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1 Introduction

The evaluation of macroeconomic policy decisions is typically based on the careful analysis

of a specific economic model, see Chari, Christiano and Kehoe (1994) and Woodford (2003)

for prominent examples in the context of fiscal and monetary policy, respectively. While

this approach can produced great insights, a worry for policy makers is that the underlying

model structure may be too stylized to inform policy decisions made in complex and data-rich

real-life settings.

In this work, we propose a framework to evaluate macroeconomic policy decisions with

minimal assumptions on the underlying economic model. Given a policy maker’s loss func-

tion, we construct a statistic —the Optimal Policy Perturbation, OPP— to detect “optimiza-

tion failures” in the policy decision process, those are instances when the policy decision does

not minimize the loss function. The framework can be applied to a broad range of macro

policy problems encountered in practice, such as a central bank interested in stabilizing both

inflation and unemployment, a government interested in smoothing business cycle fluctua-

tions but concerned about excessive deficits, or a government interested in promoting growth

but concerned about income inequality.

Our starting point is a high-level quadratic loss function, as specified by a policy maker,

for instance a central banker interested in minimizing the squared deviations of inflation

and unemployment from some target levels. The idea underlying our approach is to explore

whether deviating from the current policy choice is desirable, i.e., whether a perturbation to

the policy instruments can lower the loss function. At the optimum, a perturbation should

have no first-order effects on the loss function: the gradient of the loss function should be

zero. If this is not the case, we will conclude that the policy is not set optimally.

The Optimal Policy Perturbation (OPP) is the gradient of the loss function, evaluated

at the proposed policy choice and rescaled appropriately. If the policy choice is optimal, the

gradient is zero and so is the OPP statistic. This property will form the basis of our approach

to assessing the optimality of a given policy. In addition, thanks to an appropriate rescaling

the OPP statistic has an economic meaning, and it can be interpreted as the magnitude of

the deviation from optimality. Specifically, the OPP statistic is the discretionary adjustment

to the policy instruments that would correct the optimization failure.

A key insight is that the OPP can be computed even if the specific underlying economic

model is unknown. The reason is that the OPP only depends on two typically known or

estimable sufficient statistics: (i) the forecasts for the policy objectives conditional on the

policy choice, and (ii) the dynamic causal effects of the policy instruments on the policy

objectives. Conditional forecasts are routinely constructed by policy makers as part of the

policy decision process. The causal effects of the policy instruments can be estimated –
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under appropriate assumptions – using methods from the treatment-evaluation literature,

most notably instrumental variable methods.

In practice, the OPP cannot be measured exactly, because causal effects estimates and

forecasts are uncertain. In particular, causal effects estimates face the usual estimation

uncertainty, and the policy makers’ conditional forecasts can be mis-specified and thus face

mis-specification uncertainty. Because of these two sources of error, our evaluation of a

policy choice will resemble a hypothesis test: a statement about whether we can reject the

null of optimality at some level of confidence. In economic terms, the test allows to make

claims such as “With X% confidence, the proposed policy choice is not appropriate”.

The non-optimal policies that we detect are those policies that do not minimize the loss

function. Clearly, if the world was described by a specific macro model like a New-Keynesian

model, such failures should not occur, because the policy maker could simply solve the

optimization problem. In practice however, the underlying model is highly complex, forcing

policy makers to rely on a combination of models, judgment calls, and instinct to decide on

policy. This heuristic approach is not guaranteed to reach an optimum, and the goal of the

OPP test is to identify instances where the policy choice could be improved, all the while

making minimal modeling assumptions and thus preserving the ability of the policy maker

to incorporate a large amount of information, both quantitative and qualitative, into the

decision making process.

In general, an optimization failure could occur for two main reasons: (i) the policy maker

is using a non-optimal reaction function —a systematic optimization failure—, or (ii) the

policy maker made a one-time optimization failure —a discretionary mistake—. A single

OPP statistic cannot distinguish between the different sources of failures, i.e. a systematic or

a discretionary failure. However, a sequence of OPP statistics can separate the two sources of

optimization failures. Intuitively, if the policy maker’s reaction function is optimal, an OPP

sequence should not display any systematic, i.e., predictable, movements. This provides a

testable moment condition for detecting systematic optimization failures. We thus propose a

second test aimed at rejecting the null that the reaction function is optimal. This test allows

to make claims such as “A systematically stronger/weaker policy response to movements in

X would be more appropriate to achieve the policy maker’s objectives”.

To clarify the working of the OPP statistic and illustrate its usefulness for policy makers

we conduct two exercises in the context of monetary policy decisions where the policy maker

is the central bank.

First, we illustrate the properties of the OPP in the standard New Keynesian model (e.g.

Gaĺı, 2015). This is a theoretical exercise that shows that if the economy can be described

by the equations of the New Keynesian model the OPP statistic can (i) detect optimization

failures and (ii) determine whether they are due to a non-optimal policy rule.
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Second, in an empirical study we revisit US monetary policy over the 1990-2018 period.

We use FOMC forecasts for inflation and unemployment from historical records of monetary

reports to Congress which are conditional on the Fed following an optimal policy, as judged

by the FOMC members. This allows us to assess the optimality of the Feds actions back

to 1990. We summarize the Feds monetary policy instruments into two groups: a first

one captures conventional monetary policy and operates through the fed funds rate; and a

second one, available since 2007, captures a broad class of unconventional monetary policies

that operate through the slope of the yield curve, as in Eberly, Stock and Wright (2019).

We estimate the dynamic causal effects of interest using external instruments derived from

changes in asset prices around FOMC announcements (Kuttner, 2001; Gürkaynak, Sack and

Swanson, 2005).

We find several instances in which the Fed’s monetary policy decisions were non-optimal.

In some instances the uncertainty in the causal effects and forecasts makes it impossible to

formally reject optimality, but the optimality of unconventional monetary policy operations

during the great recession is convincingly rejected. In particular, during the Great recession

the optimality deviations are large, peaking at -2ppt at the onset of the crisis, and we

can reject optimality over 2009-2012. This suggests that unconventional monetary policy

measures LSAP or QE could have been used more aggressively to bring the slope of the

yield curve down in line with optimality.

We then use the sequence of OPPs over 1990-2018 to study the optimality of the Fed’s

reaction function. While we do not find any systematic relationship between the OPP and

inflation, we do find that unemployment systematically affects the OPP statistic. This points

to a non-optimal reaction function, in that the Fed could have achieved a lower loss over the

1990-2018 by responding more aggressively to unemployment.

The remainder of this paper is organized as follows. We continue the introduction by

carefully relating the OPP approach to existing approaches in the literature. In the next

section we provide a simple example that explains how we can detect optimization failures

with minimal assumptions. Section 3 formally introduces the environment in which the policy

maker and the researcher operate. Section 4 presents the OPP statistic and discusses its

theoretical properties. These properties are further illustrated for a New Keynesian model

in Section 5. Inference for the OPP approach is discussed in Section 6. In Section 7 we

apply our methodology to empirically study monetary policy decisions from the US. Section

8 summarizes the framework and provides some potential avenues for further research.

Relation to literature

In the wake of Lucas (1976), the literature on macroeconomic policy evaluation has largely

focused on the “ex-ante” analysis of the optimal allocation in the context of fully-specified
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forward-looking economic models. This often involves solving the Ramsey policy problem

and finding simple policy rules that can approximate the Ramsey allocation (e.g., Chari,

Christiano and Kehoe, 1994; Woodford, 2010; Michaillat and Saez, 2019). In this context,

an important question has been to derive, from first principles, the appropriate loss function

that the policy maker should be considering. To give a few examples in monetary policy,

popular questions include the desirability of price level targeting versus inflation targeting,

the optimal rate of inflation, or the desirability of a single price stability mandate versus

a dual inflation-unemployment mandate (e.g., Woodford, 2003; Schmitt-Grohé and Uribe,

2010; Coibion, Gorodnichenko and Wieland, 2012; Debortoli et al., 2019).

This paper takes a different starting point. We take the policy maker’s preferences as

given, and we propose a methodology for assessing whether the proposed policy choices

are optimal.1 This is a different objective, which does not require explicitly specifying

the underlying structure of the economy. As a consequence, the OPP testing approach is

attractive for evaluating practical macroeconomic policy decisions, which do not rely on one

specific macroeconomic model and are often based on heuristics; combining multiple models,

judgement calls and instincts. As far as we know, there are no alternatives in the literature

(e.g. Bénassy-Quéré et al., 2018; Kocherlakota, 2019).

In a public finance context, the OPP framework shares important similarities with the

sufficient statistic approach, in that both methods exploit the fact that the consequences of

a policy can be derived from high-level elasticities: the causal effects of moving the policy

instruments. Our approach thus rests on the “estimability” of these elasticities, i.e., on the

possibility to use quasi-experimental variations to infer the causal effects of the policy instru-

ments, just as in the sufficient-statistic literature (e.g. Chetty, 2009; Kleven, 2020). This re-

quires being in a stable environment, a stable macro environment and a stable policy regime,

for some period prior to the policy decision. Different from the sufficient-statistic literature

however, the OPP framework exploits another statistic —the policy maker’s forecasts— to

bypass the need for a fully specified model in order to find the equilibrium allocation under

the desired policy choice. This additional information allows us to evaluate macro policy

decisions without the straightjacket of committing to one specific model.2

Using policy makers’ forecasts as an input is unusual in the optimal policy literature, but

in practice it merely amounts to replacing the structural model’s forecast with the policy

maker’s forecast (which can involve structural and reduced-form models, model combination,

judgement, etc..). While the jury is still out on determining the best forecasting method, we

1As such the OPP approach is not tied to the debate on rules versus discretion (e.g. Kydland and Prescott,
1977; Barro and Gordon, 1983). We take the loss function and the policy instruments as given, and hence
the set-up can correspond to a policy problem under commitment or discretion.

2Another benefit of using policy makers’ forecast as an input is that our approach can be readily used to
inform policy decisions, without any change to current operating procedures.
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note that policy makers’ forecasts often do perform well, and are thus natural alternatives

to evaluate the expected equilibrium allocation under the desired policy choice.3

Our treatment of uncertainty around the OPP shares similarities with the robust-control

approach. In particular, OPP inference can be seen as developing a robust framework for

handling parameter uncertainty and model mis-specification, similarly to the approach fol-

lowed in the context of structural models, see Hansen and Sargent (2001), Onatski and Stock

(2002), Onatski and Williams (2003) and Hansen and Sargent (2008), among others.

Finally, the OPP framework can be seen as a key element of the forecast-targeting rules

used in practice by policy makers, notably in monetary policy (e.g., Svensson, 2019). A

forecast targeting rule is a general approach to policy making that consists in selecting a

policy rate and policy-rate path so that “the forecasts of the target variables look good,

meaning appears to best fulfill the mandates and return to their target at an appropriate

pace” (Svensson, 1999, 2017, 2019).4 However, unless the forecast targeting rule is tied to

a specific model (Woodford, 2010; Giannoni and Woodford, 2017), the informal “looking

good” criterion used in practice is imprecise and leaves the policy maker uncertain about

the optimality of the policy choice. The OPP can precisely quantify that “looking good”

criterion while imposing minimal assumptions on the underlying economic model.5

2 A simple example

Before formally describing our general framework, we first informally present a simple ex-

ample to illustrate how we can evaluate macroeconomic policies with minimal assumptions

on the underlying economic model.

Consider a central bank with an equally weighted dual inflation-unemployment mandate

L =
1

2

(
π2 + u2

)
.

The central bank has one instrument p, e.g., the short-term interest rate, that affects each

3For instance, Romer and Romer (2000), Sims (2002) and Gavin and Mandal (2003) found that the Board
staff forecasts are often comparable or more accurate to various statistical benchmark models.

4As argued by Svensson, the forecast targeting approach is attractive for its flexibility and capacity
to incorporate all relevant information and to accommodate judgment adjustments. This is in contrast to
Taylor-type rules that can be “too restrictive and mechanical, not taking into account all relevant information,
and the ability to handle the complex and changing situations faced by policy makers” (Svensson, 2017).

5For instance, the OPP is immediately applicable to Bernanke (2015)’s interpretation of the Fed’s rule of
conduct : “The Fed has a rule. The Fed’s rule is that we will go for a 2percent inflation rate; we will go for
the natural rate of unemployment; we put equal weight on those two things; we will give you information
about our projections, our interest rate. That is a rule and that is a framework that should clarify exactly
what the Fed is doing.” In that context, the OPP can be used to assess whether the Fed is indeed doing the
best it can to satisfy its two objectives.
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mandate according to [
π

u

]
︸ ︷︷ ︸

Y

=

[
fπ(p)

fu(p)

]
︸ ︷︷ ︸

f(p)

(1)

where the function f(p) captures how policy affects the vector of mandates Y = (π, u)′. The

central bank proposes implementing the policy p0, which implies the equilibrium (Y 0, p0).

Consider a researcher interested in testing whether (Y 0, p0) minimizes the loss function.

Crucially, the function f(.) is not available, either because it is unknown to the researcher,

or because it is too complex to write down.6

Our approach rests on the idea that, at the optimum, the gradient of the loss func-

tion should be zero —∇pL|p=p0 = 0—, and we can assess the optimality of p0 by directly

computing the gradient

∇pL|p=p0 = R0′Y 0 , where R0 =
∂f(p)

∂p

∣∣∣∣
p=p0

. (2)

At the optimum, the causal effect of policy – R0 – should be orthogonal to the allocation

Y 0 = f(p0) at p0, i.e., R0′Y 0 = 0, and it is not possible to better stabilize one mandate

without destabilizing the other one by the exact same amount, leaving welfare unchanged.7

The simple insight idea underlying this paper is that, even if the researcher does not have

complete knowledge of the model f(·), computing the gradient at p0 is possible because (i)

the causal effects R0 are estimable, and (ii) Y 0 is typically available from the policy maker.

First, methods from the treatment-effect literature, most notably instrumental variable

methods, can be adopted to estimate R0 with minimal assumptions. Second, the allocation

Y 0 implied by the policy choice p0 is typically published by policy makers, who routinely

construct and publish their conditional forecasts.8

Thanks to these two pieces of information, it is possible to compute the relevant gradi-

ent, and thus assess the optimality of the policy choice with minimal assumptions on the

underlying model. In contrast, in the standard approach to macro policy evaluation the

researcher would rely on a complete specification for f(·) in order to determine the optimal

allocation and compare such allocation to (p0, Y 0). Since the allocation is, except in a few

simple cases, not available in closed form, optimal policy analysis has traditionally relied

6For instance, if the computation of Y 0 requires the combination of multiple models, instinct and judge-
ment calls, the function f(.) will not be available in closed-form. Note that such heuristic approach are very
common in practice.

7At the optimumR0
ππ

0+R0
uu

0 = 0. If a higher p0 lowers the loss function by stabilizing inflation (R0
ππ

0 <
0), the effect is exactly compensated by a destabilizing effect on unemployment (R0

uu
0 = −R0

ππ
0 > 0).

8Note that we do not have expectations in this toy model, but they will figure prominently in our general
framework.
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on numerical methods, which can be computationally demanding. By exploiting the infor-

mation published by policy makers, we can bypass this problem, and our setting remains

computationally trivial.

In practice, both R0 and Y 0 are not known exactly, and the gradient can only be com-

puted with uncertainty: (i) R0 must be estimated and thus faces estimation uncertainty,

and (ii) the policy maker faces model uncertainty and thus may not report the exact Y 0. As

a result, the gradient can only be measured with uncertainty, and our evaluation of a policy

choice will resemble a hypothesis test: a statement that the policy is not optimal for some

confidence level.9 The larger the uncertainty around the effect of the policy instrument or

the larger the uncertainty around the policy maker’s estimate of Y 0 and the weaker will be

our test.

The remainder of this paper will now develop these simple ideas for a very generic class

of dynamic models that encompasses most macro models encountered in the literature, but

without committing to a particular one.

3 Environment

In this section we describe the underlying structure of the economy and the policy maker’s

objectives and choices. In general, there are three players in our setting: the policy maker

that makes an initial policy choice, the researcher that aims to verify whether the policy

maker’s choice is optimal, and nature that determines the distribution of the variables.

We start by postulating a general set of equations that describe the economy. Based

on this underlying structure we define the policy maker’s objectives and the corresponding

policy choices.

The economy

The economy is defined for an M × 1 vector of policy objectives yt that the policy maker

aims to stabilize, for instance inflation, unemployment or GDP growth. We postulate that

these state variables can be described at time t for any horizon h = 1, . . . , H, by the model

yt+h = Rh(g)pt + fh(yt, Xt; g) + ξt+h , (3)

which depends on three components: (i) the M ×K matrix Rh(g) that captures the causal

effects of the policy choice pt, (ii) an arbitrary function fh() which depends on the contem-

poraneous variables yt and additional time t measurable variables Xt, and (iii) the future

9In other words, incorporating these two sources of uncertainty allows our approach to be robust to
parameter uncertainty and model mis-specification.
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shocks ξt+h that satisfy Etξt+h = 0 for h > 0. The structure of the economy, as captured by

Rh(g) and fh(yt, Xt; g), may depend on the reaction function g of the policy maker, which is

explained below together with pt. The horizon H is arbitrary and can be considered infinite.

We stress that the linearity assumption – with respect to pt – is made for convenience only

and the main results of this paper continue to apply for more general nonlinear models.10

Moreover, we note that many commonly used recursive macroeconomic models, such as

vector autoregressive models and dynamic stochastic general equilibrium models, can be

expressed as special cases of model (3) simply by iterating forward.

The policy variables pt

The policy maker has a set of instruments to steer the state variables yt. For instance, a

fiscal policy maker sets taxes, government spending and transfers (e.g. Alesina, Favero and

Giavazzi, 2019), alternatively a monetary policy maker sets the short-term interest rate, can

choose to buy/sell longer-maturity securities and adjust the size of its balance sheet through

Quantitative Easing (QE) type programs.

For each policy instrument j ∈ 1, . . . , J , the policy maker typically determines a “policy

plan” which sets the instrument’s value at time t as well as its expected path
(
pj,t|t, . . . , pj,t|t+H

)
,

j = 1, . . . , J , where pj,t|t+h denotes the level of instrument j for period t+h that is proposed

at time t. We stack the different policy plans in the K × 1 policy choice vector

pt =
(
p1,t|t, . . . , p1,t|t+H , . . . , pJ,t|t, . . . , pJ,t|t+H

)
,

which implies that K = J(H + 1). Without loss of generality, the policy choice pt can be

written as a the sum of two components: (i) a systematic component whereby policy is set in

a systematic fashion as a function of time t observables, and (ii) a discretionary component:

pt = g(yt, Xt) + εt , (4)

where g is the reaction function that depends on the observables yt = (y1,t, . . . , yM,t)
′ and

possibly additional observables Xt. The discretionary component εt is, by construction,

uncorrelated with the variables yt and Xt. The reaction function g enters the model (3) for

yt+h via Rh(g) and fh(yt, Xt; g) and thus determines the equilibrium outcome. In this paper

we do not impose restrictions on the reaction function and note that it can be an arbitrarily

complex function of time t observables.

10Specifically, in Appendix A we show that for yt+h = fh(pt, yt, Xt; g)+ ξt+h, where f(·, ·, ·; ·) is some non-
linear function of pt and possibly additional variables yt, Xt, we can derive a similar test statistic that allows
to detect optimization failures. This extension can be important for certain applications, but conceptually
nothing is lost by considering the linear case.
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To give a concrete example, a central bank’s plan for the short-term interest rate is often

defined by means of a Taylor, for instance{
it|t = ret + φπEtπt+1 + εt,t

it+h|t = Etret+h + φπEtπt+h+1|t + εt,t+h, ∀ h ∈ {1, .., H}

with it+h|t the expected interest path at horizon h, ret the efficient real interest rate and πt the

deviation of inflation from its target. In this example, the policy choice pt = (it|t, . . . , it|t+H)′,

for arbitrary H, depends on the policy rule g() —a linear function with parameter(φπ)—, as

well as current and (expected) future discretionary adjustments, which could be zero.11

The policy maker

The policy maker aims to minimize a loss function of the form

Lt = Et
H∑
h=0

M∑
m=1

λmβh
(
ym,t+h − y∗m,t+h

)2
, (5)

where ym,t+h denotes the value of policy objective m = 1, . . . ,M at horizon h = 0, . . . , H.

The target value for ym,t+h is denoted by y∗m,t+h and preferences across variables and horizons

are captured by λm —the weight on variable m— and βh —the discount factor for horizon

h. The expectation is conditional on the time t information set Ft, e.g. Et(·) = E(·|Ft),
which is given by Ft = {ys, ps, Xs, s ≤ t}, where the current variables (yt, pt) can still be

adjusted by the time t policy choice, but the past variables (ys, ps), with s < t, are fixed as

their outcomes have been realized in the past.

For convenience, we stack all policy objectives at all horizons in the M(H+ 1)× 1 vector

Yt = [ym,t+h − y∗m,t+h]m=1,...,M,h=0,...,H and simply refer to this vector as the targets. We

emphasize that this vector depends on future observations, but to keep the notation minimal

we denote it simply by Yt. The policy maker’s loss function can then be conveniently be

expressed as

Lt = EtY
′

tWYt, Yt = R(g)pt + f(yt, Xt; g) + Ξt , (6)

where the weighting matrix W includes the non-zero preference parameters and discount

factors and is defined as W = diag(β ⊗ λ), with β = (β0, . . . , βH)′ and λ = (λ1, . . . , λM)′.

The generic model for Yt is obtained by stacking model (3) across h. Formally, we have

that R(g) = (R′0(g), . . . ,R′H(g))′, f(yt, Xt; g) = (f ′0(yt, Xt; g), . . . , f ′H(yt, Xt; g))′ and Ξt =

(ξ′t, . . . , ξ
′
t+H)′.

11Expected future changes capture announcements of future deviations from the systematic conduct of
policy, for instance “forward guidance” with promises to keep short-term rates lower-for-longer (e.g. McKay,
Nakamura and Steinsson, 2016).
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The policy maker’s choice

The policy maker’s perceived solution for minimizing the loss function Lt in (6) is denoted

by g0 – the policy maker’s reaction function – and ε0t – the policy maker’s discretionary

adjustments to the reaction function. Based on these policy choices the expected equilibrium

outcomes (EtY 0
t , p

0
t ) are given by{

EtY 0
t = R0p0

t + Etf(y0
t , Xt; g

0) + EtΞt

p0
t = g0(y0

t , Xt) + ε0t
(7)

with R0 ≡ R(g0) the dynamic causal effects implied by the reaction function g0. We will

generally impose that R0 has full column rank.

Possible optimization failure

The choices (g0, ε0t ) that led to the policy paths p0
t may not be optimal in that the expected

equilibrium (EtY 0
t , p

0
t ) given by equation (7) may not minimize the policy maker’s loss func-

tion (6). This can happen for a variety of reasons: (i) the policy maker chose a sub-optimal

reaction function, (ii) the policy maker made sub-optimal discretionary adjustments, (iii)

both the reaction function and the discretionary adjustments are sub-optimal.

To formally define optimization failures we need to assume the existence of, at least one,

policy choice that minimizes the loss function. To see this, note that equations (3) and (4)

merely provide a generic description of the economy and hence existence is not guaranteed

by the model.

To do so let G be an arbitrary class of reaction functions with g0 ∈ G.12 We postulate

that there exists, at least one, reaction function that minimizes the loss function.

Assumption 1. (Existence of optimum)

There exists a non-empty set Gopt such that

Et‖W1/2Yt(g, 0)‖2 ≤ Et‖W1/2Yt(g̃, ε̃t)‖2, ∀ g ∈ Gopt, g̃ ∈ G\Gopt, ε̃t 6= 0 ,

where Yt(g, εt) = R(g)pt + f(yt, Xt; g) + Ξt and pt = g(yt, Xt) + εt.

The assumption imposes the existence of a non-empty set of reaction functions Gopt,

which minimize the loss function (5), with corresponding discretionary adjustments equal to

zero. The set Gopt can contain multiple reaction functions and there can be combinations of

g and εt that achieve the same loss as any g ∈ Gopt. Importantly, since we do not restrict

12In this paper we generally do not exploit the structure of G. As an example one could consider G to be
defined as the class of linear functions of yt and Xt, which would cover a large class of linear policy rules
found in the literature.
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the class G the optimal reaction functions can be arbitrarily complex, hence setting the

corresponding discretionary adjustments to zero merely normalizes the optimal solution.

Based on Assumption 1, we can now define an optimization failure.

Definition 1. (Optimization failure)

An optimization failure is any pair of choices g and εt, such that either g /∈ Gopt and/or

ε0t 6= 0

Detecting such optimization failures is relevant for any policy maker who is not con-

strained by commitments from before time t. If there are known commitments that the

policy maker has to fulfill the assumption can be adjusted to take such commitments into

account.13 We do not explore this possibility in the main text, but in Appendix B we show

that the methodology of this paper continues to apply for constrained loss functions.

4 Detecting optimization failures

In this section we take the perspective of a researcher interested in assessing whether the

policy maker’s choices g0 and ε0t are optimal, i.e. in detecting a possible optimization failure,

and we derive necessary conditions under which the policy maker’s choices are (sub-)optimal.

We assume that the researcher does not know the functions f(·, ·; g) and g0(·, ·), nor the

variables Xt or the discretionary adjustments ε0t .

Of course, if the function f(·, ·; g) in model (3) was known and could be written down

explicitly, one could first minimize the loss function with respect to Yt, subject to the con-

straints imposed by the model, and then characterize this solution in terms of the policy

variables to obtain an optimal reaction function, or an approximation thereof. That solution

could then be compared to p0
t , the policy choice of the policy maker, in order to assess the

optimality of p0
t . This approach is the traditional route followed by the literature in the

context of fully specified macro models (e.g. Chari, Christiano and Kehoe, 1994; Woodford,

2003).

In practice however the economy is a complex system, there is no broad consensus on

the equations that govern the economy, and therefore the assumption that the researcher

knows the explicit structure of the economy is often too strong. Assessing whether the policy

choices are appropriate, or optimal, in this context requires a different approach.

13To give a concrete example, suppose that the policy maker previously committed to keep policy instru-
ment j fixed at pj,t+h = ch, for h = 1, . . . ,H ′, then we would simply define the set Gopt by

Et‖W1/2Yt(g, 0)‖2 ≤ Et‖W1/2Yt(g̃, ε̃t)‖2, ∀ g ∈ Gopt, g̃ ∈ G\Gopt, ε̃t 6= 0 , s.t. pj,t+h = ch ∀ h = 1, . . . ,H ′

where Yt(g, εt) = R(g)pt + f(yt, Xt; g) + Ξt and pt = g(yt, Xt) + εt. This defines the set of reaction functions
Gopt that minimize the loss function given the constraints. Appendix B provides a more general treatment.
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We proceed in two steps. First, we derive the OPP statistic to detect an optimization

failure, which could be due to a systematic mistake —a non-optimal reaction function—, a

discretionary mistake —a one-time mistake—, or both. Second, we show that a sequence of

OPP statistics can be used to detect systematic optimization failures.

4.1 The OPP statistic

To detect optimization failures we study how the loss function (6) changes when we modify

the policy choice to p0
t + δt, where δt = (δ1,t, . . . , δK,t)

′ is a vector of policy perturbations.

If the loss function is lower for some δt 6= 0 we may conclude that the choice p0
t was not

optimal.

To derive a perturbation that (i) has attractive properties and (ii) is computable in

practice, we mimic the policy maker’s problem around the expected equilibrium allocation

(EtY 0
t , p

0
t ) and solve

min
δt

EtỸ
′

tWỸt where Ỹt = R0(p0
t + δt) + f(y0

t , Xt; g
0) + Ξt . (8)

This problem is a simple weighted least squares problem for which the solution is given by

δ∗t = −(R0′WR0)−1R0′WEtY 0
t , (9)

where EtY 0
t = Et(R0p0

t + f(y0
t , Xt; g

0) + Ξt). The statistic δ∗t is the policy perturbation that

forms the basis of our detection method. We refer to δ∗t as the optimal policy perturbation, or

OPP. It depends on three quantities: the dynamic causal effects R0 under g0, the forecasts

of the policy maker EtY 0
t , which are conditional on the policy choice p0

t = g0(y0
t , Xt) + ε0t

and the weighting matrix W .

The OPP is proportional to the gradient of the loss function evaluated at p0
t , i.e., δ∗t ∝

R0′WEtY 0
t , and the intuition that was discussed for the gradient in Section 2 carries over to

the OPP. The re-scaling gives the OPP a useful regression interpretation which we discuss

below.

The properties of δ∗t are summarized in the following proposition.

Proposition 1. Given an economy defined by equations (3) and (4), we have that under

Assumption 1:

1. δ∗t 6= 0 implies that g0 /∈ Gopt and/or ε0t 6= 0;

2. p0
t + δ∗t = p∗t , where p∗t = arg minpt∈RK Et‖W1/2(R0pt + f(yt, Xt; g

0) + Ξt)‖2.

All proofs are provided in Appendix D.
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The proposition shows that if δ∗t is not equal to zero there must be a policy mistake as

either the reaction function g0 is non-optimal, a discretionary mistake was made ε0t 6= 0, or

both. Further, δ∗t has an economic meaning, and it can be interpreted as the magnitude

of the deviation from optimality. Specifically, the OPP is the discretionary adjustment to

the policy instruments that would correct the optimization failure, given the policy maker’s

reaction function g0.14

The results for the OPP statistic in proposition 1 are theoretical as in practice δ∗t is not

observable and needs to be estimated. We discuss inference for δ∗t in detail in Section 6, but

two key points are worth clarifying now.

First, in this paper we work under the assumption that the forecasts EtY 0
t are available

to the researcher. This is not unreasonable as many policy makers, such as central banks or

fiscal agencies, routinely provide conditional forecasts for their target variables. For now we

assume that the published forecasts correspond to EtY 0
t , but in Section 6 we allow for the

possibility that the forecasts are mis-specified.

Second, the coefficient matrix R0 captures the dynamic causal effects of pt on the targets

Yt under g0. The causal effects of policy are typically not published by the policy maker

and thus need to be estimated by the researcher in order to compute δ∗t . Estimating R0

will require a constant policy regime for some period prior to time t, the existence of some

identification strategy to avoid endogeneity problems and some regularity conditions. These

conditions are similar to those found in the treatment-effect or sufficient-statistic approaches,

and we spell them out explicitly in Section 6.

Intuition: the OPP as a regression coefficient

Notice how the OPP statistic

δ∗t = −(R0′WR0)−1R0′WEtY 0
t ,

looks like the formula of a Weighted Least-Square (WLS) regression. In fact, the OPP

statistic has a simple regression interpretation, as δ∗t is minus the coefficient estimate of a

regression of EtY 0
t on R0, weighted by the preference matrixW . To get the intuition behind

this regression interpretation, assume for now that all targets are weighted equally soW = I,

14Technically speaking, the OPP statistic is the first-step of a Gauss-Newton algorithm, an algorithm
based on the Newton line search algorithm and designed to minimize loss functions. The Gauss-Newton
approximation of the Hessian consists in approximating the Hessian with first-derivatives only (e.g., Nocedal
and Wright, 2006). When the control variable (here pt) has a linear effect on target variables (as we assumed
in model (3)), the Gauss-Newton algorithm converges in one step, that is the OPP is the discretionary
adjustment that would exactly corrects the optimization failure. In more general non-linear cases discussed
in Appendix A, the Gauss-Newton algorithm is known to converge under some additional assumptions
(loosely speaking, the non-linearities are mild), implying that the OPP improve the original policy choice
p0
t .
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and recall that the set of dynamic causal effects R0 captures the effect of a change in the

policy instrument on the policy maker’s objectives. The goal of the optimal perturbation

δ∗t is then to use the causal effects (R) in order to minimize the squared deviations of Yt,

weighted by the policy maker’s preferences. This is nothing but a regression of Y 0
t on R,

except one with a minus sign in front of the coefficient estimate since the goal is not to best

fit the path for Y 0
t , but instead to best “undo” Y 0

t . Now since the future values of Y 0
t are

unknown, the policy maker aims to minimize expected squared deviations, and hence the

OPP aims to undo EtY 0
t , the expected path for Y 0

t conditional on the policy choice p0
t . This

gives the WLS-type formula.

Intuition: the OPP as a score test statistic

The OPP can be interpreted as a population score test statistic, or Lagrange multiplier

statistic, for testing the null hypothesis H0 : g0 ∈ Gopt, εt = 0. Under the null, the gradient

(or score) should be zero and thus δ∗t as well. The benefit of the score test is that it

only requires the estimation of the parameters that are not fixed under H0, in our case the

dynamic causal effects and the forecasts. This feature is particularly useful when considering

the reaction function g, as by fixing the reaction function at g = g0 under the null, we avoid

having to estimate g, which typically cannot be done without strong modeling assumptions.15

4.2 Testing the optimality of the policy rule

The OPP statistic δ∗t is a practical tool to detect an optimization failure, but it cannot

disentangle systematic and discretionary failures: an optimization failure could come from

a non-optimal reaction function, a non-optimal discretionary adjustment, or both.

The following proposition states a sufficient condition that guarantees that a non-zero

OPP comes from a discretionary mistake. If we can reject this sufficient condition, we will

be able to conclude that some of the optimization failures have been systematic, i.e., that

the policy maker has been using a non-optimal reaction function.

Proposition 2. Given that an economy described by equations (3) and (4), Assumption 1

holds, and the discretionary adjustment satisfy E(ε0t |Ft) = 0. We have that under H0 : g0 ∈
Gopt,

E(δ∗t |Ft) = 0 . (10)

15Interestingly, this approach has often been exploited in the econometrics literature in settings where the
parameter of interest cannot be consistently estimated without strong assumptions (e.g. Stock and Wright,
2000; Kleibergen, 2002, 2005; Andrews and Mikusheva, 2015). A prominent example is the weak instruments
problem in GMM, where the score test, or versions thereof are able to avoid the strong instrument assumption
by fixing the structural parameters under the null and relying on the score of the objective function to conduct
inference. Exactly the same intuition applies in our setting, where the reaction function is the parameter
that cannot be estimated without strong assumptions.
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The proposition formalizes the idea that if the reaction function is optimal (i.e., under

the null H0 : g0 ∈ Gopt), the optimization failures must be of a discretionary nature only, and

the OPP statistic should be unrelated to the information set Ft. Intuitively, if the policy

maker’s reaction function is optimal, an OPP sequence should not display any systematic,

i.e., predictable, movements. Loosely speaking, the OPP statistic should resemble a policy

shock (e.g., Ramey, 2016) and be orthogonal to any variable in Ft.
Formally, Proposition 2 provides a testable moment condition that enables the detec-

tion of systematic failures by studying the relationship between δ∗t and the elements of the

information set Ft. The implementation of such test, i.e. the evaluation of the moment con-

dition (10), requires a sample OPP statistics δ∗t for different time periods as the population

moment needs to be replaced by its sample equivalent. In Section 6 we provide the details

for implementing this test. This involves replacing δ∗t by its estimate and handling possible

endogeneity problems to evaluate the moment condition.

4.3 Testing subsets of the policy plan

As we will see in the inference section, estimating the full matrix of causal effects R0 may be

difficult in many practical situations. Instead, the researcher may only be able to estimate

the causal effect of a subset, or a linear combination, of the different policy instruments.

In this section, we shows that the logic of the OPP test carries to that setting as well.

Intuitively, since the OPP framework only aims at testing a necessary condition, testing the

null of optimality for a subset of the policy instruments is a trivial extension of the baseline

setting.

Specifically, propositions 1 and 2 continue to apply when considering only a subset, or a

linear combination of the policy plan pt. To set this up, let S = (S ′a, S
′
b) denote an orthogonal

selection matrix and define

pa,t = Sapt , and pb,t = Sbpt ,

where Sa is the Ka × K selection matrix that determines the linear combinations of the

policy plan pa,t = Sapt that the researcher wants to evaluate. The other linear combinations

pb,t = Sbpt are not of interest and are only implicitly defined, with (K −Ka)×K selection

matrix Sb such that S is an orthogonal matrix.

We give two examples in the context of monetary policy where the policy plan is the

expected interest rate path pt = (it|t, . . . , it|t+H)′. First, suppose that the researcher is only

interested in testing the short rate, then we can take

Sa =
[

1 0 . . . 0
]

such that pa,t = Sapt = it|t .
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Second, Eberly, Stock and Wright (2019) summarize Fed policy in terms of the short rate

it|t and the slope of the yield curve st = it|t+H − it|t. We can accommodate this choice by

considering

Sa =

[
1 0 . . . 0

−1 0 . . . 1

]
such that pa,t = Sapt =

[
it|t

st

]
.

To detect optimization failures for the subset of policies pa,t we proceed similarly as before by

mimicking the policy maker’s problem around the expected equilibrium allocation (EtY 0
t , p

0
t ).

The difference is now that we only perturb the policy instruments p0
a = Sap

0
t . In particular,

we consider

min
δa,t

EtỸ
′

tWỸt where Ỹt = R0
a(p

0
a,t + δa,t) +R0

bp
0
b,t + f(y0

t , Xt; g
0) + Ξt ,

where R0
a = R0S ′a and R0

b = R0S ′b. The solution for δa,t defines the subset-OPP

δ∗a,t = −(R0′

aWR0
a)
−1R0′

aWEtY 0
t . (11)

The subset OPP δ∗a,t has the same theoretical properties as the full vector OPP, which are

summarized in the following proposition.

Proposition 3. Given an economy defined by equations (3) and (4), we have that under

Assumption 1:

1. δ∗a,t 6= 0 implies that g0 /∈ Gopt and/or ε0a,t 6= 0, where ε0a,t = Saε
0
t ;

2. p0
a,t+δ

∗
a,t = p∗a,t, where p∗a,t = arg minpa,t∈R Et‖W1/2(R0

apa,t+R0
bp

0
b,t+f(yt, Xt; g

0)+Ξt)‖2

And, given that the discretionary adjustment satisfy E(ε0a,t|Ft) = 0, we have that under

H0 : g0 ∈ Gopt,

E(δ∗a,t|Ft) = 0 .

The proposition shows that Propositions 1 and 2 continue to apply when we consider

subset tests. Note that the implication in part 1 g0 /∈ Gopt is driven by the fact that

g0
a = Sag

0 is not optimally set, which implies g0 /∈ Gopt.

The intuition underlying Proposition 3 is similar as before. The main benefit of this

extension is that it accommodates a broad array of tests that a researcher might want to

consider in practice, such as simply testing the short rate, or any other combination of the

policy plan. The requirements are the same as before: the conditional forecasts EtY 0
t must

be available, or an estimate thereof, and the causal effects R0
a must be estimable.
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In the next section, we work under the assumption that δ∗t (or δ∗a,t) is known to the

researcher. This will allow us to motivate and clarify the working of propositions 1 and 2

(or proposition 3) in a stylized example. In Section 6, we will extend our approach to “test”

macroeconomic policies in practice, which requires estimating the causal effects and taking

into account that the policy maker may not be able to provide the oracle forecasts EtY 0
t .

5 Illustration: the OPP in a structural macro model

In this section, we illustrate Propositions 1 and 2 —the core properties of the OPP statistic—

in the context of a structural macro model. We consider a stylized New Keynesian model

where the policy maker is the central bank that sets the short term interest rate (e.g. Gaĺı,

2015). The goal of this section is to highlight how a researcher would use the OPP to test

macro policies if the observed variables were generated by the New Keynesian model. The

example also serves to contrast our approach with the standard approach used to verify

the optimality of a policy choice. Importantly, we emphasize that this example is only for

illustrative purposes as the premise of our paper is to test macro policies without postulating

a specific underlying model.

5.1 Detecting an optimization failure

We first illustrate Proposition 1 and show how the OPP statistic can be used to detect an

optimization failure in the policy decision process.

The log-linearized baseline New-Keynesian model (Gaĺı, 2015) is defined by a Phillips

curve and an intertemporal (IS) curve given by

πt = Etπt+1 + κxt + est , (12)

xt = Etxt+1 −
1

σ
(it − Etπt+1 − ret ) , (13)

taking a discount rate of 1 and with xt the welfare-relevant output gap, it the nominal

interest rate set by the central bank, ret the efficient real interest rate and est an iid cost-push

shock.

To illustrate the working of the OPP in an analytically tractable example we consider

the case where the central bank operates under discretion and considers the loss function

Lt = (π2
t + λx2

t ) , (14)

with λ the weight on output gap fluctuations. Under discretion, the central bank’s instrument

vector pt reduces to only one instrument, it the interest rate at time t. In Appendix C we
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show that a similar analysis can be conducted for a central bank who commits, starting at

time t, to an entire interest rate plan pt = (it, it+1, . . .)
′ in order to minimize the loss function

Et
∑∞

h=0(π2
t+h + λx2

t+h).

The standard approach

Denote by i0t the policy implemented by the policy maker. The traditional approach to

evaluate i0t is to contrast this policy decision with that implied by that of a planner choosing

directly πt and xt to minimize the loss function:

min
πt,xt

(π2
t + λx2

t ) s.t. πt = Etπt+1 + κxt + est . (15)

The optimality condition xt = −κ
λ
πt combined with the (IS) curve then gives one possible

optimal policy rule gopt ∈ Gopt given by

iopt
t = gopt(ret , πt)

= ret + φππt (16)

with φπ = κσ
λ

(e.g., Gaĺı, 2015).16 One can then assess the optimality of i0t by comparing it

to iopt
t .

The OPP approach

The standard approach is not possible when the underlying Phillips curve (12) is not available

to the researcher. Instead, our approach consists in directly computing the gradient of the

loss function with respect to the policy instrument, in this case the interest rate.

To illustrate the workings of the OPP statistic in this baseline New-Keynesian model,

consider a central bank following a non-optimal Taylor rule:

i0t = ret + φ0
ππt + ε0t with φ0

π = φπ(1 + γ0) . (17)

As highlighted in (17), the policy choice i0t can be non-optimal for two reasons. First, with

γ0 > 0 the central bank is not following the optimal policy rule and is reacting too strongly

to movements in the inflation gap. In our general notation this implies that g0 is not optimal.

Second, with ε0t 6= 0 the central bank is making a discretionary error. Note that ε0t is like a

monetary shock in common macro parlance (Ramey, 2016).

Calculating the gradient (and the OPP) requires the two statistics EtY
0
t and R0. Under

16 We posit that the model parameters satisfy κσ
λ > 1 to ensure determinacy, i.e., the existence of a unique

equilibrium.
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i0t —the prescription of the non-optimal rule (17)— and assuming determinacy, the vector

EtY
0
t is given by

EtY 0
t =

(
π0
t , x

0
t

)′
,

{
π0
t = ω

γ0

(
est − κ

σ
ε0t
)

x0
t = − 1

κ
(1− ω

γ0
)est + ω

γ0

1
σ
ε0t

.

with ω
γ0

= 1

1+κ2

λ
(1+γ0)

. Moreover, the causal effects of a unit change in it are given by

R0 =
(
R0π,R0x

)′
=
(
−κσ−1,−σ−1

)′
,

so that we can compute the OPP

δ∗t = −(R0′WR0)−1 R0′WEtY 0
t

= − γ0︸︷︷︸
6=0

φπωπ
0
t − ωγ0 ε0t︸︷︷︸

6=0

(18)

where W = diag(1, λ) and ω = 1
1+κ2/λ

.

We can discard optimality when δ∗t 6= 0, which is the case when γ0 6= 0 or ε0t 6= 0, that is

when the central bank does not follow the optimal Taylor rule (16).

At the optimum the impulse response R0 is orthogonal to the conditional expectation

EtY 0
t and we have R0′WEtY 0

t = 0. Intuitively, when γ0 = 0 and ε0t = 0 there is no combina-

tion of the causal effects R0π and R0x that can further stabilize EtY 0
t (in an `2 norm sense),

as any additional stabilization of inflation would be more than compensated by additional

variability in the output gap. In contrast, when γ0 > 0 or when ε0t > 0 the central bank

is over-stabilizing inflation, and lowering the interest rate can lower the loss function, i.e.,

better stabilize inflation and unemployment as a whole.

Going beyond the sole orthogonality condition, Proposition 1 also implies that the mag-

nitude of the OPP has an economic meaning: it corresponds to the discretionary adjustment

to the policy i0t that brings the policy to i∗t = i0t + δ∗t ; the interest rate that achieves the

constrained optimal policy — the policy setting that minimizes the loss function Lt under

the constraint that the policy rule is g0 (and not necessarily an optimal rule gopt).17 To see

that , we note that minimizing Lt subject to eqs (12), (13) and (17) gives the constrained

optimal allocation (π∗t , x
∗
t ) =

(
ωest ,−1−ω

κ
est
)
, which is precisely the allocation achieved under

i0t + δ∗t .

Importantly, this example also illustrates how the OPP statistic alone cannot be used to

17In this simple example, the policy setting i∗t achieves even more, in that the OPP brings the economy
to the optimal allocation achieved under the optimal policy rule gopt

t . This is not a general result however.
It holds in this simple example, because the causal effects R0 are the same under g0 and gopt.
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isolate the reason for the optimization failure. We could have δ∗t 6= 0, because ε0t 6= 0, γ0 6= 0

or both. In other words, the OPP is silent about the source of the optimization failure, i.e.,

whether it is due to a one-time mistake ε0t or to a systematic mistake, i.e., a non-optimal

reaction function g0 6= gopt as with γ0 6= 0. To separate these two sources of optimization

failure, we can however rely on Proposition 2 and use a sequency of OPP statistics, as we

illustrate next.

5.2 Testing the optimality of the reaction function

We now illustrate Proposition 2 by showing how {δ∗t }, a sequence of OPP statistics, can

be used to test the optimality of the policy rule g0. Specifically, under H0: g0 = gopt, the

moment condition Et (δ∗t |Ft) = 0 of Proposition 2 can be tested by studying the effect of the

variables in the reaction function, in this case inflation, on the OPP statistic.

Since the reaction function is linear we can do so using the second stage model

δ∗t = bπ0
t + ηt ,

where b captures the effect of inflation on the OPP and ηt is the error term. Since δ∗t and π0
t

are simultaneously determined, the coefficient b needs to be identified using an instrumental

variable approach.18 In the New Keynesian model the cost-push shock est provides a valid

instrument as equation (18) implies that est only affects δ∗t via π0
t .

Using this instrument the coefficient b is identified by

b =
E(estδ

∗
t )

E(estπ
0
t )
. (19)

Under H0 : g0 = gopt we have that γ0 = 0 and the expression for δ∗t in equation (18), implies

that E(estδ
∗
t ) = 0 and hence b = 0. In contrast, under the alternative H1 : g0 6= gopt we have

that γ0 6= 0 and we can derive b = −γ0φπω 6= 0.

In practice, a sequence of δ∗t ’s is required to replace the expectations in (19) by their

sample averages. The resulting estimate then allows to separate whether the optimization

failures come from γ0 —a non-optimal policy rule— or from {ε0t} —a sequence of discre-

tionary policy failures—. Intuitively, it is only when the reaction function is non-optimal

(γ0 6= 0) that inflation has a systematic (i.e., predictable) effect on the OPP. In contrast,

when the reaction function is optimal, (18) implies δ∗t ∝ ε0t , and the OPP statistic resembles

a monetary shock such that E(estε
0
t ) = 0 and thus b = 0.

18To clarify, if the researcher could observe πt right before the policy choice, there would be no simultaneity
problem. In practice, however we only observe the equilibrium outcomes, hence the simultaneity issue arises.

21



6 Testing macro-economic policy: OPP inference

In this section we discuss inference for the OPP, for generality we focus on the subset OPP

statistic that was discussed in section 4.3. In this setting the researcher aims to test whether

a Ka× 1 subset of the policy plan, e.g. pa,t = Sapt, was optimally set and the corresponding

subset OPP statistic was given by

δ∗a,t = −(R0′

aWR0
a)
−1R0′

aWEtY 0
t .

whose properties are summarized in Proposition 3. Note that this statistic includes as a

special case the OPP statistic which is obtain by choosing Sa = IK , such that pa,t = pt.

The computation of the subset OPP requires two statistics: (i) the dynamic causal effects

R0
a, and (ii) the conditional expectations EtY 0

t . While the previous sections treated these

statistics as given, in practice (i) the researcher does not know the causal effects R0
a and (ii)

the optimal forecasts EtY 0
t cannot be computed by the policy maker.

Taking these constraints into consideration, we now develop an approach to “testing” the

optimality of macro policies.19 Specifically, the goal of our approach is to make statements

of the type “With X% confidence, we conclude that the policy choice p0
a,t is not optimal”,

with the confidence level X taking into account the uncertainty surrounding the estimates

of R0
a and EtY 0

t .

Specifically, the causal effects R0
a need to be estimated by the researcher and thus face

estimation uncertainty. Second, the policy makers’ forecasts can only approximate the con-

ditional expectation EtY 0
t .20 Because of these two sources of uncertainty — parameter and

model uncertainty—, the researcher could wrongly conclude that there was an optimization

failure.21 To guard against such a risk, we derive confidence bands around the OPP estimate.

These bands allow the researcher to state the level of confidence attached with a detection

of an optimization failure.

Based on estimates for δ∗a,t, we discuss how Proposition 2 can be implemented in practice

to detect systematic optimization failures. We discuss how endogeneity biases can be avoided,

and provide a detailed implementation guide for the class of linear reaction functions.

19The analogy with hypothesis testing is useful for conceptualizing, but formally incorrect as the OPP is
a function of the optimal forecast which is a random variable and not a parameter.

20The conditional expectations EtY 0
t can generally only be approximated for two reasons: (i) the model

that the policy maker used may be incorrectly specified, e.g. a case of function mis-specification and/or (ii)
the measure underlying Et may be incorrectly specified, e.g. a case of distribution mis-specification.

21We take a conservative approach here in the sense that we aim to guard against incorrect rejections of
optimality. Depending on the researcher’s taste or objective one could argue that incorrectly not-rejecting
optimality is also undesirable. However, similarly to hypothesis testing one cannot generally guard against
both types of errors.
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6.1 Inference for R0
a

In this section we discuss the estimation of the dynamic causal effects. We emphasize that

the material in this section is standard and we only include it to be explicit about the

necessary assumptions for estimating R0
a consistently and obtaining an asymptotically valid

approximation to its limiting distribution. This approximating distribution is then used to

construct confidence bounds around the OPP.

Overall the assumptions imposed are similar to those found in other treatment-effect

or sufficient statistic type approaches. Invariably they include a constant policy regime,

an identification assumption (e.g. existence of valid instruments in our case) and a set of

regularity conditions.

We assume that the researcher observes the sample {Y 0
s , p

0
a,s}ts=t0 , with sample size n =

t − t0 + 1, and aims to use this sample to estimate R0
a.

22 To estimate the relevant causal

effects we require that the economy was in a constant regime over the sampling period.

Assumption 2. (Constant regime)

For periods s = t0, . . . , t the economy can be described by

Y 0
s = R0

ap
0
a,s +R0

bp
0
b,s + f(y0

s , Xs; g
0) + Ξs︸ ︷︷ ︸

ζs[
p0
a,s

p0
b,s

]
︸ ︷︷ ︸

p0t

=

[
g0
a(y

0
s , Xs)

g0
b (y

0
s , Xs)

]
︸ ︷︷ ︸

g0(y0s ,Xs)

+

[
ε0a,s

εb,t

]
︸ ︷︷ ︸

ε0s

. (20)

To estimate R0
a based on model (20) two endogeneity problems must be handled. First,

there is a simultaneity problem as the reaction function g0(y0
s , X

p
s ) implies that p0

a,s is si-

multaneously determined with Y 0
s . Second, there is an omitted variable problem as the

researcher typically does not have access to f(y0
s , Xs; g

0) nor pb,t. Both problems imply that

the policy paths p0
a,s are correlated with the error term ζs. This implies that the researcher

cannot use ordinary least squares to consistently estimate R0
a.

To solve the endogeneity problem we rely on instrumental variables. Similar to Barnichon

and Mesters (2020) we note that the discretionary component ε0a,s is an exogenous compo-

nent of p0
a,s, which only affects Y 0

s via its influence on p0
a,s. This makes ε0a,s an attractive

instrumental variable. While the discretionary component is typically not observable, the

literature has produced a variety of proxies that can be used as instruments, see Ramey

(2016) and Stock and Watson (2018) for a detailed discussion. For instance, for monetary

policy the high frequency series of Gürkaynak, Sack and Swanson (2005) can be exploited

22We slightly abuse notation as formally not all elements of Ys are observable for s > t−H, these elements
are in practice omitted from the analysis.
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after adjusting them for a possible information effect, see Nakamura and Steinsson (2018)

and Miranda-Agrippino and Ricco (2019). Also, Ramey and Zubairy (2018) and Alesina,

Favero and Giavazzi (2019) provide potential instrument series for fiscal policy.

In general, we postulate that the researcher has access to a sequence of instruments {zs},
where zs has dimension L× 1, with L ≥ Ka, that correlate only with the policy choice p0

a,s.

Assumption 3. (Exogenous variation)

The instrumental variables zs satisfy

1. E(zsζs) = 0 for all s

2. 1
n

∑t
s=t0

E(zsp
0′
a,t) has uniformly full column rank

The first part of the assumption imposes that the instruments are exogenous whereas the

second part imposes that they are relevant, i.e. correlated with p0
a,s.

23

We use the instruments to define the following moment estimator for the KaM(H+1)×1

vector r0
a ≡ vec(R0

a).

r̂a,n = (Q′a,nD̂nQa,n)−1Q′a,nD̂nZ
′Y 0 and r̂a,n = vec(R̂a,n) , (21)

where Qa,n = Z ′P 0
a , P 0

a = (P 0′
a,t0
, . . . , P 0′

a,t)
′, with P 0

a,s = p0′
a,s ⊗ IM(H+1), Z = (Z ′t0 , . . . , Z

′
t)
′,

with Zs = z′s ⊗ IM(H+1) and Y 0 = (Y 0′
t0
, . . . , Y 0′

t )′. For the weighting matrix D̂n different

choices can be considered including D̂n = (n−1Z ′Z)−1 which leads to the two-stage least

squares estimator.

To give an example, suppose that Ka = 1 and M = 1, then ra,n corresponds to the

dynamic causal effect of the scalar policy p0
a,s on y1,s, . . . , y1,s+H . The estimator is then

equivalent to the commonly used LP-IV estimator discussed in Stock and Watson (2018)

which is based on the local projection framework of Jordà (2005). The difference is that

we simultaneously estimate all dynamic causal effects, because to conduct inference on the

OPP the confidence region around the entire estimate r̂a,n is required.24

With assumptions 2-3 in place and some standard regularity conditions listed in Appendix

A under assumption 5, we obtain a limiting distribution for r̂n as formalized in the following

propositions

23We restrict our exposition to the case of strong instruments (e.g. Assumption 3 part 2.). Such assumption
may be too strong for some applications. In such cases confidence regions for R0 should be constructed using
weak instrument robust methods, see Andrews, Stock and Sun (2019) for a comprehensive review.

24The estimate r̂a,n can also be referred to as the vector of impulse responses of a one-unit change in p0
a,s

on y1,s, . . . , y1,s+H . We use the terminology of dynamic causal effects as it generalizes more naturally to the
non-linear setting, see Appendix A for details.
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Proposition 4. Given assumptions 2-3 and regularity conditions 5 stated in Appendix A we

have that

Ω−1/2
a,n

√
n(r̂a,n − r0

a)
d→ N(0, I) and Ω̂a,n − Ωa,n

p→ 0 ,

where

Ω̂a,n ≡ (Q′a,nD̂nQa,n/n)−1Q′a,nD̂nV̂nD̂nQa,n(Q′a,nD̂nQa,n/n)−1

with V̂n any consistent estimate for the asymptotic variance Vn = Var(n−1/2
∑t

s=t0
Zsζs), e.g.

V̂n − Vn
p→ 0.

This asymptotic approximation r0 ∼ N(r̂n, Ω̂a,n) is used below to construct confidence

bounds around the subset OPP statistic which avoids that we reject optimality because of

estimation error in the causal effects.

Due to possible serial correlation in the error term we suggest to use a heteroskedasticity

and serial correlation robust estimator for V̂n. Several choices exists and we refer to the

recent review of Lazarus et al. (2018) for an overview.

In practice the following trade-off arises. To accommodate that the causal effects pertain

to a stable regime it is attractive to rely on a short sampling period to estimate R0
a. The un-

fortunate consequence is that generally the variance of the estimator (e.g. Ω̂a,n) will increase,

which as we show below, will imply that the researcher needs to be more conservative when

rejecting optimality. Therefore a careful assessment of the stability of the policy regime is

important.

6.2 Model misspecification uncertainty

Besides the estimation of the causal effects, the researcher must acknowledge that the pol-

icy maker will often not be able to provide the oracle forecasts EtY 0
t due to model mis-

specification. Instead, the policy maker typically provides a point forecast Ŷt|t which can

be regarded as an approximation to EtY 0
t . To avoid that we reject optimality using the

OPP because of such approximation error, we outline two methods for approximating the

distribution of EtY 0
t − Ŷt|t.

First, some policy makers, in addition to providing their point forecasts, provide an

associated distribution FY 0
t

that characterizes the uncertainty around the forecasts. A simple

solution is then to assume that this distribution corresponds to the distribution of EtY 0
t −Ŷt|t.

While this might seem like a strong assumption, recall that many policy makers spend a

lot of effort at assessing the risk around their baseline conditional forecasts. They often

experiment with different parameter settings and model specifications in order to asses the

effects of model uncertainty.25

25To give an example, note that most policy documents typically include an “Assessment of Forecast
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Alternatively, the researcher can construct its own approximation to the distribution

of EtY 0
t − Ŷt|t. The difficulty in practice is that historical misspecification errors {EsY 0

s −
Ŷs|s}ts=t0 are not observable, and we cannot exploit such sequence to predict the distribution

of EtY 0
t − Ŷt|t. Instead, we take a conservative approach and rely on the historical forecast

errors to construct upper-bounds for the confidence interval for EtY 0
t .

Specifically, we have

Yt − Ŷt|t︸ ︷︷ ︸
forecast error

= Yt − EtY 0
t︸ ︷︷ ︸

future error

+ EtY 0
t − Ŷt|t︸ ︷︷ ︸

misspecification error

.

First, we assume that the misspecification error EtY 0
t − Ŷt|t follows a normal distribution.26

Second, we upper bound the variance of EtY 0
t − Ŷt|t with the variance of the forecast errors,

which are observable.27

With these assumptions in place we approximate the distribution of EtY 0
t by

EtY 0
t − Ŷt|t ∼ N

(
0, Σ̂t|t

)
︸ ︷︷ ︸

F
Y 0
t

, (22)

where Σ̂t|t is an estimate for the mean squared forecast error Σt|t = Et(Yt − Ŷt|t)(Yt − Ŷt|t)′

that we obtain from the historical forecast errors

Σ̂t|t =
1

n

t∑
s=t0

(Ys − Ŷs|s)(Ys − Ŷs|s)′ . (23)

In specific applications there might be additional information available about historical mis-

specification errors. This would allow to further sharpen the approximation (22).

Regardless whether FY 0
t

is provided by the policy maker, or constructed by the researcher,

we exploit such distribution to construct confidence bounds around the OPP.

Uncertainty” section, see for instance the Fed Tealbook or the Bank of England fan-charts, where such
model uncertainty assessments are made.

26Since the true model is not known to the researcher, bootstrap methods, as in Wolf and Wunderli (2015),
cannot be adopted, and we must resort to the classical construction of the prediction interval (e.g. Scheffe,
1953), which is based on a normality assumption. Note also that, as argued in Wolf and Wunderli (2015),
asymptotic arguments cannot be used to justify the normal approximation. It is an assumption in our
setting.

27This requires the assumption that the covariance between the future error and the misspecification error
is zero.
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6.3 Confidence interval for the OPP

Having characterized approximating distributions for Ra and EtY 0
t we are able to construct

a confidence interval for the subset OPP, of which the full vector OPP is a special case.

In particular, we use the distributions for r̂a,n and EtY 0
t to approximate the distribution of

δ∗a,t = −(R0′
aWR0

a)
−1R0′

aWEtY 0
t . To do so we compute by simulation

{
δ

(j)
a,t , j = 1, . . . , B

}
, with δ

(j)
a,t = −

(
R(j)′
a WR(j)

a

)−1

R(j)′
a WY

(j)
t|t ,

r
(j)
a ∼ N

(
r̂a,n, Ω̂a,n

)
, Y

(j)
t|t ∼ Ŷt|t + U (j) , U (j) ∼ FY 0

t
,

(24)

where B is the number of independent draws from the approximating distributions. In our

empirical work we report the median and the upper and lower bounds of the simulated

distribution {δ(j)
a,t , j = 1, . . . , B}. Whenever the confidence bounds exclude zero we conclude

that either g0
a, ε

0
a,t, or both were not optimal.

6.4 A Brainard conservatism principle for the OPP

An interesting point is that, the mean of the distribution {δ(j)
a,t , j = 1, . . . , B}, say δ̂a,t, does

not correspond to δ̂∗a,t = (R̂0′
a,nWR̂a,n)−1R̂′a,nWŶt|t. The latter would be an intuitive plug-in

estimator, at least from a frequentist perspective. However, in finite sample the variance of

the causal effect estimates shows up in the inverse of the OPP.

In particular, we have

δ̂a,t = −(R̂′a,nWR̂a,n + Γ̂a,n)−1R̂′a,nWŶt|t (25)

where Γ̂a,n =
∑M(H+1)

i=1

∑M(H+1)
j=1 WiiWjjΩ̂a,n,(i,j), with Wii the ith diagonal element of W ,

and Ω̂a,n,(i,j) denotes the (i, j) block of Ω̂a,n that is of dimension K ×K.

Since the matrix Γ̂a,n is positive definite by construction, we get |δ̂a,t| < |δ̂∗a,t| implying

that with parameter uncertainty, the mean OPP estimate is smaller (in absolute value)

than the optimal policy perturbation without parameter uncertainty. In other words, the

adjustment Γ̂n can be thought of as capturing an attenuation bias coming from measurement

error in the dynamic causal effect estimates.

This result is analog to the seminal Brainard (1967) conservatism principle. Brainard’s

principle states that in the face of parameter uncertainty, a policy maker should be more

conservative in its use of the policy instruments and refrain from fulling minimizing the

loss function. A similar logic is at work in our context: a researcher that faces uncertainty

in its estimate of the effects of policy (uncertainty in the causal effects) needs to be more
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conservative – on average – when aiming to reject that the current policy choice is non-

optimal.

6.5 Inference for systematic failures

Next, we discuss the details for determining whether a systematic optimization failure oc-

curred over the sampling period s = t0, . . . , t. To do so, we rely on Proposition 3 which

states that if g0 ∈ Gopt we have that E(δ∗a,s|Fs) = 0.

To test E(δ∗a,s|Fs) = 0 we restrict the class of reaction functions G to be linear, which

covers the majority of reaction functions considered in the literature. To implement the test

we require estimates for a sequence of OPP statistics: δ∗s for s = t0, . . . , t. These estimates

can be computed from equation (25) for each period s. Based on these estimates we consider

δ̂a,s = Bws + ηs , s = t0, . . . , t , (26)

where δ̂a,s is the estimate for δ∗a,s given in (25), the dw × 1 vector ws includes a constant and

any subset of the variables y0
s and Xs that the researcher suspects to be overlooked, B is the

K×dw coefficient matrix and ηt is the error term. Note that in general the reaction function

can be arbitrarily complex and the researcher may not know, or have access to, all relevant

variables. Fortunately, this is not necessary as the optimality of the rule g0 is rejected if

B 6= 0, for any subset of variables ws. In other words, finding B 6= 0 implies that g0 /∈ Gopt

but the converse is not necessarily true. The error term ηs includes the estimation error of

the OPP statistic δ̂s − δ∗s and possibly other omitted variables.

The consistent estimation of B generally requires an identification strategy as even under

H0 : g0 ∈ Gopt and Assumption 1 we have that δ∗a,s = ε0a,s which is simultaneously determined

with y0
s . Hence, if y0

s is included in ws there exists a simultaneity problem as we illustrated

in our New Keynesian example above.

To solve the identification problem we suggest to use instrumental variables. Valid in-

struments in this context can be series of shocks or variables that are uncorrelated with

ηs and correlated with ws. In our New Keynesian example cost push shocks provided valid

instruments, but in general any variable or shock that is not simultaneously determined with

the discretionary adjustment can be used. We postulate that the researcher has access to a

sequence zδs with dimension Lδ ≥ dw and impose the following assumption.

Assumption 4. (Systematic inference)

1. G is a linear function class,28 with Gopt ⊂ G, and Assumption 1 holds for s = t0, . . . , t;

28That is G = {g : g(y, x) = a+By + Cx, a ∈ RK , B ∈ RK×M , C ∈ RK×dim(x)}.
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2. E(zδsηs) = 0 for all s and 1
n

∑t
s=t0

E(zδsw
′
s) has uniformly full column rank;

The first part of the assumption restricts the class of reaction functions to be linear,

imposes that at least one optimal reaction function lies within this class and ensures that

this reaction function is optimal over the sampling period. The second part imposes that

the instrumental variables zδt are exogenous and relevant.

We consider the following moment estimator for b = vec(B)

b̂a,n = (Qδ′

n D̂
δ
nQ

δ
n)−1Qδ′

n D̂
δ
nda (27)

where Qδ
n = Zδ′W , W = (W ′

t0
, . . . ,W ′

t)
′, with Ws = w′s ⊗ IK , Zδ = (Zδ′

t0
, . . . , Zδ′

t )′, with

Zδ
s = zδ

′
s ⊗ IK and da = (δ̂′a,t0 , . . . , δ̂

′
a,t)
′. For the weighting matrix D̂δ

n different choices can

be considered including again D̂δ
n = (n−1Zδ′Zδ)−1 which leads to the two-stage least squares

estimator.

Given Assumption 4 and a set of regularity conditions stated in Assumption 6 in Ap-

pendix A the following proposition formalizes the detection of systematic optimization fail-

ures using the OPP.

Proposition 5. Given model (26), Assumption 4 and regularity conditions 6 stated in Ap-

pendix A, we have that

if nb̂′a,nV̂ar(b̂a,n)−1b̂a,n > χ2
Kadw,1−α we reject H0 : g0 ∈ Gopt

with confidence level α. Here b̂a,n is defined in (27), χ2
Kadw,1−α is the 1− α critical value of

the χ2-distribution with Kadw degrees of freedom and

V̂ar(b̂a,n) ≡ (Qδ′

n D̂
δ
nQ

δ
n/n)−1Qδ′

n D̂nV̂
δ
n D̂

δ
nQ

δ
n(Qδ′

n D̂
δ
nQ

δ
n/n)−1 .

with V̂ δ
n any consistent estimate for the asymptotic variance V δ

n = Var(n−1/2
∑t

s=t0
Zδ
sηs),

e.g. V̂ δ
n − V δ

n

p→ 0.

The proposition formalizes the use of the Wald statistic for detecting optimization fail-

ures. In particular, if the Wald statistic nb̂′nV̂ar(b̂n)−1b̂n exceeds the critical value we can

reject the null hypothesis that the systematic reaction function g0 is optimal. In practice,

a researcher may also want to compute the t-statistics corresponding to the variables ws

to get a sense of which variables are determining the violation of the moment condition

E(δ∗a,s|Fs) = 0. To this extent, the Wald statistic of Proposition 5 merely formalizes such

inference.
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7 Illustration: Testing US monetary policy

In this section we illustrate how the OPP framework can be used to evaluate macroeconomic

policy choices in practice. In general, the OPP statistic can be used to answer three types

of questions:

1. Could the policy maker have lowered the loss function with a different policy choice at

time t, i.e., was there an optimization failure at time t?

2. What are the economic reasons for this optimization failure, i.e., what trade-offs were

overlooked when setting policy at a given point in time? For instance, did the policy

maker stabilize one mandate too much relative to another one? Or did the policy

maker put too much weight on stabilizing mandates in the short-run at the expense of

the long-run?

3. Are the optimization failures over the sampling period due to discretionary mistakes

or does it a point to a systematic failure, i.e., to a non-optimal reaction function? In

other words, over the past n periods, could the policy maker have achieved a better

outcome by using a different reaction function?

We aim to answer these questions for monetary policy decisions in the United States.

For answering the first two questions we concentrate on three case studies: the Fed funds

rate policies as 1990M6, as of 2008M4 on the eve of the Great Recession, and as of 2010M4

in the middle of the Great recession. Before describing these exercises, we first detail the

data series that we used, the policy instruments that we considered, and the specifics of the

causal effects estimation.

7.1 Implementation details

We evaluate the optimality of the Fed monetary policy with respect to the fed funds rate

instrument. As loss function we posit the usual dual inflation-unemployment mandate

Lt = Et ‖Πt‖2 + Et ‖Ut‖2 , (28)

where Πt = (πt−π∗, . . . , πt+H−π∗)′ the vector of inflation gaps and Ut = (ut−u∗t , . . . , ut+H−
u∗t+H)′ the vector of unemployment gaps. In line with the Fed’s “balanced approach” and

as assumed by the Board staff in the Tealbook, we put equal weight on stabilizing inflation

and unemployment (λ = 1) as in the optimal policy simulations of the Fed’s Tealbook. We

also take an horizon of H = 5 years and consider discount rates βh = 1 for all h.
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In our analysis we assume that the economy was in a stable regime over the 1990-2018

period and Assumption 2 applies. This is consistent with the widely held belief that, at least

since 1985, the US economy has evolved in a stable monetary regime (e.g., Clarida, Gaĺı and

Gertler, 2000).

The Fed has a wide range of tools at its disposal, the current fed funds rate, forward

guidance about the path of the fed funds rate, asset purchases (QE) and possibly others.

Following Eberly, Stock and Wright (2019) we consider two specific policy instruments: (i)

the current level of the fed funds rate, or fed funds rate policy for short, and we take pa,t = it|t

as the policy instrument that we aim to test, and (ii) the slope policy instrument, whereby

the Fed aims to affect the slope of the yield curve —the spread between the 10-year treasury

and the fed fund rate— through forward-guidance or asset purchases (QE), and we take

pa,t = it+10yr|t − it|t.
Similarly as in Eberly, Stock and Wright (2019) we consider these instruments separately

as the sampling periods over which they are used are different. In particular, the fed funds

rate policy is active over the entire 1990-2018 sampling period, with the exception of the zero

lower bound period. In contrast, slope policies, such as forward-guidance or asset purchases,

have only been considered after 2007.

Testing the optimality of pa,t requires estimates for R0
a, for which we rely on the instru-

mental variable methods outlined in Section 6.1. Following Kuttner (2001) and Eberly, Stock

and Wright (2019) we use as instruments the monetary policy surprises measured around the

FOMC announcements with a 30 minute window. First, we use surprises to the fed funds

rate —the difference between the expected fed funds rate (as implied by current-month fed-

eral funds futures contracts) and the actual fed funds rate— to identify the causal effects

changes in the current interest rate it|t. Second, we use surprises to the ten-year on-the-run

Treasury yield (orthogonalized with respect to surprises to the current fed funds rate) to

capture the effect of changes in the slope of the yield curve. We then use these surprises as

instrumental variables in equation (20) and compute the dynamic causal effects R̂a,n using

equation (21).

For the conditional forecasts Ŷt|t, we use the median FOMC forecast reported in the

Survey of Economic Projections (SEP).29 To capture the uncertainty around these point

forecasts, we use the Board staff assessment of forecast uncertainty, as reported in the Teal-

book.

Based on the dynamic causal effect estimates and the forecasts we compute the mean

29 Since 2006, SEP data include the median forecasts at a three-year ahead horizon. We complement these
forecasts with the median FOMC estimate of the long-run projections for inflation and unemployment. We
set the horizon for the long-run FOMC projections to equal 5 years. Since the SEP projections are annual,
we linearly interpolate them in order to project them on the estimated effects of the policy instruments
(available at a quarterly frequency).
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subset OPP statistics δ̂a,t as in equation (25) and construct confidence bands using equation

(24). We consider different choices for the subset OPP including (i) selecting only the short

rate δ̂i,t, (ii) selecting only the slope policy δ̂∆,t and (iii) the joint subset OPP that selects

both the short rate and the slope policy δ̂(i,∆),t. To illustrate the effects of uncertainty we

also report the corresponding naive OPP estimates δ̂∗a,t = (R̂0′
a,nWR̂a,n)−1R̂′a,nWŶt|t which

ignore the uncertainty in the causal effects estimates.

7.2 Fed funds rate policy as of June 1990

Narrative

In the first case study, we evaluate the fed funds rate policy as of June 1990. At the time,

the FOMC expected unemployment to run over its target, but it also expected inflation to

run over its target. The Fed was confronted with a classic inflation-unemployment trade-off:

while it would have liked to lower the fed funds rate to fight excess unemployment, it was

prevented to do so by the high and on-going inflation (Bluebook, June 2006). The question

for the OPP is thus whether the level of the fed funds rate optimally balanced this trade-off.

Computing the OPP

Figure 1 depicts graphically all the information needed to assess the optimality of the fed

funds rate at the time. The top-left panel reports the FOMC expected paths for inflation

conditional on the current policy choice, that is it reports EtΠ0
t . The bottom-left panel

reports the causal effects on inflation of a 1ppt innovation to the current fed funds rate. We

will refer to that causal effect as R̂0π
i . The right column reports the same information for

unemployment: EtU0
t and R̂0u

i .

For illustration purposes, in this first case study we omit confidence bands and treat the

causal effect estimates and forecasts as fixed. As shown in Table 1, absent uncertainty, the

OPP for the Fed funds rate policy is slightly negative at δ̂∗i,t = −0.21ppt.

A trade-off across mandates

To understand the reason for that small optimization failure, it is helpful to isolate the

contribution of each mandate —inflation or unemployment— to the dual mandate OPP δ̂∗i,t.

Specifically, to highlight how the policy maker must balance a trade-off across mandates, we

can re-write δ̂∗i,t as a weighted-average of the OPP for each mandate with

δ̂∗i,t = (1− ω)δ̂π∗i,t + ωδ̂u∗i,t (29)
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with δw∗i,t = −(R̂w′
i R̂w

i )−1R̂w′
i EtW 0

t the OPP for a single mandate —inflation (λ = 0) or

unemployment (λ =∞)— with Wt = (wt − w∗, . . . , wt+H − w∗)′ for w = π or u, and with

ω =
1

1 + κ̂2/λ
(30)

a scalar weight that depends on the ratio of society’s preference between the two mandates

(λ), and the central bank’s instrument “average” ability to transform unemployment into in-

flation κ̂ = ‖R̂π∗
i ‖/‖R̂u∗

i ‖.30 The single mandate OPP δ̂w∗i,t captures the optimal perturbation

needed to best stabilize only of the two mandates.

Expression (29) highlights how a non-zero OPP —an optimization failure— can come

from a failure to appropriately balance the two mandates, and the weight ω captures how a

policy maker should balance the two mandates. The weight depends on a policy instrument’s

ability to influence one mandate versus another (unemployment versus inflation) as well as

the policy maker’s preference for stabilizing one mandate versus another. In the case of the

fed funds rate, we get κ̂ ≈ .07, because the fed funds rate is much more effective at moving

unemployment than moving inflation. As a result, with λ = 1, we get ω ≈ .08 and the

dual-mandate OPP δ̂∗i,t is (ceteris paribus) tilted towards the stabilization of unemployment,

i.e., towards the OPP for unemployment δ̂u∗i,t .

Table 1 indicates that the central bank should run a more contractionary policy to lower

inflation (δ̂π∗i,t ≈ +1.2 > 0), but a more expansionary policy (δ̂u∗i,t ≈ −.3 < 0) to lower

unemployment. With ω = .08, these conflicting goals roughly balance each other out, and

the dual-mandate OPP is negative with δ∗i,t ≈ −0.2. That being said, taking estimation and

model uncertainty into account, Table 1 shows that the error band for δ̂i,t includes zero, and

we cannot discard that the fed funds rate was set optimally. We will discuss more explicitly

the effect of uncertainty in the next case study.

7.3 Fed funds rate policy as of April 2008

Narrative

In the second case study, we evaluate the fed fund rate policy as of April 2008, in the

early stage of the financial crisis: Lehman Brothers was still 6 months away from failing,

unemployment was only at 5 percent, and few anticipated the magnitude of the recession

that was going to ensue. In fact, the fed funds rate was still at 2.25ppt so the Fed still had

room to use conventional policies to stimulate activity.31 At that meeting, the fed funds rate

30Note that the same relation holds in our example based on a New-Keynesian model. In that case κ
reduces to the slope of the Phillips curve.

31 By the end of 2008 however, unemployment had reached 7.3 percent, and the Fed had dropped the fed
funds rate by almost 2ppt (to the zero lower bound) in the span of only three months (September-December)
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was lowered by .25ppt to 2 percent, and it remained at that level until October 2008, i.e.,

until the collapse of Lehman brothers.

As is clear from the April Tealbook and forecast narratives reported by the FOMC, the

central bank was facing two conflicting issues in April 2008: (i) a marked deterioration in

the growth outlook due declining housing prices and tensions in the financial market, and

(ii) upside risks to inflation coming from “persistent surprises to energy and commodity

prices” (Kohn, SEP report, April 2008). While the deterioration in credit conditions pushed

the central bank into easing monetary policy, the upside risk to inflation called for a more

prudent approach with no additional easing.

An interesting question in hindsight is thus whether the 2008-M4 decision was optimal.

In other words, should the Fed have done more and lowered its fed funds rate by more given

the FOMC forecasts of the time and given the uncertainty attached to its forecasts?32

Computing the OPP

Figure 2 has the same structure as Figure 1 except that we now report the 68 percent

confidence intervals for the impulse response estimates, as well as the 68 percent confidence

interval capturing the model uncertainty surrounding the Fed’s forecast, as judged by the

Board staff in the April 2008 Greenbook.

The two issues of the time —poor economic outlook and inflationary pressures from high

energy prices— are visible in the FOMC forecasts in the first row of Figure 2. While this

could suggest the existence of an inflation-unemployment trade-off as in June 1990, the OPP

shows that there was no inflation-unemployment trade-off at the time. Table 1 shows that

both OPPs are negative with δ̂u∗i,t ≈ −.7 and δ̂π∗i,t ≈ −.2, and absent uncertainty the dual-

mandate OPP calls for lowering the Fed funds rate by an additional 60 basis points, e.g.

δ̂∗i,t = −0.6, so a 50 basis points cut with rounding at the nearest quarter percentage point.

A trade-off across horizons

Before discussing the effect of uncertainty on this conclusion,we briefly mention the reason

for having a negative value for δ̂π∗i,t . Indeed, δ̂π∗i,t < 0 calls for a lower fed funds rate to stabilize

inflation. This may seem surprising, since the FOMC was expecting a positive inflation gap

in the near term, which would seem to call for a higher interest rate, not a lower one.

The reason for this result is that the Fed must also balance a trade-off across horizons.

In particular, Figure 2 shows that the fed funds rate policy has a very delayed effect of

following the failure of Lehman Brothers in September 2008.
32 Following a more aggressive policy was a real possibility at the time. The three alternative monetary

strategies prepared by the Board staff for the April Bluebook —the three strategies ultimately discussed by
the FOMC— comprised a no-change option, a 25bp cut (ultimately chosen by the FOMC) and a 50bp cut.
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inflation —the well-known transmission lag of monetary policy—. As a result, the OPP for

inflation is determined by the longer-term developments in inflation, and not by the short-

term positive inflation gap.33 The main difference compared to June 1990 is that in April

2008, the positive inflation gap was expected to be much more transitory and even to turn

negative after three years. As a result, in contrast to June 1990, we get δπ∗i,t ' −0.2 < 0: the

fed funds rate should be lowered to undo that 2011 negative inflation gap.

Inference about an optimization failure

The discussion so far has ignored estimation and model uncertainty. Taking estimation

uncertainty into account, Table 1 shows that the OPP mean estimate drops from δ̂∗i,t = −0.6

to about δ̂i,t = −0.4. This is due to the Brainard attenuation bias discussed in section 6.4,

implying that with estimation uncertainty the researcher must be more conservative when

aiming to reject optimality.

Table 1 also reports the 68% error bands as computed based on equation (24). We find

that the error bands include zero. In other words, there is a more than 32 percent chance

that the chosen policy i0t|t actually balances the true conditional expectations for inflation

and unemployment, even though the FOMC point forecasts suggest otherwise. In words,

uncertainty is too large, and we cannot discard optimality despite the expected increase

in unemployment: the expected increase in unemployment was not strong enough and too

uncertain to justify a more aggressive monetary stimulus.

7.4 Slope (QE) policy as of April 2010

It is interesting to contrast the 2008-M4 situation with that of two years later; in 2010-M4.

There, the Fed funds rate was stuck at zero but the Fed could have use its slope instrument

∆it+10yr|t to stabilize the economy.

Figure 3 displays the situation in 2010-M4 where the bottom panels show the causal

effects of inflation and unemployment to a 1ppt increase in the slope of the yield curve. In

Table 1 we find that the mean estimate of the slope OPP is given by δ̂∆,t = −0.92. This

time, the deviations from targets are so large that we can clearly discard optimality at the

68 percent confidence level.34

Unlike in June 1990, there is no trade-off between inflation and unemployment: the

expected path of the inflation gap is flat around zero, the OPP is driven almost exclusively

33This precisely captures a common wisdom of central banking: central banks should “look through”
transitory inflationary episodes.

34A few caveats to this conclusion: (i) our approach does not highlight which specific policies would have
been able to induce such shift in the slope, and (ii) the exercise for the slope instrument is done with the
benefit of hindsight, since our evidence on the effect of the slope instrument comes precisely from that time
period.
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by the large expected gap in unemployment (δ̂u∗∆,t = −1.81).

7.5 Testing the Fed reaction function

In this last section, we study the systematic component of the Fed’s policy and explore

whether the Fed’s reaction function is optimal, under the assumption of a constant policy

regime over 1990-2018.

Our test is based on Proposition 2, or more specifically its subset counterpart Proposition

3, that is we will look whether some information available at time t causes systematic move-

ments in the OPP. Inspired by the empirical success of the basic Taylor rule specification for

the fed funds rate (Taylor, 1993), whereby the contemporaneous rate is set according to a

linear function of inflation and unemployment g0(πt, ut) = φ0
ππt + φ0

uut, we will test whether

inflation or unemployment have a non-negative effect on the OPP statistic.35

Specifically, using either one of our two OPP sequences —the OPP for the fed funds rate

and the OPP for slope policy—, we estimate the regression

δ̂x,s = c+ bππ
0
s + buu

0
s + ηs , x = i,∆ , s = t0, . . . , t ,

where non-zero coefficients for c, bπ or bu indicate a non-optimal reaction function. As

instrumental variables, we use lagged values of the right-hand side variables as instruments.

Table 2 presents the results, and the bottom row presents the Wald test of joint signif-

icance, as described in Proposition 5. While inflation has no clear effect on either OPP,

unemployment does have a statistically significant effect on the OPP, regardless of whether

we use the OPP for the current fed funds rate or the OPP for the slope policy. In other

words, we can reject the null that the Fed has been using an optimal reaction for the fed

funds rate or for its slope instrument. This indicates that a more systematic reaction to

the unemployment gap would have been more appropriate to achieve the policy maker’s

objectives.

8 Summary and future research

In this paper we focused on detecting optimization failures for given macroeconomic pol-

icy decisions. We now summarize the framework and provide several directions for future

research.

35Recall that to reject the optimality of the policy maker’s reaction function, Propositions 2 and 3 states
that we only need one time-t variable that causes movements in the OPP δ∗t . Thus, considering a simpler
Taylor rule is not restrictive.
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Summary

The starting point was given by a known loss function and a generic model:

Lt = Et‖W1/2Yt‖2 where Yt = R(g)pt + f(yt, Xt; g) + Ξt .

The policy maker aimed to minimize Lt using the reaction function g0 and possible discre-

tionary adjustments ε0t which implied the proposed policy plan p0
t = g0(yt, Xt) + ε0t . To test

whether these choices were optimal we relied on the OPP statistic

δ∗t = −(R0′WR0)−1R0′WEtY 0
t ,

which depends on the dynamic causal effectsR0, the forecasts EtY 0
t and the weighting matrix

W . We showed that if δ∗t 6= 0 there was an optimization failure and if Et(δ∗t |Ft) 6= 0 there

was a systematic optimization failure. To empirically evaluate these conditions we estimated

the causal effects R0 using instrumental variables and approximated the distribution of the

mis-specification in the forecasts Ŷt|t − EtY 0
t . This allowed to determine the distribution of

δ∗t and determine whether δ∗t = 0 and/or Et(δ∗t |Ft) = 0. The latter moment condition was

evaluated using a second stage IV regression.

The key benefit of the OPP approach is that it does not require knowledge of any specific

underlying model as it only requires conditional forecasts, which policy makers routinely

provide, as well as estimates of the causal effects of the policy instruments, i.e., consistent

estimates of R. This is attractive in practical situations, where there is no universally agreed

upon underlying model and where policy makers routinely use instincts and judgment calls

to make their policy decisions. By constructing confidence bounds around the OPP the

detection approach is robust to parameter uncertainty and model mis-specification. This

allows to assign a level of confidence attached to a rejection of optimality.

A key requirement for the OPP approach is that the causal effects R need to be es-

timable. This requires: (i) a stable policy regime (for some period), (ii) some identification

strategy (e.g. instrumental variables) and (iii) some regularity conditions. In certain sce-

narios satisfying these assumptions may not be possible, for instance if the policy has never

been implemented or if the policy regime has recently changed.

Future research

There are several ways in which the OPP approach can be improved. First, improvements

in the quality of forecasts and causal effect estimates directly improve the ability to detect

optimization failures by shrinking the confidence bands of the OPP. Policy makers should

provide an explicit and correct quantitative assessment of the model uncertainty around
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the forecasts. Currently, not all policy makers provide a rigorous assessment of the model

uncertainty attached to their forecasts. For instance, while the Bank of England which

reports fan charts around its central forecasts, the Fed only provides a qualitative assessment

of the risks around its forecasts. In the context of fiscal policy, governments often only publish

their point forecasts. However, our OPP framework shows that model mis-specification

measurements are crucial inputs into the assessment of policy choices, and thus crucial

inputs into the decision making process. Similarly, more accurate estimates of the causal

effects, possibly allowing for time-variation or state dependence could improve the detection

of optimization failures.

Second, the assumptions that we imposed could be relaxed. For instance, in the Appendix

we outline how the linearity assumption (with respect to pt) could be relaxed. This requires

more advanced estimation methods for the dynamic causal effects, but the general approach

of the OPP is shown to hold in the presence of non-linearities. Further, the instrumental

variable based identification approach could be replaced by any other identification strategy

that the researcher deems appropriate.

Third, the monetary policy setting considered in this paper is only one of the potential

applications for the OPP approach. For instance, in the context of fiscal policy, a number of

rules are being used to prevent excessive deficit, such as the European “Stability and Growth

Pact” that limits budget deficits in EU member countries to 3 percent of GDP. These rules

are rigid and do not take into account other important objectives of policy makers, such as

avoiding large drops in GDP and excessive unemployment.36 The OPP could be used in this

context to modernize the deficit rule with a “forecast deficit targeting” approach to fiscal

discipline, in the same way that forecast inflation targeting replaced strict monetary growth

targets.37 The OPP then provides a quantitative criterion to formalize how a policy maker

should balance the debt burden with growth and unemployment considerations.

There are many other possible applications of the OPP, for instance a government with a

double objective of high trend GDP growth and low income inequality, a government inter-

ested in exchange rate management, or a low/middle income country interested in foreign-

exchange reserve management.38

36In practice such trade-offs are central to policy makers, as reflected by the number of EU countries,
which chose to violate the rule during the 2007-2009 crisis.

37To some extent, a “forecast deficit targeting” approach is already followed by the EU commission, as
countries have to justify how they expect to bring the deficit back under the 3 percent ceiling. However, there
is no objective criterion defining the “appropriate” pace of corrective measures, similarly to the imprecision
of the “looking good” criterion in the context of forecast inflation targeting.

38The optimal level of foreign-exchange reserve is an important area of research for both developing
and low-income economies. The 3-months of import rule advocated by the IMF has no strong theoretical
justification and it does take into account time and country specificities (e.g., Jeanne and Ranciere, 2011;
Barnichon, 2009).
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Figure 1: Fed funds rate policy in June 1990
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Notes: Top panel: median FOMC forecasts for the inflation and unemployment gaps as of 1990-M6. Bottom
panel: impulse responses of the inflation and unemployment gaps to a fed funds rate shock. In red (blue) is
the OPP δ∗π (δ∗u) for a strict inflation (unemployment) targeter.
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Figure 2: Fed funds rate policy in April 2008
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Notes: Top panel: Median SEP forecasts for the inflation and unemployment gaps as of 2008-M4 (in red
and blue) along with the 68 percent confidence bands. Bottom panel: impulse responses of the inflation and
unemployment gaps to a fed funds rate shock with the 95 percent confidence intervals.
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Figure 3: Slope policy in April 2010
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Notes: Top panel: Median SEP forecasts for the inflation and unemployment gaps as of 2010-M4 (in red
and blue) along with the 68 percent confidence bands uncertainty. Bottom panel: impulse responses of the
inflation and unemployment gaps to a slope policy shock with the 95 percent confidence intervals.
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Figure 4: A sequence of OPP for Fed monetary policy (1990-2018)
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Notes: Top panels: the fed funds rate (“FFR”, left-panel) and the difference between the 10-year bond yield
and the fed funds rate (“slope”, right panel). Grey bars denote NBER recessions. Bottom panels: OPP for
the fed funds rate at time t (left-panel) and OPP for the slope instrument at time t (right-panel). The grey
area captures both impulse response and mis-specification uncertainty: OPP values outside the shaded-areas
can be excluded with a 68 percent probability.
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Table 1: OPP estimates for case studies

OPP: current FFR 1990M6 2008M4 OPP: slope policy 2010M4

δ̂i,t -0.13 -0.39 δ̂∆,t -0.92
[-.30,.54] [-.79,.13] [-1.50,-.37]

δ̂∗i,t -0.2 -0.6 δ̂∗∆,t -1.6

δ̂π∗i,t 1.2 -0.2 δ̂π∗∆,t -0.0

δ̂u∗i,t -0.3 -0.7 δ̂u∗∆,t -1.8

Notes: δ̂i,t and δ̂∆,t denote the mean estimates for the dual-mandate OPP (λ = 1) for the short rate policy

and the slope policy, respectively. In brackets, the 68 percent confidence interval from estimation uncertainty

and model mis-specification uncertainty. Further, δ̂∗i,t and δ̂∗∆,t denotes the naive plug-in OPP estimates for

the short rate and slope policies that ignore uncertainty. Similarly, δ̂π∗s,t and δ̂u∗t denote the naive OPPs for

a strict inflation targeter (λ = 0) and a strict unemployment targeter (λ =∞), for s = i,∆.

Table 2: Testing the optimality of the Fed reaction function

OPP Current FFR Slope policy
OLS IV OLS IV

c −.06 .01 −.00 −.02
[.03] [.10] [.05] [.05]

bπ −.07 .02 −.06 −.09
[.08] [.10] [.03] [.03]

bu −.31 −.28 −.33 −.33
[.02] [.02] [.02] [.02]

Wald test (p-val. joint sig.) [< .01] [< .01] [< .01] [< .01]

Sample 1990-2006 1990-2006 2007-2018 2007-2018

Note: As instrumental variables for the IV regressions, we use two lags of inflation and unemployment.
Newey-West standard-errors are reported in brackets.
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Appendix A: Regularity conditions

To derive the limiting distribution of our estimate forR0, stacked in the vector r̂n, we require

a set of regularity conditions – defined in terms of dependence and moment assumptions –

that ensure the applicability of a law of large numbers and a central limit theorem.

In particular, for Propositions 4 and 5 we posit the following standard regularity condi-

tions that allow for heterogeneity and weak dependence, see White (2000), Theorem 5.23,

for more discussion.

Assumption 5. (Regularity conditions for Proposition 4)

The following assumptions hold

1. {(z′s, p0′
s , ζ

′
s)} is an α-mixing sequence with mixing coefficients of size −a/(a − 2), for

a > 2;

2. E|zi,sζj,s|a < ∆ <∞ and E|zi,sp0
j,s|(a/2)+ρ < ∆ <∞ for all i, j, s and some ρ > 0;

3. Vn = Var(n−1/2
∑t

s=t0
Zsζs) is uniformly positive definite and there exists V̂n, symmet-

ric and positive definite, such that V̂n − Vn
p→ 0;

4. D̂n −Dn
p→ 0 where Dn = O(1) and is symmetric and uniformly positive definite.

Assumption 6. (Regularity conditions for Proposition 5)

We assume that

1. {(zδ′s , w′s, η′s)} is an α-mixing sequence with mixing coefficients of size −aδ/(aδ−2), for

aδ > 2;

2. E|zδi,sηj,s|rδ < ∆δ <∞ and E|zδi,swj,s|rδ/2+ρδ < ∆δ <∞ for all i, j, s and some ρδ > 0;

3. V δ
n = Var(n−1/2

∑t
s=t0

Zδ
sηs) is uniformly positive definite and there exists V̂ δ

n , sym-

metric and positive definite, such that V̂ δ
n − V δ

n

p→ 0;

4. D̂δ
n −Dδ

n

p→ 0 where Dδ
n = O(1) and is symmetric and uniformly positive definite.

Appendix B: Relaxing linearity

For some applications assuming a linear relationship between Yt and pt may be too strong. In

this appendix we show that it is quite easy to relax this assumption and obtain a generalized

OPP statistic that remains able to detect optimization failures. However, inference for

such statistic requires estimating the dynamic causal effects of interest using non-parametric

instrumental variable methods, which is more data demanding and has therefore not been

adopted often in macroeconomics. Nevertheless the methodology exists (e.g. Su and Ullah,

2008) and can be adopted for our purposes.
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Generalized OPP

To derive the generalized OPP (GOPP) statistic for nonlinear models we consider a more

general description of the economy:

Yt = f(pt, yt, Xt; g) + Ξt , pt = g(yt, Xt) + εt , (31)

where f(pt, yt, Xt; g) now specifies a general nonlinear mapping between the policy instru-

ments pt and Yt. The policy maker again aims to minimize the loss function Lt = Et‖W1/2Yt‖2

and his proposed solution is given by g0 and ε0t . We define

R0
t ≡

∂f(pt + δt, y
0
t , Xt; g

0)

∂δ′t

∣∣∣∣
δt=0

. (32)

It is easy to see that under model (3) we have that R0
t = R0. The GOPP is given by

δg∗t = −(R0′

t WR0
t )
−1R0′

t WEtY 0
t ,

where EtY 0
t = Et(f(p0

t , y
0
t , Xt; g

0) + Ξt). The GOPP reduces to the OPP under the partially

linear model (3). As we show below, this generalized OPP has retains the ability of the OPP

to detect optimization failures, but adjusting p0
t by δg∗t does generally not lead to the optimal

attainable policy anymore, i.e. part 2 of Proposition 1 does not hold anymore. Additionally,

estimating R0
t is considerably more difficult when compared to R0. To see this, just recall

that typically f is unknown and may depend on the – potentially high dimensional – vector

of state variables Xt. Estimating the derivative is difficult in such settings and certainly

requires further assumptions on f and the dimension of Xt.

We first discuss the theoretical properties of the generalized OPP after which we outline

possible strategies for estimating the derivative function R0
t .

Properties of the generalized OPP

In this section we formalize the properties of the generalized OPP δg∗t . In particular, we give

the (increasingly stronger) conditions under which the GOPP can be used to: (i) reject that

the policy choice p0
t is optimal, (ii) bring p0

t closer to the optimal policy and (iii) make policy

optimal given the reaction function g0 as the baseline OPP does.

(i) Discarding optimality

In order to use the GOPP to discard that p0
t is optimal, we essentially only require that

the underlying model is well defined and that it is continuously differentiable with respect

to the policy choice. Formally, we make the following assumption.
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Assumption 7. Let yt ∈ Y and Xt ∈ X be random vectors and let D be an open convex

subset of RK. We assume that

1. the function Rt(pt, yt, Xt; g) ≡ ∂f(pt, yt, Xt; g)/∂pt exists for all yt ∈ Y, Xt ∈ X ,

pt ∈ D and g ∈ G, and rank(R0
t ) = K

2. there exists a non-empty set Gopt such that

Et‖W1/2Yt(g, 0)‖2 ≤ Et‖W1/2Yt(g̃, ε̃t)‖2, ∀ g ∈ Gopt, g̃ ∈ G\Gopt, ε̃t 6= 0 ,

where Yt(g, εt) = f(pt, yt, Xt; g) + Ξt and pt = g(yt, Xt) + εt.

Part 1 of this assumption imposes that the derivative function Rt exists and has full

column rank at p0
t . Part 2 is equivalent to Assumption 1 in the main text, and imposes

the existence of a well defined optimum. Note that the GOPP formula (32) involves R0
t =

Rt(p
0
t , y

0
t , Xt; g

0), as the GOPP is computed using the derivatives evaluated at p0
t . The

following proposition formalizes the notion of discarding optimality using the GOPP.

Proposition 6. Given model (31) and Assumption 7, we have that δg∗t 6= 0 implies g0 /∈ Gopt

and/or ε0t 6= 0.

The proposition implies that if δg∗t is not equal to zero there exists an optimization failure,

either due to the systematic part g0, the discretionary part ε0t , or both. The proposition shows

that the GOPP has the same ability to detect optimization failures as the OPP but now for

nonlinear models. Perhaps surprisingly this result requires virtually no conditions on the

functional form of f .

(ii) Improving policy

Part 2 of proposition 1 does not carry over to the generalized OPP statistic. In particular,

we require additional conditions under which the perturbation δg∗t can bring p0
t closer to

the constrained optimal choice p∗t = arg minpt∈D ‖f(pt, yt, Xt; g
0) + Ξt‖2. Recall that p∗t is

the minimal loss the policy maker can attain given the reaction function g0. We make the

following additional assumption.

Assumption 8. We assume that

1. µmin > 0, where µmin is the smallest eigenvalue of Rt(p
∗
t , yt, Xt; g

0)′WRt(p
∗
t , yt, Xt; g

0)

uniformly over yt ∈ Y and Xt ∈ X

2. ‖(Rt(pt, ytXt; g
0) − Rt(p

∗
t , yt, Xt; g

0))′WEt[f(p∗t , yt, Xt; g
0) + Ξt]‖ ≤ c‖pt − p∗t‖, with

constant c < µmin for all (pt, yt, Xt) ∈ D × Y × X .
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3. Rt is Lipschitz continuous with respect to pt on D with parameter γ.

The first part of the assumption assumes that the effects of the different policy instru-

ments are not linearly dependent. The second part ensures that the loss function is not too

nonlinear in the neighborhood of p∗t and the third part imposes a smoothness condition on

the causal effects.

The assumption allows us the formalize the following notion of a policy improvement.

Proposition 7. Given Assumptions 7 and 8 we have there exists e > 0 such that for all

p0
t ∈ N (p∗t , e) we have39

‖p0
t + δg∗t − p∗t‖ ≤ ‖p0

t − p∗t‖

where p∗t = arg minpt∈D ‖f(pt, yt, Xt; g
0) + Ξt‖2.

The proposition states that, if the policy choice of the policy maker is in the neighborhood

N (p∗t , e) of the optimal policy, the OPP will bring p0
t closer to the optimum. Importantly, as

we show in the proof of the proposition, the “size” e of the neighborhood N (p∗t , e) depends

on the degree of non-linearity in the effects of policy. The more non-linear the effect of

policy —the more non-linear the function Rt—, the smaller the neighborhood has to be.40

Proposition 7 is weaker then part 2 of Proposition 2, which states that under linearity the

OPP adjustment brings the given policy choice p0
t directly to p∗t . Proposition 7 show that

for nonlinear models the GOPP can only bring the policy choice closer to the constrained

minimum p∗t .

While the Assumption 7 imposed virtually no restrictions on the functional form of

Rt(pt, yt, Xt; g
0), Assumption 8 restricts the effect of pt on Rt. These types of smoothness

conditions are typically required for the non-parametric estimation of R0
t . In general, as the

GOPP only depends on first order derivatives, getting closer to the optimal policy given g0

is the best one can do with the GOPP.

(iii) Getting to the optimal policy

Finally, we impose the more stringent condition under which the GOPP brings us directly

to the constrained optimal policy choice p∗t . This happens when policy has a linear effect

on the targets, as in model 3, but with the added generality that we also allow for state

dependence in that Rt can vary with Xt. For instance, the effect of a policy instrument

could depends on the level of some macro variable (e.g., the unemployment rate Auerbach

and Gorodnichenko, 2012, in the case of fiscal policy).

To facilitate a comparison with assumptions 7 and 8 we impose

39The neighborhood N (p∗t , e) is defined in the usual way: N (p∗t , e) = {pt ∈ D : ‖pt − p∗t ‖ < e}.
40Note that for any specific model f the neighborhood can be determined exactly.
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Assumption 9. Rt is independent of pt.

When compared to assumptions 7 and 8 assumption 9 rules out any dependence of the

derivatives on the policy choice. Given this assumption we obtain the following result.

Proposition 8. Given Assumptions 7 and 9, we have p0
t + δg∗t = p∗t .

This proposition is the same as stated in Proposition 1 part 2, it implies that under a

linearity assumption the GOPP, can be used to determine the distance to the constrained

optimal policy p∗t . In this case the policy problem is strictly convex in pt and there exists a

unique minimizer p∗t which can be reached in one-step regardless of the starting point p0
t .

Inference for the generalized OPP

The previous part showed that it was relatively easy to define a generalized OPP statistic

that retained the ability to detect optimization failures. Notably proposition 6 provided a

strong result that illustrates the ability of the GOPP statistic to detect optimization failures.

In this section we discuss how inference can proceed for the generalized OPP statistic. To

estimate the derivative function Rt with minimal assumptions non-parametric IV methods

need to be used.41 In particular, applicable methods are described in Newey, Powell and Vella

(1999) and more recently in Su and Ullah (2008). We omit the details, but we stress that

invariably these methods require (i) a stable policy regime (similar to Assumption 2), (ii)

exogenous variation in the form of instrumental variables (similar to Assumption 3) and (iii)

a variety of regularity conditions (similar to Assumption ??). Importantly, the regularity

conditions will include further smoothness assumptions on f , implying that in order to

conduct inference using the GOPP statistic requires more assumptions on the model, e.g.

besides Assumption 7. should we be more specific on the smoothness conditions, or just not

say anything. Right now this last sentence is a bit cryptic.

Apart from the estimation of the derivative function Rt inference for the GOPP proceeds

exactly the same as discussed in Section 6.

Appendix C: OPP with given constraints

In this appendix we show that the OPP approach can be easily adjusted to take into account

constraints on the policy choices. Such constraints could arise for instance from a priori

commitments dating from before time t. For instance, in the context of forward guidance,

a monetary policy maker could have promised interest rates that will be “lower for longer”,

as the Fed did in December 2012 (e.g., Clarida et al., 2020).

41If the parametric form of f is known nonlinear GMM methods can typically be adopted to estimate Rt.

52



For illustrative purposes we postulate that the constraints can be formulated in terms of

the linear system

Cpt = c , (33)

where C is a known #r×K matrix with full row rank and c is a known #r× 1 vector. We

assume that the policy choice of the policy maker p0
t = g0(yt, Xt)+ε0t satisfies the constraints.

The constrained class of optimal policy choices is defined, similarly as in Assumption 1.

Assumption 10. Existence of constrained optimum

There exists a non-empty set Gcopt such that

Et‖W1/2Yt(g, 0)‖2 ≤ Et‖W1/2Yt(g̃, ε̃t)‖2, ∀ g ∈ Gopt, g̃ ∈ G\Gcopt, ε̃t 6= 0 ,

such that Cpt = c and Cp̃t = c, for pt = g(yt, Xt) and p̃t = g̃(yt, Xt) + ε̃t, where Yt(g, εt) =

R(g)pt + f(yt, Xt; g) + Ξt.

The assumption defines a constrained class of reaction functions Gcopt that minimize the

loss function. Again, this class can contain multiple rules.

In this setting, the standard OPP approach needs to account for the restrictions. In

particular, we now perturb the policy maker’s problem taking into account the constraints

and consider

min
δt

Et‖W1/2Ỹt‖2 s.t. C(p0
t + δt) = c where Ỹt = R0(p0

t + δt) + f(yt, Xt; g
0) + Ξt .

This problem can be easily solved using the Lagrange function to give the constrained OPP

(COPP) δc∗t that is given by

δc∗t = δ∗t − (R0′WR0)−1C ′
(
C(R0′WR0)−1C ′

)−1

(Cδ∗t − c) , (34)

where δ∗t = (R0′WR0)−1R0′WEtY 0
t is the unrestricted OPP. The constrained OPP has the

same properties as the unconstrained OPP but now with respect to Assumption 10.

Proposition 9. Given an economy defined by equations (3) and (4), and policy constraints

(33), we have that under Assumption 10:

1. δc∗t 6= 0 implies that g0 /∈ Gcopt and/or ε0t 6= 0 ;

2. p0
t +δc∗t = pc∗t , where pc∗t = arg minpt∈R Et‖W1/2(R0pt+f(yt, Xt; g

0)+Ξt)‖2 s.t. Cpt = c

.

The proof is similar as for Proposition 1.
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We conclude that if the policy problem is constrained in a known way, the OPP approach

continues to apply. Going beyond linear restrictions works in exactly the same way, but the

OPP can then generally not be derived in closed form. However, the problem (34) subjected

to nonlinear or inequality constraints can still be solved numerically if the inputs R0 and

EtY 0
t are known or estimable.

Appendix D: The OPP in the New Keynesian model

In this appendix we revisit the illustrative New Keynesian model of Section 5. We show that

the OPP approach can be used in the same way to test a policy maker who considered the

loss function

L0 = E0

∞∑
t=0

βt(π2
t + λx2

t )

and aims to minimize this loss function with respect to the entire path p0 = (i0, i1, . . .)
′. The

equations that govern the economy are similar as before and restated for convenience

πt = βEtπt+1 + κxt + est ,

xt = Etxt+1 − 1
σ
(it − Etπt+1 − ret ) .

(35)

This setting is often referred to as the optimal monetary policy problem under commitment

(e.g. Gaĺı, 2015). We stress that the OPP test is applicable in this scenario if there are no

outstanding commitments from before time t = 0. If there are known commitments from

before time t = 0 these can be incorporated using the extension outlined in Appendix B.

Gaĺı (2015), page 106, shows that the loss minimizing solution is supported by a reaction

function of the form

it = ret − (1− δ)
(

1− σκ

λ

)
p̂t ,

where

δ ≡ 1−
√

1− 4βa2

2aβ
, a ≡ λ

λ(1 + β) + κ2
,

and p̂t ≡ pt − p−1 is the (log) deviation between the price level and an implicit target given

by the price level prevailing one period before the policy maker chooses its optimal plan.

Using the relationship xt = −κ
λ
p̂t this reaction function can be conveniently restated in

terms of the output gap as

it = gopt(ret , xt) = ret + (1− δ)
(
λ

κ
− σ

)
︸ ︷︷ ︸

γ

xt . (36)
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Based on equations (35) and (36), we start by showing that the elements of the OPP statistic

δ∗i,t for i = 0, 1, . . . are indeed zero under the optimal reaction function (36).

To define the (infinite) dimensional matrix of dynamic causal effects under gopt let Y0 =

(π0, x0, π1, x1, . . .)
′, p0 = (i0, i1, . . .),

A =

[
β + κσ−1

1+γσ−1
κ

1+γσ−1

σ−1

1+γσ−1
1

1+γσ−1

]
and B =

[
−κσ−1

−σ−1

]
.

Then we can denote the causal effects matrix by

R(gopt) ≡ ∂Y0

∂p′0
=


B AB A2B A3B . . . . . .

0 B AB A2B
. . . . . .

0 0 B AB
. . . . . .

...
. . . . . . . . . . . . . . .


The forecasts under gopt are given by

E0x0 = −κδ
λ
es0 , E0π0 = δes0 , E0xt = −κδ

t+1

λ
es0 , E0πt = (δt+1−δt)es0 , t > 0

The weighting matrix is given by

W = diag(W0,W1, . . .) Wt = diag(βt, λβt)

Now that we have defined all elements, we can verify that the OPP statistic is indeed zero un-

der the optimal reaction function. To do so, note that δ∗t = (R′(gopt)WR(gopt))−1R′(gopt)WE0Y0

is an infinite dimensional vector, where R′(gopt)WR(gopt) � 0. Hence, we study the gradient

term R′(gopt)WE0Y0 element wise to verify that the OPP is indeed zero. The first element

is given by

B′W0E0y0 = [−κσ−1,−σ−1]

[
1 0

0 λ

][
δ

−κδ
λ

]
es0

=

(
−κδσ−1 + σ−1λ

κδ

λ

)
es0 = 0
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The second element is given by

B′A′W0E0y0 +B′W1E0y1 = [−κσ−1,−σ−1]

[
β + κσ−1

1+γσ−1
σ−1

1+γσ−1

κ
1+γσ−1

1
1+γσ−1

][
1 0

0 λ

][
δ

−κδ
λ

]
es0

+ [−κσ−1,−σ−1]

[
β 0

0 βλ

][
δ2 − δ
−κδ2

λ

]
es0

=
(
−βδκσ−1 + βδκσ−1

)
es0 = 0

The third element is given by

B′A′A′W0E0y0 +B′A′W1E0y1 +B′W2E0y2 =

[−κσ−1,−σ−1]

[
β + κσ−1

1+γσ−1
σ−1

1+γσ−1

κ
1+γσ−1

1
1+γσ−1

][
β + κσ−1

1+γσ−1
σ−1

1+γσ−1

κ
1+γσ−1

1
1+γσ−1

][
1 0

0 λ

][
δ

−κδ
λ

]
es0+

[−κσ−1,−σ−1]

[
β + κσ−1

1+γσ−1
σ−1

1+γσ−1

κ
1+γσ−1

1
1+γσ−1

][
β 0

0 βλ

][
δ2 − δ
−κδ2

λ

]
es0+

[−κσ−1,−σ−1]

[
β2 0

0 β2λ

][
δ3 − δ2

−κδ3

λ

]
es0 =(

−κσ−1β2δ − κ2σ−2βδ

1 + γσ−1
− βκδσ−1

1 + γσ−1

)
es0

+

(
−κσ−1β2δ2 + κσ−1β2δ +

κ2σ−2βδ

1 + γσ−1
+

βκδσ−1

1 + γσ−1

)
es0

+ κσ−1β2δ2es0 = 0

The other elements follow similarly. Hence, we can verify that under the optimal rule the

elements of the OPP statistic δ∗t are equal to zero.

Next, we show that when we deviate from the optimal rule the OPP will become non-

zero. To keep the illustration analytically tractable we consider a policy maker who made

a discretionary mistake in time period t = 0. More elaborate deviations from optimality

can be more easily verified numerically using simulation methods. The proposed policy path

p0
t = (i00, i

0
1, . . .) is then given by

i00 = re0 + (1− δ)
(
λ

κ
− σ

)
x0 + ε00

with ε0t 6= 0 and for all t > 0 we have

i0t = ret + (1− δ)
(
λ

κ
− σ

)
xt
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In this scenario the dynamic causal effects remain the same, but the forecasts now become

E0x0 = −κδ
λ
es0 −

κ2δσ−1

λ(γσ−1 + 1)
ε00 E0π0 = δes0 −

(δκ− 1)σ−1

γσ−1 + 1
ε00

and for t > 0 we have recursively defined

E0xt = E0xt−1 E0πt = −λ
κ
E0xt +

λ

κ
E0xt−1

We again study the gradient term R′(gopt)WE0Y0 element wise. The first element becomes

B′W0E0y0 = [−κσ−1,−σ−1]

[
1 0

0 λ

][
δ

−κδ
λ

]
es0 + [−κσ−1,−σ−1]

[
1 0

0 λ

][
− (δκ−1)σ−1

γσ−1+1
κ2δσ−1

λ(γσ−1+1)

]
ε00

=

(
−κδσ−1 + σ−1λ

κδ

λ

)
es0 +

(
κ

(δκ− 1)σ−2

γσ−1 + 1
− κ2δσ−2

γσ−1 + 1

)
ε00 =

−κσ−2

γσ−1 + 1
ε00 6= 0

And hence since R′(gopt)WR(gopt) � 0, we have that δ∗0,t 6= 0 and the OPP thus detects the

optimization failure. The same can be verified for the other elements of δ∗t .

Appendix E: Proofs

Proof of Proposition 1. Part 1. Given that Lt is a strictly convex function of pt, a sufficient

condition for the optimality of p0
t is

∂Lt
∂pt

∣∣∣∣
pt=p0t

= 0

Using the definition of the loss function (6) we find

∂Lt
∂pt

∣∣∣∣
pt=p0t

= 2R0′WEtY 0
t = 0

Since, R0 has full column rank and the diagonal elements of W are non-zero, we have

(R0′WR0) � 0 and thus

R0′WEtY 0
t = 0 ⇒ δ∗t = (R0′WR0)−1R0′WEtY 0

t = 0 .

Since Assumption 1 imposes that Lt is minimized for any gopt ∈ Gopt and εt = 0, which

implies
∂Lt
∂pt

∣∣∣∣
pt=p

opt
t

= 0
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for popt
t = gopt(y0

t , Xt),
42 we have that δ∗t 6= 0 implies that p0

t 6= popt
t which can arise because

g0 /∈ Gopt and/or ε0t 6= 0.

Part 2. Let pt = p0
t + δt, and plug this in the gradient to get

∂Lt
∂pt

= 2R0′W(EtY 0
t +R0δt)

Setting the gradient to zero and solving for δt gives

δ∗t = −(R0′WR0)−1R0′WEtY 0
t ,

which implies that in order to minimize the loss function with respect to pt we must take

p∗t = p0
t + δ∗t .

Proof of Proposition 2. First, if δ∗t = 0 the claim is trivially true. Now let δ∗t 6= 0. Since,

under H0 : g0 ∈ Gopt, δ∗t 6= 0 can only be caused by ε0t 6= 0, we have that popt
t − p0

t = ε0t , and

thus by proposition 1 part 2., we have δ∗t = ε0t (as under H0, p∗t = popt
t ). Since, E(ε0t |Ft) = 0,

we have that E(δ∗t |Ft) = E(ε0t |Ft) = 0.

Proof of Proposition 4. The assumptions 2, 3 and ?? correspond exactly to assumptions

(i)-(v) in Theorem 5.23 of White (2000). Hence, the proof of White (2000) Theorem 5.23

applies.

Proof of Proposition 5. Model (26) and Assumption 4 parts 2-6 correspond to exactly to

assumptions (i)-(v) in Theorem 5.23 of White (2000). The Theorem implies that

V̂ar(b̂n)−1/2
√
n(b̂n − b)

d→ N(0, IKdw)

Now Assumption 4 part 1 implies that H0 : g0 ∈ Gopt we have that b = 0 and thus

nbnV̂ar(b̂n)−1bn
d→ χ2

Kdw

underH0. Hence, we rejectH0 : g0 ∈ Gopt for any level of confidence α when nbnV̂ar(b̂n)−1bn >

χ2
Kdw,1−α.

Proof of Proposition 6. By Assumption 7 part 1, the loss function Et‖f(pt, yt, Xt; g) + Ξt‖2

is continuously differentiable on D, thus by Lemma 4.3.1 in Dennis and Schnabel (1996) and

Assumption 7 part 2 the optimal policy popt
t = gopt(yt, Xt) for any gopt ∈ Gopt satisfies the

42To show this formally, suppose that ∂Lt

∂pt

∣∣∣
pt=p

opt
t

6= 0, then one could find ε∗t 6= 0 such that popt
t + ε∗t

satisfies ∂Lt

∂pt

∣∣∣
pt=p

opt
t +ε∗t

= 0 which since Lt is strictly convex in pt implies that pt = popt
t + ε∗t leads to a lower

loss Lt, thus contradicting Assumption 1.
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gradient condition ∂
∂pt

Et‖ft(pt, yt, Xt; g
opt)+Ξt‖2|pt=poptt

= 0. Hence, if p0
t is optimal we must

have that R0′
t WEtY 0

t = 0, with Y 0
t = f(p0

t , yt, Xt; g
0) + Ξt, which since R0

t has full column

rank (see Assumption 7) implies that δ∗t = −(R0′
t WR0

t )
−1R0′

t WEtY 0
t must satisfy δ∗t = 0 if

p0
t is optimal. If δ∗t 6= 0 we have that either g0 /∈ Gopt or ε0t 6= 0 or both.

Proof of Proposition 7. For convenience let EtY ∗t = Etf(p∗t , yt, Xt; g
0) + EtΞt. Let κ be a

fixed constant in (1, µmin/c) and note that such constant exists as c < µmin by assumption

2.1. Note that Rt(p
0
t , yt, Xt; g

0)′WRt(p
0
t , yt, Xt; g

0) is non-singular and thus there exists a

constant ε1 > 0 such that

‖(Rt(p
0
t , yt, Xt; g

0)′Rt(p
0
t , yt, Xt; g

0))−1‖ ≤ κ

µmin

∀p0
t ∈ N (popt

t , ε1) .

Let

ε = min

{
ε1,

µmin − κc
κ∆γ

}
.

Now consider

p0
t + δg∗t − p∗t = p0

t − p∗t − (R0′

t WR0
t )
−1R0′

t WEtY 0
t

= −(R0′

t WR0
t )
−1
[
R0′

t WEtY 0
t − (R0′

t WR0
t )(p

∗
t − p0

t )
]

= −(R0′

t WR0
t )
−1
[
R0′

t WEtY ∗t −R0′

t W
(
EtY ∗t − EtY 0

t −R0
t (p
∗
t − p0

t )
)]

.

Now the Lipschitz assumption (e.g. Assumption 8 - part 3) implies that

‖EtY ∗t − EtY 0
t −Rt(p

∗
t − p0

t )‖ ≤
γ

2
‖p∗t − p0

t‖2 ,

see Lemma 4.1.12 in Dennis and Schnabel (1996). Note that at the constrained optimum p∗t

we have Rt(p
∗
t , yt, Xt; g

0)′WEtY ∗t = 0, and thus we have by Assumption 8 - part 2 that

‖R0′

t EtY ∗t ‖ ≤ c‖p0
t − p∗t‖ .

Combining the bounds gives

‖p0
t + δg∗t − p∗t‖ ≤ ‖(R0′

t WR0
t )
−1‖

[
‖R0′

t WEtY opt
t ‖+ ‖Rt‖‖W‖‖EtY ∗t − EtY 0

t −R0
t (p
∗
t − p0

t )‖
]

≤ κ

µmin

[
c‖p0

t − p
opt
t ‖+

γ∆

2
‖popt

t − p0
t‖2

]
,
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which can be simplified using the definition of ε to obtain

‖p0
t + δg∗t − p

opt
t ‖ ≤ ‖p0

t − p
opt
t ‖

[
κc

µmin

+
κγ∆

2µmin

‖p0
t − p

opt
t ‖
]

≤ ‖p0
t − p

opt
t ‖

[
κc

µmin

+
µmin − κc

2µmin

]
=
κc+ µmin

2µmin

‖p0
t − p

opt
t ‖

≤ ‖p0
t − p

opt
t ‖ .

This completes the proof.

Proof of Proposition 8. Note that since Rt is independent of pt under assumption 9 the

derivative of every element of Rt with respect to pt is equal to zero. Therefore when we

expand the model ft around δt = 0 we have

ft(p
0
t + δt, X

y
t ; θ(ψ0)) = ft(p

0
t , X

y
t ; θ(ψ0)) + Rtδt

which implies that the policy problem is strictly convex in δt. Now recall from proposition 1

that the first order conditions at pt + δt are equal to R′tEtft(p0
t + δt, X

y
t ; θ(ψ0)) + EtWt = 0,

which using the expansion can be rewritten as

R′t
(
EtY 0

t + Rtδt
)

= 0

solving for δt gives δg∗t , which implies that for p0
t +δt to be optimal we must take δt = δg∗t .
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