ≈ 0,

i 6= j. A large cross-sectional dimension (relative to the sample size) plays a critical role in the

approximation. Otherwise, the extra term of order O(1/N) in the asymptotic variance of α̂i leads to

cross-sectional dependence among the t-statistics and eventually invalidates the FDR control.

In the appendix, we show that both B-H procedures based on these alpha tests have desired

FDR control. Our theory shows that asymptotically the new alpha-screening B-H procedure has a

larger power on detecting positive alphas, and can in fact consistently identify all positive alphas with

reasonably strong signals.

Finally, we point out that Chordia et al. (2017) adopt a bootstrap approach for the FDR control,

which constructs bootstrap distributions of the alphas and their t-statistics under the null hypothesis

that all alphas are zero. This amounts to imposing the null of the GRS test, which is invalid for multiple

testing. As we have explained earlier, FDR control is only relevant for testing many individual alphas.

Each null hypothesis should only impose a zero alpha on the fund being tested. Therefore, a valid

bootstrap distribution differs fund-by-fund, imposing a zero alpha for each fund separately, while

allowing other funds (not being tested) to have nonzero alphas. This is however, computationally

infeasible to implement for over 3,000 funds. We thereby adopt the asymptotic alternative instead in

this paper.

2.6 Dealing with Missing Data

It is not uncommon in finance applications to deal with unbalanced panels. For example, consider the

problem of hedge fund performance evaluation: many hedge funds last for short periods of time, then
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liquidate (others, instead, simply fail to report consistently to the datasets). It is therefore important

that the test we propose works in presence of missing data. In this section, we describe how to use

an EM (Expectation-Maximization) algorithm for PCA robust to missing data (Stock and Watson

(2002)) within our procedure.5

For each fund i ≤ N , suppose the fund’s return data are observable at times in Ti := {ti,1, ..., ti,Ti},
where Ti ≤ T and missing observations are present when Ti < T . We let Fo,i be the Ko × Ti matrix

of {fo,t : t ∈ Ti}, and Ri be the Ti × 1 vector of {rit : t ∈ Ti}. We run the following algorithm in the

general case.

Algorithm 7 (Estimating α in Model (11) in the presence of missing data).

S1. a. Run time series regressions

β̂o,i = (Fo,iM1Ti
F ′o,i)

−1(Fo,iM1Ti
Ri).

Obtain residual Zi = M1Ti
(Ri − F ′o,iβ̂o,i) = (zi,t : t ∈ Ti), i = 1, ..., N.

b. Set k = 0. Let (β̂0
l,i, f̂

0
l,t) be some initial values for the latent betas and factors.

c. Define Zk+1 = (zk+1
it )N×T , where

zk+1
it =

zit, if rit is not missing

β̂k′l,if̂
k
l,t, if rit is missing

Run step S1b in Algorithm 5 with Zk+1 in place of Z, obtain β̂k+1
l . Let

F̂ k+1
l =

1

N
β̂k+1′
l Zk+1, F̂ k+1

l = (f̂k+1
l,1 , ..., f̂k+1

l,T ).

Set k = k + 1.

d. Repeat c until convergence. Let F̂l and β̂l be the final estimators. The resulting β̂ is given

by

β̂ = (β̂o, β̂l).

S2. & S3. The same as S2 & S3 in Algorithm 3.

S4. Calculate se(α̂i) as in S4 in Algorithm 6, with Ti in place of T .

In essence, the EM algorithm replaces the missing values of zit by β̂k′l,if̂
k
l,t, i.e., its expected value

conditional on the observed data, estimated using the parameters from the previous iteration. This

allows us to iteratively estimate betas and latent factors using the PCA.

5The implicit assumption is that the data is missing at random; the procedure cannot solve the problem of selective

reporting by hedge funds, which we have discussed in Section 2.2.
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3 Simulations

In this section, we examine the finite sample performance of the asymptotic approximations developed

in Appendix A.2. With respect to the data-generating process, we consider a 7-factor model for hedge

fund returns, with factors calibrated to match the Fung and Hsieh factors used in our empirical study.

We then calibrate the cross-sectional means and variances of betas, and idiosyncratic component of

each fund, so that the summary statistics (e.g., time series R2s, volatilities) of the simulated fund

returns resemble their empirical counterparts. We adopt a benchmark model with 4 factors, so that

the remaining 3 factors are omitted.

Throughout, we fix T = 300 and N = 3, 000 to mimic the scenario we encounter in the empirical

study. We vary the simulated cross-sectional distribution of alphas to check the performance of FDR

control under various portions of true null hypotheses. More specifically, the alphas are simulated

from a mixture of two Gaussians N (−2σ, σ2) and N (2σ, σ2), plus a point mass at zero. We vary

their mixture probabilities are p1, p2, and 1 − p1 − p2, respectively, whereas σ is calibrated to the

cross-sectional standard error of the estimated alphas.

Figure 1 provides histograms of the standardized alpha estimates for the first fund based on each

of the three estimators described in Algorithms 3, 4, and 5. Because the 4-factor benchmark model

is misspecified, the estimator based on Algorithms 3 is inconsistent, as verified from the left panel.

Algorithm 5 is designed to take into account the 3 omitted factors in the regression residual. Not

surprisingly it works well. The estimator based on Algorithm 4 ignores the 4 observable factors, but

it estimates a 7-latent factor model, which also corrects the omitted factor bias, its histogram thereby

matches the asymptotic distribution.

Next, in Table 1 we compare the false discovery rates of the B-H procedure using Algorithm 5,

its modified version with alpha-screening, the B-H procedures which either relies on latent factors

alone (Algorithm 4), or ignores omitted factors (Algorithm 3), as well as the naive approach that only

controls size of the individual tests. First of all, we find it critical to use alpha tests that take into

account omitted factors, as shown from the column under “B-H + observable.” Secondly, using mixed

factor model is slightly better than the model based on latent factors only. This is because more

information helps improve the finite sample performance, which of course only holds if the included

factors are correctly specified. Third, alpha-screening is substantially less conservative than the usual

B-H procedure, because the values under the third column are larger than those of the fourth column.

Finally, without any B-H type control, the false discovery rate can reach as high as above 30% among

the experiments we consider.

Overall, the alpha-screening B-H procedure outperforms the rest. So we adopt it along with

Algorithm 5 to estimate alphas in the following-up empirical analysis.
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Figure 1: Histograms of the Standardized Individual Alpha Tests

Note: The figure plots the histograms of the standardized alpha estimates for one fixed fund using Algorithms 3

(observable factors only), 4 (latent factors only), and 5 (mixture), respectively. The benchmark model is a 4-factor

model, whereas the true data generating process is a 7-factor model. The number of Monte Carlo repetitions is 1,000.

p1 and p2 are fixed at 0.1.

4 Empirical Analysis: Hedge Fund Alphas

4.1 Hedge Fund Returns Data

We apply our methodology to the Lipper TASS hedge funds dataset, covering the time period 1994-

2018. The dataset contains a panel of returns and assets under management (AUM) for close to 20,000

funds. The Lipper TASS dataset is subject to a number of potential biases. We follow closely the bias

correction procedures of Sinclair (2018), who kindly shared his code with us; these are in turn mostly

based on the data-cleaning procedures detailed in Getmansky et al. (2015). We describe briefly the

main concerns with the data and the bias corrections (see Sinclair (2018) for more details).

The main concern with Lipper TASS – as well as most other hedge fund data sources – is that

reporting to the dataset is voluntary, which induces a selection issue in the funds that appear in the

dataset. In addition, funds are able to backfill returns for periods before they start reporting to TASS,

which can introduce further bias in the data. Finally, funds can also revise returns they had previously

entered in the dataset.

Some of these biases can be partially addressed by using snapshots of the TASS data, which are
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Table 1: False Discovery Rates in Simulations

p1 p2 A-S B-H + Mixture B-H + Mixture B-H + Latent B-H + Observable no FDR + Mixture

0.1 0.1 5.49 4.63 8.04 23.46 31.77

0.1 0.3 3.92 3.38 5.92 12.27 10.55

0.1 0.5 2.55 2.24 3.79 6.84 4.57

0.3 0.1 4.97 3.42 7.91 18.65 25.29

0.3 0.3 3.16 2.20 4.75 8.49 7.18

0.5 0.1 4.33 2.23 5.99 13.38 18.08

Note: The table reports the false discovery rates in simulation settings with different choices of mixture probabilities

p1 and p2, for a variety of estimators including the alpha-screening (A-S) B-H procedure based on mixed factor model

(Algorithms 2 and 5), the B-H procedure using mixed factor model (Algorithms 1 and 5), latent factor model (Algorithms

1 and 4) , and observable factor model (Algorithms 1 and 3), respectively, as well as the approach that ignores FDR

control despite the use of the mixed factor model for alpha estimates (Algorithm 5). The number of Monte Carlo

repetitions is 1,000.

available at irregular intervals. To correct for the backfill bias, we only use returns data for the periods

after the funds start reporting to TASS. Unfortunately, as reported in Sinclair (2018), the variable

that records the data in which a fund is added to TASS is mostly missing after 2011. For these funds,

we use observations after the date of the first snapshot in which the fund appears as alive. In addition,

we try to mitigate the problems of revisions of the returns series by always using data from the earliest

snapshots available.

We further clean the data as recommended by Getmansky et al. (2015) and Sinclair (2018). In

addition to what described above, we compute when possible the returns using the changes in NAV;

when NAV is not available, we use reported returns. We remove funds that do not report monthly,

and funds that do not report net-of-fee returns. We also remove funds that do not consistently report

AUM: we require funds to report AUM at least 95% of the time. The motivation for this requirement

is twofold: first, funds that strategically list their AUM in some periods but not in others are likely

to also be funds that manipulate their reported returns; second, because we want to use the AUM

information to focus only on large enough funds, as described below. We also remove funds with more

than 5% of returns missing. We also remove suspicious returns: monthly returns above 200% or below

-100%, stale returns (equal to the past two monthly returns), cases where AUM is reported as zero,

and cases where within 6 months funds display a 10,000% increase immediately reversed, as these are

likely just data entry errors. We focus our analysis on months in which we observe at least 5 funds

(this affects mostly the very early sample, in which data was scarcer). Finally, as the literature has

noted (e.g., Aggarwal and Jorion (2009)), hedge fund datasets sometimes report duplicate series (for

example, multiple share classes or cases in which multiple feeder funds channel capital to one investing

master fund). To prevent this, we screen for cases in which two funds have return correlations of 99%

or more while overlapping for at least 6 months (the 99% correlation cutoff was also used in Aggarwal
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Figure 2: Histogram of Average Hedge Fund Returns

Note: In this figure, we show the histogram of average monthly returns for the 3,102 funds in our dataset over the time

period 1994-2018.

and Jorion (2009)), and in that case we remove one of the two funds (we keep the one with the longest

available time series of returns in case the two funds do not exactly overlap).

We impose two further constraints on the funds, again following the existing literature. First, we

require funds to have reported returns and AUM to the dataset for at least 12 months (much of the

literature requires a minimum of 24 or 36 months, but we prefer to err on the conservative side by

including some extra funds; results are robust to using a stricter requirement). Second, we require

funds to have at least $20m of AUM (as Kosowski et al. (2007) do), and drop them after they fall

below this amount. This ensures that we focus our analysis on larger funds, which are also less likely

to manipulate reporting to TASS; the results are robust to using different cutoffs for AUM.

Overall, we are left with 3,102 funds in our dataset. Figure 2 reports the histogram of average

monthly excess returns; the average excess return is positive, at 15bp per month; the median average

excess return is 30bp per month. The distribution of average excess returns is noticeably spread out,

with some funds obtaining average monthly excess returns as high as +6% and as low as -10% over

the sample period; the distribution appears left-skewed.
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Table 2: Standard multiple tests vs. FDR control test: in-sample results

# factors Individual test FDR % Excluded

CAPM 1 1288 1048 19%

FF4 4 1416 1191 16%

FH 7 1385 1166 16%

FH + Option factors 9 1268 1059 16%

All observable 11 1383 1206 13%

5 Latent factors 5 1362 1141 16%

10 Latent factors 10 1223 955 22%

All observable + 5 Latent 16 1352 1182 13%

Note: The table reports the results of the multiple alpha tests for the 3,102 hedge funds in our sample, using different

methodologies and benchmark models. Each row corresponds to a different benchmark against which funds are evaluated.

The first column reports the total number of factors in the benchmark model. The second column shows how many

funds have a significant alpha using standard significance levels for each individual test. The third column reports how

many alphas are significant according to our FDR control test. The last column shows what fraction of the tests appear

significant using the standard significance levels, but are deemed not significant by the FDR control test. The benchmarks

could include only observable factors, only latent factors, or a mix of the two. FF4 includes Market, SMB, HML and

Momentum. FH (Fung and Hsieh) is the 7-factor model proposed by Fung and Hsieh (2004). The Option factors are

OTM call and put factors from Agarwal and Naik (2004). Sample periods is 1994-2018.

4.2 Benchmark Models

We consider several alternative benchmark models. First, we consider standard asset pricing bench-

marks like the CAPM and the Fama-French 4-factor model (market, size, value and momentum fac-

tors). We also consider a well-known model proposed specifically to benchmark hedge funds: the Fung

and Hsieh (2004) 7-factor model, that includes market, size, a bond factor, a credit risk factor, and

three trend-following factors (related to bonds, currencies, and commodities). Finally, we also consider

two option-based factors (an out-of-the-money call and an out-of-the-money put factor) from Agarwal

and Naik (2004). Given the discussion in the previous sections, we also use latent factors to construct

the benchmark, estimated from the hedge funds’ principal components.

4.3 In-Sample Results

The objective of this paper is to provide a procedure to select a set of funds based on their alpha,

controlling the false discovery rate of the test. The natural comparison for our procedure is the use

of individual t-test on the funds’ alphas, which, as discussed in the previous sections, does not keep

the false discovery rate below a certain proportion (we use one-sided tests in both cases, since the

objective is to find funds with positive alphas against the null that alpha is less than or equal to zero).

We therefore begin by studying in Table 2 what the selection procedure based on individual t-tests

would imply when applied to the funds in our dataset. In this section, we use the full sample available
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Figure 3: Scree Plot of Eigenvalues

Note: The figure reports the first 15 eigenvalues of the covariance matrix of excess returns, denoted as “Latent”, for the

3,102 hedge funds in our panel, sorted from highest to lowest, as well as eigenvalues of the residual covariance matrices

relative to benchmark models such as “CAPM”, “FH7”, and the model “All” with all 11 observed factors. Sample period

covers 1994-2018.

(1994-2018); the next section, in which we do out-of-sample analysis, looks at various subsamples.

Each row of the table corresponds to a different benchmark model; the first column of the table shows

how many factors (observable or latent) appear in each benchmark.

The second column of Table 2 reports the number of funds (out of a total of 3,102) whose alpha

appears significantly positive using multiple individual t-tests. Using the CAPM, for example, 1,288

funds (42% of the total) appear to have a statistically significantly positive alpha at the 5% confidence

level. The distribution of t-stats from individual tests is broadly in line with that reported in the

literature (for example, in Kosowski et al. (2007)).

Among the models we consider in the table, some include latent factors, either exclusively or

together with some observable factors. The estimation of the latent factors and their risk premia

proceeds as described in the previous sections. From an econometric point of view, it is important to

use latent factors both to avoid the possibility of omitted priced factors (following the same intuition

as in Giglio and Xiu (2017)) and to ensure that the residuals from the model have low correlation

(which is an assumption needed for all the standard multiple tests to work correctly).

To get a sense of the factor structure of hedge fund returns, Figure 3 shows the first 15 eigenvalues
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of the excess returns. There clearly are important common components driving hedge fund returns;

the pattern of eigenvalues suggests the presence of 5 to 10 latent factors. We choose these two numbers

when constructing our latent-factors-based benchmarks in Table 2. We also plot the eigenvalues of

the residual covariance matrices of a variety of benchmark models, including the CAPM, the FH7,

and the model with all 11 observable factors. It is evident that observable factors indeed help capture

certain common variation in the cross-section, because the largest few eigenvalues shrink substantially.

The largest gain comes from the market factor, which shrinks the largest eigenvalue by about a half.

The marginal contribution by the remaining 10 factors is less significant. Moreover, there remains

moderate common variation in the residuals of the 11-factor model. Not surprisingly, with as few as 5

latent factors eliminated, the residuals from the latent factor model are less correlated than those of

the 11-factor model.

The third column of the table reports the number of funds selected using the FDR control procedure

(with the false discovery rate set at 5%). Comparing columns 2 and 3 of the table, we can see that, as

expected, the FDR control results in a smaller number of significant funds compared to the multiple

individual testing. The last column shows the fraction of funds that are selected by individual tests

but are excluded by the FDR control. This is a substantial amount, of about 15% to one quarter.

In-sample, therefore, the FDR control test is substantially more selective than the multiple individual

tests.

Figure 4 reports the p-values of the first 1,400 funds sorted by ascending p-value (using the 5

latent factor model as benchmark), together with the standard threshold for individual significance

(dotted line) and the FDR control threshold (dashed line). The figure shows a graphical representation

of the FDR control procedure described in Section 2.2. As explained there, the FDR methodology

uses information in all the realized p-values to bound the number of true positives and construct the

multiple hypotheses test with the correct FDR control size. This is achieved by sorting the funds

by their p-value, and comparing them with the dashed line: whether a fund is deemed significant or

not depends on its position relative to all other funds. The figure shows that the FDR control test

is significantly stricter than the standard individual test; in our empirical analysis, the fund at the

margin for significance has a p-value of less than 2%.

4.4 Out-of-Sample Analysis

We now turn to the study of the out-of-sample performance of the FDR control selection procedure,

using a portfolio analysis and an individual-fund analysis.

We begin with the portfolio analysis, that compares the out-of-sample performance of three trading

strategies. Each trading strategy is a long-only investment strategy rebalanced monthly, in which

investment decisions for each month t are made using only information up to end of the previous

month t− 1. The first strategy invests only in funds that are significant according to the FDR control

test. The second strategy invests only in funds that are not significant according to the FDR control
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Figure 4: Standard vs. FDR threshold

Note: The figure plots the p-value of the first 1,400 funds sorted by ascending p-value (solid line), together with the

threshold for the standard individual test (dotted line) as well as the threshold for the FDR control test (dashed line).

The model used here is the 5-latent-factor one. Sample period covers 1994-2018.

test, but that appear significant according to the individual t-test. The last strategy invests in all

remaining funds (those that are not significant according to the standard t-test). The three strategies

therefore never overlap: each fund alive at time t− 1 belongs to one and only one strategy.

In constructing the investment weights for month t, for funds that are still alive at that point,

we use only data up to t − 1. We only use funds with at least 12 months of available data at that

point, and compute the alpha relative to the 5-latent-factor model (results are similar when computed

relative to the Fung and Hsieh 7-factor model). We then track the out-of-sample performance one

period ahead (month t). We rebalance at the end of t, and repeat these steps to compute the out of

sample t+ 1 return, and so on until the end of our sample.

We calculate the cumulative out-of-sample return of these strategies starting in 1996:12. Figure 5

reports the equal-weighted (first panel) and value-weighted (second panel) returns. The figure shows

that the portfolio that invests in the funds selected by the FDR control outperforms the other two;

the full-sample alpha of the equal-weighted strategy, relative to the 5-latent-factor model, is 37bp per

month, with a t-stat of 5.2. The other two strategies have similar cumulative returns. This would be

expected if the standard individual test includes many false positives (that are drawn from the same

group of nonpositive alpha funds as the ones that are not selected by the individual test). The alpha
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of the two strategies is -2bp and 0bp, respectively. The three numbers for the value-weighted strategy

are 39bp, 0bp and 8bp, respectively, with only the first one significant (t-stat of 4.71).
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Figure 5: Out-of-sample cumulative portfolio return

Note: The figure reports the cumulative out-of-sample return of three trading strategies starting in January 1997. The

solid line corresponds to a trading strategy that invests in funds selected by the FDR control test using data available up

to each month t. The dashed line corresponds to a trading strategy that buys all funds whose alpha t-stat is individually

significant at the 5% level, but who are excluded from the FDR control test, again using data available up to each

month t. The dotted line buys all remaining funds. The benchmark model used to compute the alphas is the 5-latent-

factors model. Each strategy is rebalanced monthly. The left panel shows equal-weighted returns, the right panel shows

value-weighted returns.

These results show a significant excess performance of the FDR control strategy compared to the

other strategies. One potential concern with this analysis is that the number of funds can be very

different across strategies, leading to a difference in the amount of diversification achieved by the

different strategies. To address this, we next study the out-of-sample performance of the individual

funds in each strategy, which is not subject to this concern.

We proceed as follows. Consider any time period t: like before, using all information available

up to t − 1, we construct the t-statistics for the alphas of all funds alive at time t, and select funds

based on the multiple individual test and on our FDR control test. We compute alphas relative to two

benchmarks: one that uses the standard Fung and Hsieh 7-factor model, and one that uses 5 latent

factors. As before, we select funds among those that have at least 12 months of available historical

data up to time t.

We then look at how many funds survive for at least 12 months after t, among those that are

selected at t. For those that do survive at least 12 months, we compute the alphas and t-statistics

between t+ 1 and the end of the sample. We then report both the short-term closure rate (i.e., how

many funds disappear within the first 11 months after t) as well as the performance of those that
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survive at least 12 months. We do this to ensure that alphas are only calculated on relatively long

samples (at least 12 months), and the statistics on the average alpha are not biased by skewed returns

of funds that survive just a few months. Finally, we repeat this exercise for different cut-off points t,

and show them in the table for robustness.

Table 3 reports the results of the out-of-sample analysis. The table has a top and a bottom part.

The top part uses the Fung and Hsieh 7-factor model as benchmark, the bottom part uses the 5-latent-

factor model. Results are very similar under the two benchmarks, so here we focus on the description

to the top part.

Each row of the table corresponds to a different choice for the cutoff point t, reported in the first

column. For example, the first cutoff is at the end of 2001 (the number of funds excluded by the FDR

control but individually significant is small in the preceding years, so the comparison results on the

average alphas are not meaningful). The second column shows how many funds were alive at that

point in time (and have at least 12 months of available historical data at that point). The number of

available funds increased over time up to the financial crisis, then dropped in the following years.

The rest of the table has 5 panels, each divided in three columns. The first column in each panel

refers to the funds selected by the FDR control test. The second panel refers to the funds that were

not selected by the FDR control test, but that were selected by the individual t-test. Finally, the

third column refers to all other available funds, that were not selected by either procedure. This way,

the total funds alive at each time t is divided in three non-overlapping groups.

The first panel shows the number of funds in each of the three groups. For example, at the end

of 2001, out of a total of 225 funds, 143 are selected by the FDR control test, 7 are excluded by the

FDR control but are selected by the individual t-stat test, and 75 funds are not selected by any of the

two procedures. Among the 786 funds alive at the end of 2012, 261 are selected by the FDR control

test, 85 are excluded but selected by the individual test, and 476 are not selected by either.

The second panel reports the total AUM in each group, in $bn. Interestingly, up to the financial

crisis, the AUM of funds selected by the FDR control test grows dramatically, to around $300bn, and

then drops as the hedge fund industry shrank. The AUM of funds excluded by the FDR but included

by the standard individual t-test is generally small, but it increases in relative terms after the financial

crisis.

The third panel shows the fraction of funds that close less than 12 months after the cutoff date (as

indicated by the disappearence of the fund from our dataset).6 The rate of fund closures is lower for

funds selected by FDR than for funds excluded by it, in all but two choices of the out-of-sample cutoff.

On average across cutoff points, 14% of funds selected by FDR close within the next 12 months, as do

23% of those selected by the individual t-test but excluded by FDR, and 25% of those not selected by

either test. This is a first sign that suggests that the FDR control is able to select better funds than

6This could be for several reasons: the fund closed or simply stopped reporting (we cannot distinguish the two in our

data); or the AUM dropped below $20m.
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standard individual t-tests.

The fourth and fifth panel of Table 3 report the average out-of-sample alphas and t-stats of those

funds that survive at least 12 months after each cutoff. The results here are strongly in favor of the

FDR control procedure. In 9 out of 12 choices of the cutoff, the average out-of-sample alpha of the

FDR-selected funds is larger than the alpha of those excluded by FDR but selected by the standard

t-test; the average out-of-sample t-statistic on the alpha (fifth panel) is actually larger for all but one

choice of the cutoff. So the FDR-selected funds perform out-of-sample significantly better than all

remaining funds (both those that are selected by the individual tests and those not selected by either

test).

Altogether, these results indicate that the FDR control test is able to select funds that are much

less likely to close in the short term, and, among those that survive, much better performance out of

sample than the ones it excludes.

5 Conclusion

This paper presents a rigorous framework to address the data-snooping concerns that arise when

applying multiple testing in the asset pricing context. In situations in which many tests are performed,

many “false discoveries” should be expected: cases in which the significance of some of the tests is

obtained by pure chance. The rate of false discoveries for a multiple testing procedure is hard to

evaluate ex-ante; and it can grow unboundedly when standard statistical tests are used as the number

of tests performed increases.

Statistical theory has proposed different methods that aim to control and mitigate this data-

snooping problem, like the so-called “false discovery rate” (FDR) control test of Benjamini and

Hochberg (1995). But these methods do not work in the standard asset pricing context, in which

some of the main assumptions for the procedures are violated. In the paper, we show that the FDR

control test can be extended and generalized to be valid under a much broader range of assumptions,

specifically those that appear crucial when thinking about testing for alphas in linear factor models.

Our paper exploits the “blessing of dimensionality” to build a FDR control test that is valid when

the benchmark includes non-tradable factors whose risk-premia need to be estimated, and is robust

to the presence of omitted priced factors from the benchmark and to correlation of excess returns in

the cross-section and in the time series. In addition, contrary to existing multiple-testing methods,

our test is built explicitly to handle large cross-sections; this makes it particularly suitable for many

finance applications, in which the size of the cross-section N can be large relative to the sample size

T .

We illustrate this procedure by applying it to the evaluation of hedge fund performance, a typical

example where multiple testing issues arise. We show empirically that hedge fund returns are highly

correlated in the cross-section, even after controlling for the standard models. We show that our
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procedure – which allows for such correlation and bounds the false discovery rate to a pre-determined

level – selects a significantly smaller number of funds based on their alpha compared to a standard set

of individual t-tests on the fund alphas, and produces superior out of sample results.

There is a burgeoning strand of literature on the applications of machine learning techniques to

high dimensional problems in asset pricing, in which data snooping leads to potentially numerous false

discoveries. Our paper proposes a way to rigorously account for the data snooping bias, taking into

account explicitly the specific properties of the finance context to which it is applied. There remain

many other settings in which our high-dimensional multiple-testing framework can be applied: for

example, the evaluation of multiple potential new factors against an existing asset pricing model. We

leave the study of these applications to future research.
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Appendix

A Asymptotic Theory

We present the formal asymptotic theory below. We define the following notation. Let A = (aij) be

an n × m matrix, and ψ1(A) ≥ ... ≥ ψK(A) denote the first K ordered singular values of a matrix

A if K ≤ min{m,n}. Let ‖A‖ =
√
tr(A′A), which is also known as the “Frobenius norm” for A. In

particular, if A is a vector, then ‖A‖ equals its Euclidean norm. In addition, if n → ∞ and m fixed

constant, we write ‖A‖∞ = maxi≤n
∑m

j=1 |aij |. Write M1N = IN − 1N1′N/N with 1N = (1, ..., 1)′ be

the N × 1 vector of ones.

A.1 Technical Assumptions

We start by listing and discussing the technical assumptions used for our asymptototic theory. We

assume (ft, ut, αi : i ≤ N, t ≤ T ) are stochastic.

Assumption 1. There are constants c, C > 0, so that:

(i) (pervasiveness)

c < ψK(
1

N
β′lβl) ≤ ... ≤ ψ1(

1

N
β′lβl) < C.

(i) (idiosyncrasy)

ψ1(Cov(ut)) < C.

Assumption 1 is adopted from Stock and Watson (2002) and many other works on estimating latent

factors. This assumption ensures that the factors are asymptotically identified (up to a rotation) and

that Cov(rt) has K growing eigenvalues whose rate is O(N), while its remaining N −K eigenvalues

do not grow with the dimensionality. This distinguishing behavior among the eigenvalues provides us

the intuitions of estimating the betas for latent factors using PCA.

Assumption 2. The following statements hold:

(i) {ft, ut : t ≤ T} are independent and identically distributed, and E(ut|f1, ..., fT ) = 0.

(ii) {αi : i ≤ N} are mutually independent, and also independent of {ft, ut : t ≤ T}.
(iii) Weak cross-sectional dependence: There is a constant C > 0 so that almost surely ,

maxj≤N
∑N

i=1 |E(uitujt|f1, ..., fT )| < C, and maxj≤N
∑N

i=1 1{|E(uitujt|f1, ..., fT )| ≥ (logN)−3} ≤
CN c for some c > 0 and maxi,j≤N

∑N
k=1 |Cov(uitukt, ujtukt)| < C.

Assumption 2 regulates the dependence structures of the data generating process. We consider

serially independent data. We maintain the serial independence to keep the technical tools relatively

simple. Allowing for serially weakly dependent data is possible, by imposing extra mixing conditions

for the time series. Condition (iii) requires cross-sectional weak correlations among the idiosyncratic
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components uit. The intuition of the cross-sectional weak correlations is that the idiosyncratic com-

ponents should capture the remaining shocks and possible local factors after conditioning on the

common risk factors. Technically, as the cross-sectiona dimension increases, we show that the correla-

tions among the constructed t-statistics based on the estimated alphas are mainly driven by those of

uit. Hence this condition ensures the t-statistics are weakly correlated, making a valid procedure for

the FDR control.

Assumption 3 (Moment bounds). There are C > c > 0, such that

(i) E‖ft‖4 + maxi≤N Eu8
it < C.

(ii) For any k, l ≤ dim(ft), we have

Emaxi,j,d≤N,t≤T ξ
4
i,j,d,k,l,t

maxi,j,d≤N,t≤T Eξ4
i,j,d,k,l,t

≤ (logN)2TC

where ξi,j,d,k,l,t ∈ {uitujt, uit, uitwt, u2
itw

2
kt, uitfkt, u

2
itfkt, u

2
itfktflt, u

2
itujtudt} and for wt = 1√

N
β′ut.

(iii) There is 0 < L < 1, and a sequence BNT > c satisfying B2
NT log(NT )7 ≤ TL, (BNT may

either diverge or not), such that

E max
i≤N,t≤T

u4
it + E max

i≤N,t≤T
u4
it‖ft‖4 < B4

NT .

(iv) ‖Σ−1
f ‖ < C and mini≤N Eu2

it(1− v′tΣ
−1
f λ)2 > c, E‖ 1√

N
β′ut‖4 < C

(v) All eigenvalues of 1
N

∑N
j=1(βj − β̄)(βj − β̄)′ belong to [c, C].

Conditions (ii) require that interchanging “max” with “E” on ξi,j,k,l,t increases a quantity no more

than O(T log2N). Technically, it is a required condition to apply concentration inequalities from

Chernozhukov et al. (2013b) for establishing

max
i,j,d≤N

| 1
T

∑
t

ξi,j,d,k,l,t − Eξi,j,d,k,l,t| = OP (

√
logN

T
),

which is a key step to bound maxi≤N |α̂i − αi|. In addition, assuming E‖ 1√
N
β′ut‖4 < C in (iv) is

not stringent given the cross-sectional weak correlations among uit. Above all, the above conditions

allow the underlying distribution of the data generating process to have heavier tails than those of

the sub-Gaussian distributions, in the sense that in our context it is sufficient to have finitely many

moments. On the other hand, we note that in the recent literature on factor models, e.g., Fan et al.

(2016); Song and Zhao (2018), researchers apply more robust estimators based on Huber’s loss function

(Huber, 1964) that allow for more general tail distributions.7 In addition, Song and Zhao (2018) do

not allow for non-tradable observed factors and require the alphas be “sparse” in the sense that many

7Song and Zhao (2018) apply the maximum likelihood estimation to extract the latent factor space, which is in fact

more sensitive to outliers than PCA. A completely robust procedure should be based on Huber’s estimation in all steps

of the algorithms: including both time series and cross-sectional regressions and the PCA steps. We shall leave it for

future research.
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components should be nearly zero. However, unlike stock returns, this is not the case for hedge funds;

our empirical studies indicate the presence of many nonzero alphas. In contrast, we do not require

such a sparse structure, and allow arbitrary cross-sectional structures of the true alphas.

Assumption 4. Growing number of positive alphas: there is a growing sequence LNT → ∞, for the

true α,
N∑
i=1

1{αi ≥ LNT

√
logN

T
} → ∞.

Assumption 4 requires there should be growing amount of true alternatives, so that the number

of true null hypotheses is not “overwhelmingly many”. This is needed to control the rate of false

rejections and the same assumption is assumed in Liu and Shao (2014).

A.2 Main Theoretical Results

We now present the asymptotic distributions for estimated alphas. Theorems 1 and 2 apply to esti-

mators that are obtained in any of the four factor scenarios: (i) observable factors only (Algorithm 3),

(i) latent factors only (Algorithm 4), (iii) the general case (Algorithm 5), and (iv) mix of observable

and latent factors with additional condition that observable factors are tradable (Algorithm 8).

Theorem 1. Suppose T,N →∞, (logN)c = o(T ), for some c > 7 and Assumptions 1-3 hold. Then

for any i ≤ N ,

σ−1
i,NT (α̂i − αi)

d−→ N (0, 1)

where σ2
i,NT = 1

T Var(uit(1 − vtΣ
−2
f λ)) + 1

Nχi. In scenarios (i)-(iii), χi = 1
N Var(αi)β

′
iS
−1
β βi; in

scenario (iv) that observable factors are tradable, χi = 1
N Var(αi)β

′
l,iS
−1
β,l βl,i.

Theorem 1 arises from a more general joint asymptotic expansion for the N × 1 vector α̂, given in

Proposition 2:

α̂− α ≈ 1

T

∑
t

ut(1− v′tΣ−1
f λ)− βηN , ηN :=

1

N
S−1
β β′M1Nα.

For each element of the above expansion, the first term is OP (T−1/2) while the second term is

OP (N−1/2) but depends on a common component ηN . The presence of the second term is the key

reason of inconsistency of the low dimension setting, but vanishes as N → ∞. However, if N grows

slowly, it is first-order not negligible, whose presence could bring strong cross-sectional correlations

among the estimated alphas due to the common component ηN and would adversely affect the FDR

control. Thus we require T logN = O(N) to make ηN be negligible so that the asymptotic distribu-

tion is only determined by 1
T

∑
t uit(1− v′tΣ

−1
f λ), and is therefore weakly cross-sectionally correlated.

Assuming T logN = O(N) makes our main results work in effect under a very high dimension, and

is satisfied as the number of funds could easily reach over three thousands with monthly data of less

than three hundred.
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The theorem below gives the main results for the FDR control procedure. Also note that the alpha-

screening method focuses only on Î =
{
i ≤ N : α̂i > − se(α̂i)

√
log(logN)

}
, which we call “screening

B-H.”

Theorem 2. In addition to conditions in Theorem 1, suppose T (logN) = o(N), and Assumption 4

hold. Then both the B-H procedure (B-H) and alpha-screening B-H procedure (screening B-H) satisfy:

(i)

lim sup
N,T→∞

FDR ≤ τ.

(ii)

P(Hi
0 is corrected rejected, for all i ∈ H)→ 1.

In addition, as for the screening B-H procedure, we have:

(iii) Define events:

AB-H = {all false Hi
0 are correctly rejected by B-H}

Ascreening B-H = {all false Hi
0 are correctly rejected by screening B-H}.

Then as long as τ < 1
2 , asymptotically, we have

P(Ascreening B-H) ≥ P(AB-H).

(iv) Recall that Î = {i ≤ N : ti > −
√

log(logN)}, we have

P(Hi
0 : αi ≤ 0 is true for all i /∈ Î)→ 1.

Note that the usual B-H procedure requires the t-statistics be computed based on the “sample

average” and its standard errors (Liu and Shao, 2014), while in this context, α̂i is only approximated

the sample average:
√
T (α̂i−αi) = 1√

T

∑
t uit(1−v′tΣfλ)σ−1

i +∆i where maxi≤N |∆i| = oP (1/
√

logN)

when T logN = O(N). This theorem shows that the additional approximation error does not affect

the “size” asymptotically. In addition, as for the “power” property for detecting the significant alphas,

note that Assumption 4 ensures that for the true vector of α, there is a set H ⊂ {1, ..., N} so that

H := {i ≤ N : αi ≥ LNT

√
logN

T
}

and |H| → ∞. Apparently Hi
0 is false for all i ∈ H. Theorem 2 shows that all false hypothe-

ses indexed in H can be correctedly rejected asymptotically, that is, we can correctly detect all

positive alphas whose magnitudes are larger than
√

logN
T . In addition, to compare the power of

the regular B-H procedure and the B-H with alpha-screening, note that the latter focuses only on

Î =
{
i ≤ N : α̂i > − se(α̂i)

√
log(logN)

}
which successfully screens out alphas that are all “deep in
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the null” (meaning that they are “overwhelmingly negative”). As we explained in the main text, the

intuition of using the alpha screening step is that when many of the true alphas are deep in the null,

including them when conducting multiple testing could make the B-H overly conservative, this is be-

cause the B-H compared the i th largest p-value p(i) with iτ/N where N is the number of hypotheses

to be tested and can be very large when all hypotheses are being considered. So the power of the B-H

procedure adversely depends on the number of candidate hypotheses. In sharp contrast, the alpha

screening focuses on a potentially much smaller subset Î, and thus gains additional power. The same

idea based on screening was previously used in the literature to boost the power for reality check

by Hansen (2005); Chernozhukov et al. (2013b), and was also applied to multiple testing for FWER

control by Romano and Wolf (2018). We should not worry that skilled funds might also be screened

off because (iv) shows that αi ≤ 0 for all i /∈ Î.

We summarize the results in Theorem 2:

(a) The FDR rate can be controlled under the pre-determined level τ ∈ (0, 1).

(b) Our procedure can correctly identify all the alphas satisfying

αi ≥ LNT

√
logN

T

for sequence LNT →∞ that grows arbitrarily slowly.

(c) The detecting power of the alpha-screening is larger than or equal to that of the regular B-H.

(d) Unlike the B-H that tests all the alphas, the screening B-H procedure only tests alphas that are

in Î. Our theorem shows that it is safe to only focus on Î, because those alphas that are not

inside Î all satisfy αi ≤ 0 (asymptotically).

Finally, we investigate the identification of α when both observable and latent factors are present.

First, define

Γ = E
[
(rt − Ert)(fo,t − Efo,t)′

]
Cov(fo,t)

−1,

Zt = rt − Ert − Γ(fo,t − Efo,t), t = 1, ..., T.

Both are identified quantities given the observables {(rt, fo,t) : t = 1, ..., T}. In addition, define

T (β) := β(β′M1Nβ)−1β′.

Note that T is rotation invariant, in the sense that T (βH) = T (β) for any invertible matrix H. We

show that α is identified by the following system of equations: there are latent invertible matrices

Q,H, and a latent dim(gt)-vector ht, so that

Zt = βlht + ut (A.1)

βH = (Γ, βlQ) (A.2)
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βλ = T (βH)M1NErt − T (βH)M1Nα, (A.3)

α = Ert − βλ. (A.4)

In view of the relation between the above system of equations and Algorithm 5, we note the following

observations:

1. The identified components (Γ, Zt) are the population counterparts of (β̂o, Z) obtained in Step

S1. a.

2. Equation (A.1) shows that Zt admits a factor structure, with βl as the factor loadings. It is well

known that in this case there is a rotation matrix Q, so that 1√
N
βlQ is identified as the first Kl

eigenvectors EZtZ ′t. Therefore, βlQ is the population counterpart of β̂l obtained in Step S1. b.

3. Equation (A.2) shows that β is identified up to a rotation H, given that (Γ, βlQ) are both

identified. In fact (Γ, βlQ) is the population counterpart of β̂ obtained in Step S1.

4. (α, βλ) are then identified (as N → ∞) through equations (A.3), (A.4) given the identification

of βH. In particular, T (βH)M1NErt is the population counterpart of

β̂λ̂ = T (β̂)M1N r̄,

whereas T (Hβ)M1Nα in (A.3) converges to zero as N →∞.

Theorem 3. When both (fo,t, fl,t) are present, equations (A.1)- (A.4) hold.

A.3 When Observed Factors are Tradable

In this section, we consider a special case of the mixed factors (observed + latent factors), in which

observed factors are all tradable. In this case, the observed factors’ risk premia are equal to the

factors’ time series expectations. As a result, a simpler algorithm can be employed to estimate alphas.

Consider the model

rit = αi + β′l,iλl + β′o,ifo,t + β′l,i(fl,t − Efl,t) + uit (A.5)

where fo,t and fl,t respectively denote the observed and latent factors, and λl is the risk premia for

the latent factors. We assume fo,t are tradable so the risk premia for the observable factors satisfies

λo = Efo,t.
We assume Kl = dim(fl,t) > 0; otherwise a simple time series regression would suffice. Consider

the following algorithm.

Algorithm 8 (Estimating α in Model (A.5)).

S1. The same as S1 in Algorithm 6.
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S2. Let f̄o = 1
T

∑
t fo,t,

λ̂l = (β̂′lM1N β̂l)
−1β̂′lM1N (r̄ − β̂of̄o)

α̂i = r̄i − β̂′o,if̄o − β̂′l,iλ̂l, i = 1, ..., N.

S3. Calculate the standard error as

se(α̂i) =
1√
T
σ̂i, σ̂2

i =
1

T

T∑
t=1

û2
it(1− v̂′l,tΣ̂−1

f,l λ̂l)
2 (A.6)

where ûit = zit − β̂′l,iv̂l,t, v̂l,t = 1
N

∑N
i=1 β̂l,i(zit − z̄i), and Σ̂f,l = 1

T

∑T
t=1 v̂l,tv̂

′
l,t.

Note that S2 is the key difference between Algorithm 8 and Algorithm 6. Algorithm 6 S2 runs

the cross-sectional regression on all the estimated betas (β̂o, β̂l) to estimate the risk premia for both

observed and latent factors. In contrast, when the observed factors are tradable, their risk premia can

be simply estimated by taking the factor time series averages. Hence in S2 of Algorithm 8, we only

need to run cross-sectional OLS on the latent factor betas to estimate the risk premia for the latent

factors.

A.4 Inference on α0.

Let α0 = 1
N

∑
i Eαi. Here we provide the asymptotic distribution for the estimator for α0, given by

α̂0 = 1
N

∑N
i=1 α̂i. The presented result can be used for inferences about α0.

Theorem 4. Let σ2
α > 0 denote the cross-sectional variance. Suppose Eα4

i < C and β is deterministic.

Suppose lim inf(1− β̄′( 1
N β
′β)−1β̄)2 > 0 and Assumptions 1-4 hold. In all the four scenarios of factors,

for N = o(T 2),
√
N
α̂0 − α0

s0

d−→ N (0, 1), s2
0 = (1− ̂̄β′( 1

N
β̂′β̂)−1̂̄β)−1σ̂2

α,

where ̂̄β = 1
N

∑
i β̂i and σ̂2

α = 1
N

∑
i(α̂i − α̂0)2.

A.5 Inconsistency in the Low Dimensional Setting

When the dimension N is fixed and only observable factors (but not all tradable) are considered,

researchers frequently use two-pass regressions to estimate the alphas: (i) run time series regressions to

estimate individual betas; (ii) run cross-sectional regressions of the averaged returns on the estimated

betas to estimate the risk premia and alphas. This procedure works in GRS’s asset pricing applications,

where the goal is to test the null hypothesis: H0 : all alphas are zero. On the other hand, testing for H0

is not of direct interest in studying hedge funds. As we shall formally show below, when the dimension

N is fixed, the two-pass regression method fails to consistently estimate any alpha, so cannot be used

in the FDR control or any multiple testing problems.
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Proposition 1 (Inconsistent Estimation of α). Consider the case factors are observable. Suppose

N < C for some C > 0, and T → ∞. Suppose α is stochastic and β is deterministic, satisfying

α1, ..., αN are iid, Var(αi) > 0, and Sβ = 1
N

∑N
j=1(βj − β̄)(βj − β̄) is positive definite. We have: for

each i ≤ N , as long as βi 6= 0, then there is a random variable Xi so that Var(Xi) > 0 and

α̂i
P−→ αi +Xi.

In fact, Xi = −β′iηN with ηN = 1
N S
−1
β β′M1Nα.

Proof. When N is bounded, (B.18) still holds:

α̂− α = ū− 1

T

∑
t

utv
′
tS
−1
f λ̂+ ūv̄′S−1

f λ̂− βS−1
β

1

N
β′M1Nα− β

7∑
d=1

Ad

Now β̂ − β = OP ( 1√
T

), ū = OP ( 1√
T

) and 1
T

∑
t utv

′
t = OP ( 1√

T
). So Ad = oP (1) for all d. So

α̂j − αj = Xi + oP (1),

where Xi = −β′iS
−1
β

1
N β
′M1Nα. Then Var(Xi) = 1

N β
′
iS
−1
β βi Var(αi) > 0 so long as βi 6= 0. Q.E.D.

In the usual factor pricing literature, the two-pass regression is consistent for alphas when N is

fixed, because the consistency and asymptotic distributions are established under the null hypothesis:

H0 : all alphas are zero. Under such null, Var(αi) = 0 so Xi = 0 in the above proposition. However,

as long as there are at least one alpha that is nonzero so that Var(αi) > 0, we have Xi 6= 0, then the

estimated α̂i would be inconsistent.

B Technical Proofs

Recall that vt = ft −Eft. Throughout the proofs, we shall use ∆ to represent a generic N × d matrix

of “estimation errors”, which may vary from case by case; here d ∈ {K,Ko,Kl} is a fixed dimension

that does not grow.

B.1 Proof of Theorem 1

By Proposition 2, α̂i−αi = 1
T

∑
t uit(1− v′tΣ

−1
f λ)− 1

N β
′
iS
−1
β β′M1Nα+OP ( logN

T + 1
N ). Now let δNT =

min{
√
N,
√
T}, we have for ζi,T = 1√

T

∑
t uit(1− v′tΣ

−1
f λ) and ζi,N = − 1√

N
β′iS
−1
β β′M1Nα

δNT (α̂i − αi) =
δNT√
T
ζi,T +

δNT√
N
ζi,N + oP (1).

Then ζi,T
d−→ N (0,Var(uit(1−vtΣ−2

f λ))) and ζi,N
d−→ N (0,Var(αi)β

′
iS
−1
β βi). In addition, Cov(ζi,T , ζi,N ) =

0, thus (ζi,T , ζi,N ) jointly converges to a bivariate normal distribution. Based on this, we can apply

the same argument of the proof of Theorem 3 in Bai (2003) to conclude that

α̂i − αi
( 1
T Var(uit(1− vtΣ−1

f λ)) + 1
N Var(αi)β′iS

−1
β βi)1/2

d−→ N (0, 1).
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B.2 Proof of Theorem 2

We use α̂ , se(α̂i) and ti to denote the estimated α, its standard error and t-statistics. The proof

extends that of Liu and Shao (2014) to our context that (i)
√
T (α̂−α) is only approximately equal to

1√
T

∑
t ut(1− v′tΣ

−1
f λ), up to a term ‖∆‖∞ = oP (1) when T logN = o(N); (ii) The power comparison

between the usual B-H and the screening B-H.

By Assumption 4, there is H ⊂ {1, ..., N} so that |H| → ∞ and

√
Tσ−1

i αi ≥ 4
√

logN,∀i ∈ H. (B.7)

Next, let H0 denote the index set of all the true null hypotheses. Also, let Ψ(x) := 1 − Φ(x). Our

major goal is to bound the number of false rejections

F =
∑
i∈H0

1{ti ≥ t(k̂)
}.

The main inequality to use is: uniformly for x ∈ [0, t∗], where t∗ = Ψ−1(τ |H|/N),

1

|H0|
∑
i∈H0

1{ti ≥ x} ≤ Ψ(x)(1 + oP (1)) (B.8)

The remaining proof is divided into the following steps.

Step 1. Show the inequality (B.8). This inequality is essentially the Gaussian approximation to

the “empirical measure” of the t-statistics for those true null hypotheses, whose proof requires weak

dependence among the t-statistics. The proof simply extends that of Liu and Shao (2014) to allowing

approximation errors ∆i.

Proof. (a) Write zi = 1√
T

∑
tXit/si where Xit = uit(1 − v′tΣ−1

f λ). When T logN = o(N), αi ≤ 0 we

have ti ≤ (α̂i − αi)/ se(α̂i) = 1√
T

∑
tXit/si + ∆i where maxi |∆i| = oP (1/

√
logN) by Proposition 2.

Hence
1

|H0|
∑
i∈H0

1{ti ≥ x} ≤
1

|H0|
∑
i∈H0

1{zi ≥ x− ‖∆‖∞}.

The right hand side does not depend on α because zi is centered and independent of α.

(b) The same argument as that of Liu and Shao (2014) shows, uniformly for x ≤ Ψ−1(τ |H|/(2N)),

1

|H0|
∑
i∈H0

1{zi ≥ x} ≤ Ψ(x)(1 + oP (1)) (B.9)

where oP (1) is independent of x, α. On the other hand, there is ηx ∈ [0, ‖∆‖∞] so that for some

universe constant C > 0, uniformly for 0 < x ≤ t∗

|Ψ(x)−Ψ(x− ‖∆‖∞)| ≤ φ(x+ ηx)‖∆‖∞ ≤ φ(x)‖∆‖∞
φ(x+ ηx)

φ(x)
≤ Cφ(x)‖δ‖∞ exp(Cηx(ηx + t∗))

≤ CxΨ(x)‖∆‖∞(1 + o(1)) ≤ Ct∗Ψ(x)‖∆‖∞(1 + o(1))
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≤ o(1)Ψ(x)

where o(1) is a uniform term because ηxt
∗ ≤ ‖∆‖∞t∗ ≤ oP (1/

√
logN)

√
2 logN = o(1); the fact that

t∗ ≤
√

2 logN is to be shown in step 2 below. This proves Ψ(x) = Ψ(x− ‖∆‖∞)(1 + o(1)). Also,

Ψ(x−‖∆‖∞) = Ψ(x)(1+o(1)) ≥ Ψ(t∗)(1+o(1)) ≥ (1+o(1))τ |H|/N ≥ τ |H|/(2N). So x−‖∆‖∞ ≤
Ψ−1(τ |H|/(2N)). Hence apply (B.9),

1

|H0|
∑
i∈H0

1{ti ≥ x} ≤
1

|H0|
∑
i∈H0

1{zi ≥ x− ‖∆‖∞} ≤ Ψ(x− ‖∆‖∞)(1 + oP (1)) = Ψ(x)(1 + oP (1)).

Step 2. An equivalent statement for rejections: ti ≥ t(k̂)
if and only if ti ≥ t̂, where

t̂ := inf{x ∈ R : Ψ(x) ≤ τ 1

N
max{

N∑
i=1

1{ti ≥ x}, 1}}.

Proof. The proof of this step is to show that t
(k̂+1)

≤ t̂ ≤ t
(k̂)

, and is the same as that of Lemma 1 of

Storey et al. (2004). So we omit it to avoid repetitions.

Given step 2, our goal becomes to bound F =
∑

i∈H0
1{i ≤ N : ti ≥ t̂}. To use inequality (B.8),

we then aim to prove that x = t̂ ≤ t∗. To do so, note that

Ψ(t̂) = τ
1

N
max{

N∑
i=1

1{ti ≥ t̂}, 1}, (B.10)

Hence proving t̂ ≤ t∗ is equivalent to proving Ψ(t̂) ≥ Ψ(t∗), that is

N∑
i=1

1{ti ≥ t̂} ≥ |H|. (B.11)

In words, the number of rejections (if there is any) is at least |H|. This is to be done in the following

steps.

Step 3. Prove P(∀j ∈ H, tj ≥
√

2 logN) → 1. Intuitively, it means the t-statistics of “large”

true alphas are also large. In then implies

N∑
i=1

1{ti ≥
√

2 logN} ≥ |H|.

Proof. By Proposition 2, for zi = 1√
T

∑
t uit(1− v′tΣ

−1
f λ)/si, (α̂i − αi)/ se(α̂i) = zi + ∆i. So

ti ≥ αi/ se(α̂i)− |zi| −∆i.

Next,
√
T maxi | se(α̂)

√
T −σi| ≤ OP (

√
logN +

√
T/N) by (B.25). So for all αi satisfying

√
Tσ−1

i αi ≥
Ln
√

logN with Ln →∞, and T = o(N),

αi/ se(α̂i) ≥
√
Tσ−1

i αi −OP (
√

logN +
√
T/N) ≥ Ln

√
logN/2.

Now note that
√
Tσ−1

i αi ≥ Ln
√

logN for all i ∈ H. So by Lemma 1, uniformly for these i,

ti ≥ Ln
√

logN/2−
√

3 logN − oP (1) ≥
√

2 logN.

Step 4. The number of rejections (if there is any) is at least |H|. It is equivalent to (B.11).
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Proof. Because |H| → ∞, Φ(x) ≤ 0.5 exp(−x2/2), we have t∗ = Ψ−1(τ |H|/N) ≤
√

2 logN . Then by

step 3, Ψ(t∗) ≤ 1
N

∑N
i=1 1{ti ≥

√
2 logN}τ ≤ 1

N

∑N
i=1 1{ti ≥ t∗}τ. So by the definition of t̂, we have

t̂ ≤ t∗ and thus Ψ(t̂) ≥ τ |H|/N . In addition, by the definition of t̂, we have

Ψ(t̂) = τ
1

N

N∑
i=1

1{ti ≥ t̂} ≥ τ
|H|
N

(B.12)

Step 5. The FDR control.

Proof. In step 4 t̂ ≤ t∗ with probability converging to one, then by (B.8), F ≤ Ψ(t̂)|H0|+ oP (1)|H0|.
Also by (B.10),

R =

N∑
i=1

1{ti ≥ t̂} = Ψ(t̂)N/τ.

It then gives, for some X = oP (1), and |X| ≤ 1 almost surely, FR ≤ τ |H0|
N + X, on the event t̂ ≤ t∗.

The above inequality is proved conditioning on the event R ≥ 1. Together, for any ε > 0,

FDR ≤ E(τ
|H0|
N

+X|R ≥ 1, t̂ ≤ t∗) + P(t̂ > t∗|R ≥ 1)

≤ τ
|H0|
N

+ ε+ P(|X| ≥ ε|R ≥ 1) + o(1).

Since ε is chosen arbitrarily, FDR ≤ τ |H0|
N + o(1).

Step 6. The power property.

Proof. Note that in the proof of Steps 3 and 4 we have proved

P(ti ≥
√

2 logN ≥ t∗ ≥ t̂, ∀i ∈ H)→ 1.

Note that ti ≥ t̂ if and only if Hi
0 is rejected. This proves the desired power property that

P(Hi
0 is false and rejected, for all i ∈ H)→ 1.

Step 7. FDR and power properties for the screening B-H.

Proof. Steps 1-6 proves the properties for the B-H procedure. The proof is immediately adaptive to

the screening B-H procedure. The only additional proof we need is to make sure that H ⊂ Î with

probability approaching one. Proposition 2 and Lemma 2 imply

max
i≤N

|α̂i − αi|
se(α̂i)

≤ oP (
1√

logN
) +OP (

√
logN) = OP (

√
logN). (B.13)

In fact, for any i ∈ H, we note αi ≥ LNT
√

logN
T . So (B.13) implies, for LNT →∞ slowly,

α̂i/ se(α̂i) >
√
Tσ−1

i αi −OP (
√

logN) ≥ σ−1
i LNT

√
logN/2 > 0

Hence i ∈ Î. The rest of the proof for the screening B-H is the same as that of B-H.
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(iii) To prove P(Ascreening B-H) ≥ P(AB-H), let k̂screening B-H and k̂B-H respectively denote the cut-off

for the screening B-H and B-H. Thus

p
(k̂B-H)

≤ τ k̂B-H

N
≤ τ k̂B-H

|Î|
.

Let j be the index of (k̂B-H) so that p
(k̂B-H)

= pj . Suppose it is true that j ∈ Î, then by the alpha-

screening method, k̂B-H ≤ k̂screening B-H. Hence on the event AB-H,

max
Hi

0 is false
pi ≤ p(k̂B-H)

≤ p
(k̂screening B-H)

.

Because we proved Îc ⊂ H0 asymptotically, thus if Hi
0 is false, i ∈ Î. Now for all i ∈ Î, it is rejected

if and only if pi ≤ p(k̂screening B-H)
. The above inequality then implies that on the event AB-H, the event

Ascreening B-H also holds. Thus indeed P(Ascreening B-H) ≥ P(AB-H). It remains to prove that j ∈ Î.

Note that pj = p
(k̂B-H)

≤ τ k̂B-H
N ≤ τ < 1/2, then for one-sided test, tj > 0 > −

√
log logN , so indeed

j ∈ Î.

To prove (iv), we aim to show P(Îc ⊂ H0) → 1 where H0 denotes the collection of all true null

hypotheses. In fact, for any i /∈ Î, we have α̂i/ se(α̂i) ≤ −
√

log logN . Thus (B.13) shows

αi/ se(α̂i) ≤ −
√

log logN +OP (
√

logN) < 0

Hence it is true that αi < 0 and thus i ∈ H0.

Q.E.D.

B.3 Proof of Theorem 3

Proof. First of all, let w = E[(fl.t − Efl,t)f ′o,t] Cov(fo,t)
−1. Then it is straightforward to check that

Γ = βlw + βo. (B.14)

(Note that β̂0 converges in probability to Γ, therefore β̂0 is biased for β0 unless fo,t and fl,t are

uncorrelated, which is the omitted variable bias.) Next, define

ht = fl.t − Efl,t − w(fo,t − Efo,t).

Then it is also straightforward to check that Zt = βlht + ut. This proves the first equation.

Next, given the invertible matrix Q (whose existence is proved in the high-dimensional factor model

literature, e.g., Fan et al. (2016)), we show that there is an invertible H so that βH = (Γ, βlQ). In

fact, from (B.14),

(Γ, βlQ) = (βo, βl)︸ ︷︷ ︸
β

(
I 0

w Q

)
︸ ︷︷ ︸

H

,
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where det(H) = det(Q) 6= 0. This proves the second equation. (Also, β̂l converges in probability to

βlQ. Therefore β̂ = (β̂o, β̂l) converges to (Γ, βlQ) = βH.)

Next, multiply T (β)M1N to both sides of Ert = α+ βλ:

βλ = β(β′M1Nβ)−1β′︸ ︷︷ ︸
T (β)

M1Nβλ = T (β)M1NErt − T (β)M1Nα.

This proves the third equation. Finally, α = Ert − βλ follows immediately.

B.4 Asymptotic Expansions for the Estimated Alpha

The following proposition gives the asymptotic expansion for the estimated alphas. It applies to

estimators that are obtained in any of the four factor scenarios: (i) observable factors only (Algorithm

3), (i) latent factors only (Algorithm 4), (iii) the general case (mixed of observable and latent factors,

Algorithm 3), and (iv) mixed of observable and latent factors with additional condition that observable

factors are tradable (Algorithm 8)

Proposition 2. Under the conditions of Theorem 1, (i)

α̂− α =
1

T

∑
t

ut(1− v′tΣ−1
f λ)− 1

N
ζM1Nα+ ∆,

with ‖∆‖∞ = OP ( logN
T + 1

N ). Here ζ = βS−1
β β′ for scenarios (i)-(iii) and ζ = βlS

−1
β,l β

′
l for scenario

(iv).

(ii) Uiformly in i ≤ N , when T logN = o(N),

α̂i − αi
se(α̂i)

=
√
T

1
T

∑
t uit(1− v′tΣfλ)

σi
+ oP (1/

√
logN)

=
√
T

1
T

∑
t uit(1− v′tΣfλ)

si
+ oP (1/

√
logN),

where σ2
i = Eu2

it(1− v′tΣ
−1
f λ)2, s2

i = 1
T

∑
t u

2
it(1− v′tΣ

−1
f λ)2, Here α̂i and se(α̂i) denote the estimated

alpha and its standard error.

Proof. For notational simplicity, we shall simply work with the case dim(ft) = 1. We use C > 0 to be

generic constant.

(i) Scenario I. In the known factor case, let β̂ be the N ×K matrix of β̂i. Then we have

β̂ − β = (
1

T

∑
t

utv
′
t − ūv̄′)S−1

f (B.15)

where Sf = 1
T

∑
t(ft − f̄)(ft − f̄)′. It is easy to show 1

N ‖β̂ − β‖
2 = OP ( 1

T ).

Step 1. Expand λ̂− λ. Note that r̄ − Ert = βv̄ + ū, and λ̂ = Ŝ−1
β

1
N β̂
′M1N r̄, so

λ̂− λ = v̄ +
1

N
S−1
β β′M1Nα+

7∑
d=1

Ad,
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where

A1 =
1

N
Ŝ−1
β (β̂ − β)′M1Nα, A2 =

1

N
Ŝ−1
β (β̂ − β)′M1N (β − β̂)λ

A3 =
1

N
Ŝ−1
β β′M1N (β − β̂)λ, A4 =

1

N
Ŝ−1
β β̂′M1N (β − β̂)v̄

A5 =
1

N
Ŝ−1
β (β̂ − β)′M1N ū, A6 =

1

N
Ŝ−1
β β′M1N ū

A7 = (
1

N
Ŝ−1
β −

1

N
S−1
β )β′M1Nα

We now show ‖Ad‖ = OP ( 1√
NT

) for all d. Note that ψ1(Var(ut|ft)) < C almost surely,

E‖α′ 1
T

∑
t

utf
′
t‖2 =

1

T
Ef2

t α
′Var(ut|ft)α ≤ CEf2

t ‖α‖2 ≤ NT−1C.

P(‖ 1

N
α′

1

T

∑
t

utf
′
t‖
√
NT > Cδ) ≤ E‖ 1

N
α′

1

T

∑
t

utf
′
t‖2NT/C2

δ < δ. (B.16)

Similarly, |α′ū|, ‖β′ 1T
∑

t utf
′
t‖, ‖β′ū‖, ‖1′N

1
T

∑
t utf

′
t‖, and |1′N ū| are all OP (N1/2T−1/2). . Thus it is

straightforward to prove all the following terms are OP ( 1√
NT

): ‖ 1
N (β̂ − β)′M1N ζ‖ for ζ ∈ {α, β, 1N}

and (Ŝ−1
β − S

−1
β ) 1

N β
′M1Nα. This implies ‖Ad‖ = OP ( 1√

NT
) for all d. In other words,

λ̂− λ = v̄ +
1

N
S−1
β β′M1Nα+OP (

1√
NT

). (B.17)

It also implies λ̂ = OP (1) and λ̂− λ = OP ( 1√
T

+ 1√
N

).

Step 2. Expand α̂ − α. Note that α̂ = r̄ − β̂λ̂, we have α̂ − α = βv̄ + ū − β(λ̂ − λ) + (β − β̂)λ̂.

Substitute in (B.15) (B.17),

α̂− α = ū− 1

T

∑
t

utv
′
tS
−1
f λ̂+ ūv̄′S−1

f λ̂− β 1

N
S−1
β β′M1Nα− β

7∑
d=1

Ad (B.18)

By Lemma 2, ‖ūv̄′S−1
f λ̂‖∞ = OP (

√
logN/T ). In addition, by step 1,

‖β
7∑
d=1

Ad‖∞ = OP (1)‖
7∑
d=1

Ad‖ = OP (
1√
NT

).

Also ‖ 1
T

∑
t utv

′
t(S
−1
f λ̂−Σ−1

f λ)‖∞ ≤ ‖ 1
T

∑
t utvt‖∞‖S

−1
f λ̂−Σ−1

f λ‖K ≤ OP (
√

logN/T ). So for ‖∆‖∞ =

OP (
√

logN/T + 1/N) = oP (T−1/2),

α̂− α =
1

T

∑
t

ut(1− v′tΣ−1
f λ)− β 1

N
S−1
β β′M1Nα+ ∆.

Scenario II. In the latent factor case, we proceed as follows.

Step 1. Expand β̂. Recall that V is the Kl×Kl diagonal matrix of the first Kl eigenvalues of S/N .

Let v̇t = vt − v̄ and u̇t = ut − ū, and

H =
1

NT

∑
t

v̇tv̇
′
tβ
′β̂D−1 +

1

NT

∑
t

v̇tu̇
′
tβ̂D

−1.
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Note that there are three small differences here compared to Bai (2003). First, here we expand the

estimated betas while he expanded the estimated factors. They are symmetric, so can be analogously

derived; secondly, Bai (2003) defined H using just the first term. In contrast, we have a second term

in the definition, which introduces just tiny differences because it is oP (1) and dominated by the first

term. Doing so makes the technical argument slightly more convenient, because one of the terms in

the expansions in Bai (2003) now is “absorbed” in the second term in H. Finally, we use “demeaned

data” v̇t and u̇t, which also introduce further terms in the expansions below (term G). Above all, we

can use the same argument to reach ‖D−1‖+ ‖H‖ = OP (1). The same proof as in Bai (2003) shows

the following equality holds

β̂ − βH =
1

NT

∑
t

utv
′
tβ
′β̂D−1 +

1

NT

∑
t

(utu
′
t − Eutu′t)β̂D−1 +

1

N
(Eutu′t)β̂D−1 −G (B.19)

where

G = ūv̄′
1

N
β′β̂D−1 +

1

N
ūū′β̂D−1.

Note that ‖ 1√
N
G‖ = OP (T−1), ψ1(Eutu′t) = O(1),

‖ 1
T

∑
t utv

′
t‖ = OP (

√
N/T ) and ‖ 1

T

∑
t(utu

′
t−Eutu′t)‖ = OP (N/

√
T ). Also, the columns of β̂/

√
N

are eigenvector, so ‖β̂‖ = OP (
√
N). Hence we have 1√

N
‖β̂ − βH‖ = OP (T−1/2 +N−1).

Step 2. Expand λ̂. We have

λ̂−H−1λ = H−1v̄ + Ŝ−1
β

1

N
H ′β′M1Nα+

4∑
d=1

Aλ,d

where

Aλ,1 = Ŝ−1
β

1

N
β̂′M1N ū

Aλ,2 = Ŝ−1
β

1

N
β̂′M1N (βH − β̂)H−1v̄

Aλ,3 = Ŝ−1
β

1

N
β̂′M1N (βH − β̂)H−1λ

Aλ,4 = Ŝ−1
β

1

N
(β̂ − βH)′M1Nα.

We shall examine the terms on the right hand side one by one. First note that Ŝβ = H ′SβH+oP (1)

so Ŝ−1
β = OP (1). For the first term, we proved ‖β′M1N ū‖ = OP (N1/2T−1/2) in part (i), so

Aλ,1 = Ŝ−1
β

1

N
(β̂ − βH)′M1N ū+ Ŝ−1

β

1

N
H ′β′M1N ū = OP (

1√
NT

+
1

T
).

For Aλ,2 ∼ Aλ,4, note that the assumption maxi,j≤N
∑N

k=1 |Cov(uitukt, ujtukt)| < C implies

maxj ψ1(Var(utujt)) < C, so

E‖ 1√
N
β′

1

NT

∑
t

(utu
′
t − Eutu′t)‖2 =

1

N

N∑
j=1

1

N2T
β′Var(utujt)β
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≤ max
j
ψ1(Var(utujt))

1

N2T
‖β‖2 ≤ C

NT
.

E‖ 1√
NN

β′1N1′N
1

NT

∑
t

(utu
′
t − Eutu′t)‖2 ≤ C

NT
. similarly

(B.20)

Hence 1√
N
β′M1N

1
NT

∑
t(utu

′
t−Eutu′t) = OP ((NT )−1/2). Similarly, 1√

N
α′M1N

1
NT

∑
t(utu

′
t−Eutu′t) =

OP ((NT )−1/2). Note that ‖Eutu′t‖ < C by the assumption of weak cross-sectional correlation,

1

N
β′M1N (β̂ − βH) =

1

N
β′M1N

1

NT

∑
t

utv
′
tβ
′β̂D−1 +

1

N
β′M1N

1

NT

∑
t

(utu
′
t − Eutu′t)β̂D−1

+
1

N
β′M1N

1

N
(Eutu′t)β̂D−1 − 1

N
β′M1NG

= OP (
1√
NT

+
1

N
).

Similarly, 1
Nα
′M1N (β̂−βH) = OP ( 1√

NT
+ 1

N ). Thus Aλ,2 = OP ( 1
T + 1

N ). Similarly, both Aλ,3 and Aλ,4

are OP ( 1
N + 1

T ). Together,

λ̂−H−1λ = H−1v̄ + Ŝ−1
β

1

N
H ′β′M1Nα+OP (

1

N
+

1

T
). (B.21)

Step 3. Expand α̂− α. Substitute in the expansions (B.19) and (B.21) in step 2, 3,

α̂− α = βv̄ + ū− βH(λ̂−H−1λ) + (βH − β̂)λ̂

= ū+

4∑
d=1

Gd − βHŜ−1
β

1

N
H ′β′M1Nα+OP (

1

N
+

1

T
)

G1 = − 1

N
(Eutu′t)β̂D−1λ̂

G2 = − 1

NT

∑
t

utv
′
tβ
′β̂D−1λ̂

G3 = − 1

NT

∑
t

(utu
′
t − Eutu′t)β̂D−1λ̂

G4 = (ūv̄′
1

N
β′β̂D−1 +

1

N
ūū′β̂D−1)λ̂.

First note that ‖βHŜ−1
β

1
NH

′β′M1Nα‖∞ = OP (1)‖ 1
N β
′M1Nα‖ = O(N−1/2). For G1, we shall obtain

its rate later. For G2, note that

1

N
β′β̂D−1λ̂− Σ−1

f λ =
1

N
H
′−1(H ′B′ − β̂′)β̂D−1λ̂+H

′−1D−1(λ̂−H−1λ) + (HDH ′)−1λ− Σ−1
f λ

= OP (
1√
T

+
1

N
) + [(HDH ′)−1 − Σ−1

f ]λ.

But HDH ′ = OP ( 1√
T

) + 1
NT

∑
t v̇tv̇

′
tH
′−1(H ′B′− β̂′)β̂H ′+ ( 1

T

∑
t v̇tv̇

′
t−Σf ) + Σf = Σf +OP ( 1√

T
).So

‖ 1

NT

∑
t

utv
′
tβ
′β̂D−1λ̂− 1

T

∑
t

utv
′
tΣ
−1
f λ‖∞ = OP (

√
logN

T 2
+

√
logN

TN2
).

52



For G3, note that by Lemma 2,

‖ 1

NT

∑
t

(utu
′
t − Eutu′t)β̂D−1‖∞ ≤ max

i
‖ 1√

NT

∑
t

(uitu
′
t − Euitu′t)‖

1√
N
‖β̂ − βH‖‖D−1‖

+‖ 1

NT

∑
t

(utu
′
t − Eutu′t)βHD−1‖∞

= OP (

√
logN

NT
+

√
logN

T 2
). (B.22)

As for G4, note that for G = ūv̄′ 1
N β
′β̂D−1 + 1

N ūū
′β̂D−1

‖G‖∞ ≤ ‖ū‖∞‖v̄′
1

N
β′β̂ +

1

N
ū′β̂‖‖D−1‖ ≤ OP (

√
logN

T 2
).

It remains to show that ‖G1‖∞ = OP (1/N). To do so, we need to show ‖β̂−βH‖∞ = OP (
√

logN
T +

1
N ).

We use ‖A‖1 = maxi
∑

j |Aij |. Then by (B.22) and Lemma 2

‖β̂ − βH‖∞ ≤ ‖ 1

NT

∑
t

utv
′
tβ
′β̂D−1 +

1

NT

∑
t

(utu
′
t − Eutu′t)β̂D−1 +

1

N
(Eutu′t)β̂D−1 −G‖∞

≤ OP (

√
logN

T
) +

1

N
‖(Eutu′t)‖1‖βHD−1‖∞ +

1

N
‖(Eutu′t)‖1‖β̂ − β̂H‖∞‖D−1‖.

Move the last term to the left hand side, and note that ‖(Eutu′t)‖1 < C by the assumption.

‖β̂ − βH‖∞ = OP (

√
logN

T
+

1

N
).

Then ‖β̂‖∞ ≤ ‖β̂ − βH‖∞ + maxi ‖bi‖ = OP (1). So

‖G1‖∞ ≤ 1

N
‖(Eutu′t)‖1‖β̂‖∞‖HD−1‖ = OP (

1

N
).

Put together,

α̂− α =
1

T

∑
t

ut(1− v′tΣ−1
f λ)− βS−1

β

1

N
β′M1Nα+ ∆

where ‖∆‖∞ = OP (
√

logN
T 2 + 1

N ).

Scenario III. In the mixed factor case, let β̂o be the N ×Ko matrix of β̂o,i where r = dim(fo,t).

Then we have β̂o − βo = ( 1
T

∑
t utv

′
o,t − ūv̄′o)S−1

o + βl(
1
T

∑
t fl,tv

′
o,t − f̄lv̄′o)S−1

o where So = 1
T

∑
t(fo,t −

f̄o)(fo,t − f̄o)′. So there is a matrix

A =

(
Ir

1
T

∑
t ḟl,tv̇

′
o,tS

−1
o

)
=

(
Ir

a

)

so that

β̂o − βA = ξ1, ξ1 = (
1

T

∑
t

utv
′
o,t − ūv̄′o)S−1

o . (B.23)
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Step 1. Note that β̂o is a biased estimator for βo, due to the correlations between fo,t and fl,t.

But the bias is βl
1
T

∑
t ḟl,tv̇

′
o,tS

−1
o , so is still inside the space spanned by β = (βo, βl). As a result,

in terms of estimating βA, β̂o is unbiased. In fact, we shall also show that β̂l also estimates “the

subspace of β” without bias. As such, when we expand β̂l, instead of centering at a rotation of βl,

we should center it at a rotation of β. We also have Zt = βlt + u̇t − ξ1ḟo,t, where lt = ḟt − Aḟo,t.
Therefore, we let V be the Kl × Kl diagonal matrix of the first Kl eigenvalues of 1

T

∑
t ZtZ

′
t. Let

H1 = 1
TN

∑
t lt(l

′
tB
′ + u̇′t − ḟ ′o,tξ

′
1)β̂lD

−1. Then β̂l − βH1 = ξ2 where ξ2 = 1
TN

∑
t u̇t(l

′
tB
′ + u̇′t −

ḟ ′o,tξ
′
1)β̂lD

−1 − ξ1
1
TN

∑
t ḟo,t(l

′
tB
′ + u̇′t − ḟ ′o,tξ′1)β̂lD

−1. Let β̂ = (β̂o, β̂l), H = (A,H1) and ξ3 = (ξ1, ξ2).

So

β̂ = βH + ξ3.

This implies 1
N ‖β̂ − βH‖

2 = OP ( 1
T + 1

N2 )

Step 2. Recall that r̄ − Ert = βv̄ + ū, and λ̂ = Ŝ−1
β

1
N β̂
′M1N r̄, where M1N = I − 1N1′N/N , So

λ̂−H−1λ = H−1v̄ + Ŝ−1
β

1

N
H ′β′M1Nα+

4∑
d=1

Aλ,d

where

Aλ,1 = Ŝ−1
β

1

N
β̂′M1N ū

Aλ,2 = Ŝ−1
β

1

N
β̂′M1N (βH − β̂)H−1v̄

Aλ,3 = Ŝ−1
β

1

N
β̂′M1N (βH − β̂)H−1λ

Aλ,4 = Ŝ−1
β

1

N
(β̂ − βH)′M1Nα.

To bound each term, note that (B.20) still applies. Even though ξ3 now takes a different form than

in the previous case, most of the proofs for the expansion in (B.21) still carries over. So we can avoid

repeating ourselves but directly conclude that

λ̂−H−1λ = H−1v̄ + Ŝ−1
β

1

N
H ′β′M1Nα+OP (

1

N
+

1

T
).

Step 3. Similar to part (ii), we have

α̂− α = βv̄ + ū− βH(λ̂−H−1λ) + (βH − β̂)λ̂

= ū− βHŜ−1
β

1

N
H ′β′M1Nα− ξ3H

−1λ+ ∆

where ∆ denotes a generic N × 1 vector satisfying ‖∆‖∞ = OP ( 1
N + logN

T ).

The main difference from the previous latent factor only case is to derive an expression for ξ3H
−1,

which we now focus on. Note that by definition, for C = 1
N β
′β̂lD

−1, L = (lt : t ≤ T ) be K × T ,

Ḟo = (ḟo,t : t ≤ T ) be K × T , and U be N × T matrix of uit, we can write in a matrix form

ξ3 =

(
1

T
UḞ ′oS

−1
o , (

1

T
U − 1

T
UḞ ′oS

−1
o

1

T
Ḟo)L

′C

)
+ ∆.
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Write L′ = (0, L′1) where L1 is Kl×T and J = ( 1
T U −

1
T UḞ

′
oS
−1
o

1
T Ḟo)L

′
1( 1
T L1L

′
1)−1. It can be verified

that

ξ3H
−1 =(1)

(
1

T

∑
t

utv
′
o,tS

−1
o − Ja, J

)
+ ∆

=(2) 1

T

∑
t

utv
′
tΣ
−1
f + ∆.

We now prove both equalities.

As for (1), note that H1 = 1
TN

∑
t ltl
′
tβ
′β̂lD

−1 +OP ( 1
T + 1

N ),

lt = ḟt −Aḟo,t =

(
0

ḟl,t − aḟo,t

)
, C :=

(
m1

m2

)
, H1 =

(
0

1
T L1L

′
1m2

)
+OP (

1

T
+

1

N
)

So L1 = (ḟl,t − aḟo,t : t ≤ T ), and L′C = L′1m2. Also note that H = (A,H1) so(
1

T
UḞ ′oS

−1
o − Ja, J

)
A =

1

T
UḞ ′oS

−1
o(

1

T
UḞ ′oS

−1
o − Ja, J

)
H1 = J

1

T
L1L

′
1m2 = (

1

T
U − 1

T
UḞ ′oS

−1
o

1

T
Ḟo)L

′
1m2 +OP (

1

T
+

1

N
)

So
(

1
T UḞ

′
oS
−1
o − Ja, J

)
H =

(
1
T UḞ

′
oS
−1
o , J 1

T L1L
′
1m2

)
+ OP ( 1

T + 1
N ) = ξ3 + OP ( 1

T + 1
N ). This

proves ζ3 =
(

1
T UḞ

′
oS
−1
o − Ja, J

)
H + ∆ and thus (1).

As for (2), write vo = (vo,t : t ≤ T ), vl = (vl,t : t ≤ T ), both are “short” by “long” matrices.

Sf =

(
So Sol

S′ol Sl

)
=

1

T

(
vov
′
o vov

′
l

vlv
′
o vlv

′
l

)
.

Let W = Sl − S′olS−1
o Sol. Using the matrix block inverse formula, 1

T

∑
t utv

′
tΣ
−1
f = (a1, a2) where

a1 =
1

T
Uv′oS

−1
o + [

1

T
Uv′oS

−1
o Sol −

1

T
Uv′l]W

−1S′olS
−1
o

a2 = − 1

T
Uv′oS

−1
o SolW

−1 +
1

T
Uv′lW

−1.

Note that a = S′olS
−1
o + OP (T−1/2), so ( 1

T L1L
′
1) = 1

T (v′l − av′o)(vl − voa′) = W + OP (T−1/2). In the

definition of J , Ḟo can be replaced with vo up to ∆. So

J =

[
1

T
Uv′l −

1

T
Uv′oS

−1
o Sol

]
W−1 + ∆ = a2 + ∆

−Ja =

[
1

T
Uv′oS

−1
o Sol −

1

T
Uv′l

]
W−1S′olS

−1
o + ∆.

Then

1

T

∑
t

utv
′
o,tS

−1
o − Ja =

1

T
Uv′oS

−1
o +

[
1

T
Uv′oS

−1
o Sol −

1

T
Uv′l

]
W−1S′olS

−1
o + ∆ = a1 + ∆.
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This proves (2). Together, in the mixed factor case, we also have

α̂− α =
1

T

∑
t

ut(1− v′tΣ−1
f λ)−BS−1

β

1

N
β′M1Nα+ ∆ (B.24)

where ‖∆‖∞ = OP ( logN
T 2 + 1

N ).

Scenario IV. In the mixed factor case with tradable observable factors, the proof is very similar

to scenario III, so we omit details to avoid repetitions.

(ii) We shall work only on the latent factor case. The other cases are very similar.

Let mi := 1√
T

∑
t uit(1− v′tΣ

−1
f λ). When T logN = o(N),

α̂i − αi
se(α̂i)

=
mi + ∆i

√
T√

T se(α̂i)
−
β′iS
−1
β

1
N β
′M1Nα

se(α̂i)
.

The second term is oP (1/
√

logN). Note that
√
T logN‖∆‖∞ = oP (1). It suffices to prove,√

logN max
i
|mi||σi −

√
T se(α̂i)| = oP (1) =

√
logN max

i
|mi||σi − si|.

By Lemma 2, maxi |mi| = OP (
√

logN). In addition, let L = D−1λ̂. Then

max
i
|σ2
i − T se(α̂i)

2| ≤ max
i
| 1
T

∑
t

û2
it(1− v̂′tL)2 − u2

it(1− v′tΣ−1
f λ)2|+ max

i
|s2
i − σ2

i |.

The second term on the right is OP (
√

logN/T ) by Lemma 2. We now focus on the first term. The

first term is bounded by Q1 +Q2 +Q3, where

Q1 = max
i
| 1
T

∑
t

u2
it(2 + v̂′tL+ v′tΣ

−1
f λ)(v̂t −H−1vt)

′L|

Q2 = max
i
| 1
T

∑
t

u2
it(2 + v̂′tL+ v′tΣ

−1
f λ)v′t(H

−1′L− Σ−1
f λ)|

Q3 = max
i
| 1
T

∑
t

(ûit + uit)(ûit − uit)(1− v̂′tL)2|

(a) Bound Q1. Note that v̂t = 1
N β̂
′(rt − r̄). So

v̂t −H−1vt =
1

N
β̂′(βH − β̂)H−1vt −

1

N
β̂′βv̄ +

1

N
β̂′ut −

1

N
β̂′ū

=
1

N
β̂′(βH − β̂)H−1vt +

1

N
β̂′ut +OP (T−1/2)

where the last OP (T−1/2) is uniform in (i, t). Hence

Q1 ≤ max
i
| 1
T

∑
t

vtu
2
it(2 + v̂′tv + v′tΣ

−1
f λ)|‖ 1

N
β̂′(βH − β̂)H−1L‖

+ max
i
| 1
T

∑
t

1

N
β̂′utu

2
it(2 + v̂′tv + v′tΣ

−1
f λ)L|

+ max
i
| 1
T

∑
t

u2
it(2 + v′tΣ

−1
f λ)|OP (T−1/2) + max

i
| 1
T

∑
t

u2
itv̂t|OP (T−1/2)
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≤ OP (T−1 +N−1) max
i
| 1
T

∑
t

vtu
2
it(2 + v′tΣ

−1
f λ)− Evtu2

it(2 + v′tΣ
−1
f λ)|

+OP (T−1 +N−1) max
i
| 1
T

∑
t

v2
t u

2
it − Ev2

t u
2
it|+ max

i
| 1
T

∑
t

u2
itvt − Eu2

itvt|OP (T−1/2)

+OP (T−1/2) max
i
| 1
T

∑
t

u2
it(2 + v′tΣ

−1
f λ)− Eu2

it(2 + v′tΣ
−1
f λ)|

+|β̂‖∞max
ij

[
| 1
T

∑
t

(ujtu
2
itvt − Eujtu2

itvt)|+ |
1

T

∑
t

ujtu
2
it(2 + v′tΣ

−1
f λ)− Eujtu2

it(2 + v′tΣ
−1
f λ)|

]
+‖β̂‖∞

1

N
max
i

[
‖Eutu2

it(2 + v′tΣ
−1
f λ))‖1 + ‖Eutu2

itvt‖1
]

+OP (T−1 +N−1) max
i
| 1
T

∑
t

vtu
2
it(v̂t −H−1vt)|+ max

i
| 1
T

∑
t

u2
it(v̂t −H−1vt)|OP (T−1/2)

+ max
i
|β̂′ 1
T

∑
t

1

N
utu

2
it(v̂t −H−1vt)|

+OP (T−1/2 +N−1)

= OP (

√
logN

T
+

1

N
) +OP (1)

1

N
max
i

∑
j

|E(ujtu
2
it|vt)|

+OP (T−1 +N−1) max
i
| 1
T

∑
t

vtu
2
it(v̂t −H−1vt)|+ max

i
| 1
T

∑
t

u2
it(v̂t −H−1vt)|OP (T−1/2)

+ max
i
|β̂′ 1
T

∑
t

1

N
utu

2
it(v̂t −H−1vt)|

= OP (

√
logN

T
+

1

N
) +

1

N2
max
i
|β′ 1
T

∑
t

utu
2
itu
′
tβ|OP (1) = OP (

√
logN

T
+

1

N
)

where we bounded 1
N2 maxi |β′ 1T

∑
t utu

2
itu
′
tβ| as, for wt = u′tβ/

√
N ,

1

N
max
i
| 1
T

∑
t

u2
itw

2
t | ≤

1

N
max
i
| 1
T

∑
t

(u2
itw

2
t − Eu2

itw
2
t )|+

1

N
max
i
|E 1

T

∑
t

u2
itw

2
t | = OP (N−1).

(b) For Q2, note that

‖H−1′L− Σ−1
f λ‖ ≤ ‖H−1′D−1H−1 − Σ−1

f ‖‖Hλ̂‖+ ‖Σ−1
f H‖‖λ̂−H−1λ‖ = OP (N−1/2 + T−1/2).

So

Q2 ≤ max
i
‖ 1

T

∑
t

u2
it(2 + v̂′tL+ v′tΣ

−1
f λ)v′t‖OP (

1√
T

+
1√
N

)

≤ OP (
1√
T

+
1√
N

) + max
i
‖ 1

T

∑
t

u2
it(v̂t −H−1vt)‖OP (

1√
T

+
1√
N

)

≤ OP (
1√
T

+
1√
N

).

(c) For Q3, note that ût − ut = −βv̄ − ū− (β̂ − βH)v̂t − βH(v̂t −H−1vt). First, we show

maxi | 1T
∑

t(ûit + uit)(1− v̂′tL)2| = OP (1), due to:

max
i
| 1
T

∑
t

uit(1− v̂′tL)2| ≤ OP (1) + max
i
| 1
T

∑
t

uit(v̂t −H−1vt)
2| = OP (1).
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max
i
| 1
T

∑
t

ûit(1− v̂′tL)2| ≤ OP (1) + max
i
| 1
T

∑
t

(ûit − uit)(1− v̂′tL)2| = OP (1).

Similarly, it can be shown maxi | 1T
∑

t(ûit + uit)(1 − v̂′tL)2(v̂t + wt)| = OP (1) where wt = 1√
N
B′ut.

Next,

max
i
| 1
T

∑
t

(ûit + uit)(1− v̂′tL)2(v̂t −H−1vt)|

≤ max
i
| 1
T

∑
t

(ûit + uit)(1− v̂′tL)2vt|OP (N−1 + T−1)

+ max
i
| 1
T

∑
t

(ûit + uit)(1− v̂′tL)2 1

N
β̂′ut|+OP (T−1/2)

≤ OP (
1

N
+

1√
T

) + max
ij
| 1
T

∑
t

(ûit + uit)(1− v̂′tL)2||ujt|‖β̂ − βH‖∞

≤ OP (

√
logN

T
+

1

N
).

Then

Q3 = max
i
| 1
T

∑
t

(ûit + uit)(1− v̂′tL)2(ûit − uit)| ≤
9∑
d=1

Ad

A1 = max
i
| 1
T

∑
t

(ûit + uit)(1− v̂′tL)2biv̄| = OP (T−1/2)

A2 = max
i
| 1
T

∑
t

(ûit + uit)(1− v̂′tL)2|max
i
|ūi| = OP (

√
logN

T
)

A3 = max
i
| 1
T

∑
t

(ûit + uit)(1− v̂′tL)2v̂t||β̂ − βH|∞ = OP (

√
logN

T
+

1

N
)

A4 = max
i
| 1
T

∑
t

(ûit + uit)(1− v̂′tL)2(v̂t −H−1vt)|‖βH‖∞ = OP (

√
logN

T
+

1

N
)

So Q3 = OP (
√

logN
T + 1

N ). Together, Q1 +Q2 +Q3 = OP (
√

logN
T + 1√

N
). Thus

max
i
|σ2
i − T se(α̂i)

2| ≤ OP (

√
logN

T
+

1√
N

). (B.25)

Hence maxi |mi||σi −
√
T se(α̂i)| = OP (

√
logN)OP (

√
logN
T + 1√

N
) = oP (1/

√
logN).

Q.E.D.

Next, we prove the following lemma.

Lemma 1. With probability going to one, and any constant M > 2,

max
i

| 1√
T

∑
t uit(1− v′tΣ

−1
f λ)|

σi
+ max

i

| 1√
T

∑
t uit(1− v′tΣ

−1
f λ)|

si
≤
√
M logN.

where s2
i = 1

T

∑
t u

2
it(1− v′tΣ

−1
f λ)2.
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Proof. The proof simply applies Corollary 2.1 of Chernozhukov et al. (2013a). Let Xit = uit(1 −
v′tΣ
−1
f λ). Then under Assumption 3 (iii) and log(N)c = o(T ) for c > 7, Corollary 2.1 of Chernozhukov

et al. (2013a) implies for some c > 0,

sup
s

∣∣∣∣∣P
(

max
i

| 1√
T

∑
tXit|

σi
> s

)
− P

(
max
i
|Yi| > s

)∣∣∣∣∣ ≤ T−c
where Yi ∼ N (0, 1). In addition, P (maxi≤N |Yi| > s) ≤ 2N(1 − Φ(s)) ≤ 2 exp(logN − s2/2) = o(1)

for s =
√
M logN for any M > 2. Next, replacing σi with si, the result still holds, due to σi > c and

maxi |σ2
i − s2

i | = oP (1) , by Lemma 2 . Q.E.D.

Lemma 2. maxi≤N ‖ 1
T

∑
t u

m
it f

n
ktf

v
qt−Eumit fnktfvqt‖ = OP (

√
logN
T ), for m,n, v ∈ {0, 1, 2} for any q, k ≤

K. Also, maxij ‖ 1
T

∑
t(uitujt − Euitujt)‖ = OP (

√
logN
T ), maxijk ‖ 1

T

∑
t(u

2
itujtukt − Eu2

itujtukt)‖ =

OP (
√

logN
T ),

and for wt = 1√
N
B′ut, maxi≤N ‖ 1

T

∑
t u

d
itw

d
t − Euditwdt ‖ = OP (

√
logN
T ) for d ∈ {1, 2}

Proof. We apply Lemmas A.2 and A.3 of Chernozhukov et al. (2013b) to reach a concentration in-

equality: let X1, ..., XT be independent in Rp where p = N or N2. Let σ2 = maxi EX2
it. Suppose

EmaxitX
2
it logN ≤ Cσ2T , then there is a universe constant C > 0, for any x > 0,

max
i≤N
| 1
T

∑
t

Xit − EXit| ≤ Cσ
√

logN

T
+
x

T

with probability at least 1 − exp(− x2

3σ2T
) − CT Emaxi,t |Xit|4

x4
. Now we set x = σ

√
T logN . With the

assumption that (logN)4 = O(T ), and EmaxitX
4
it ≤ σ4(logN)2TC, we have, for any ε > 0, there is

Cε, with probability at least 1− ε, maxi≤N | 1T
∑

tXit| ≤ Cεσ
√

logN
T . The desired result then holds by

respectively taking Xt as umit f
n
ktf

v
qt, uitujt and uitwt.

B.5 Proof of Theorem 4

The proof is the same for all three cases of observing the factors. Let ε̂i = r̄i−α̂0− β̂′iλ̂, then
∑

i ε̂i = 0.

Hence α̂0 = 1
N

∑
i α̂i. From (B.24), we have

α̂0 − ᾱ = −β̄′S−1
β

1

N
β′M1Nα+

1

N

∑
i

∆i.

In (B.24), we showed ‖∆‖∞ = OP ( logN
T + 1

N ). In fact, the logN term arises from bounding

uniform estimation errors, which can be avoided for 1
N

∑
i ∆i. A more careful analysis could yield

that 1
N

∑
i ∆i = OP ( 1

T + 1
N ). We omit details for brevity. For 1N = (1, ..., 1)′, Pβ = β(β′β)−1β′,

Mβ = I − Pβ,

α̂0 − α0 −
1

N

∑
i

∆i =
1

N
1′Nα−

1

N
1′Nβ(

1

N
β′M1Nβ)−1 1

N
β′M1Nα− α0
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=
1

N
1′Nα− (1′NMβ1N )−11′NPβM1Nα− α0

=
1

N
1′Nα− (1′NMβ1N )−11′NPβα+ (1′NMβ1N )−11′NPβ1N1′N

1

N
α− α0

= (1′NMβ1N )−11′NMβ(α− 1Nα0)

= (1′NMβ1N )−1
∑
i

(αi − α0)(1− β̄(
1

N
β′β)−1βi)

where the second equality uses the Woodbury matrix identity for ( 1
N β
′M1NB)−1. Hence by the

Lindeburg It is easy to check that the triangular array Lindeburg condition holds, given Eα4
i < C.

Define

σ̄2 = (
1

N
1′NMβ1N )−1σ2

α,

then
√
N α̂−α0

σ̄
d−→ N (0, 1). The result then follows due to s2

0 − σ̄2 = oP (1) and that σ̄2 > 0.
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