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Whom should an interest group lobby in a legislature? I develop a model of infor-

mational lobbying in which a legislature must decide on the allocation of district-speci�c

goods and projects. An interest group chooses sequentially to search and provide infor-

mation on districts� valuations of the goods. The setting is one of distributive politics

with a legislative allocation proposal that is endogenous to the information provided by

the interest group. I characterize the equilibrium search sequence of the interest group,

and identify two empirical and institutional implications of the analysis. First, the model

rationalizes both friendly and confrontational lobbying, predicting circumstances in which

friendly lobbying prevails over confrontational lobbying. Second, the model establishes a

relationship between information provision and legislative majority requirement, o¤ering

a contrast between the optimal majority requirement if legislators seek to maximize the

information they receive versus the monetary contributions they receive.
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1. INTRODUCTION

Two features pertain to interest group in�uence. One is the prevalence of leg-

islative policymaking. Policies are chosen not by a single policymaker, but by a

legislature composed of representatives elected in a number of districts. The other

feature is the prevalence of lobbying as an instrument of interest group in�uence,

where lobbying is de�ned as the act of providing information. The o¢ ces of lob-

bying �rms are an integral �xture of capital cities in many developed countries.
1 I thank Emiel Awad, Tom Groll, David Miller, Jacob Morrier and Arthur Silve for helpful

comments and suggestions.



Multiple accounts of policymaking in the U.S. (e.g., Bauer, Dexter and De Sola

Pool, 1963; Hansen, 1991; Drutman, 2015) assert that interest groups� in�uence

often takes the form of information provision. These accounts are substantiated by

the Center for Responsive Politics (opensecrets.org), which reports that about 3.5

billion US dollars were spent on lobbying in just the year 2019, compared to 3.1

billion US dollars of PAC contributions over the whole 2018 election cycle, from

which only half a billion US dollars went to candidates. Moreover, multiple stud-

ies (e.g., Wright, 1990; Ansolabehere, Snyder and Tripathi, 2002) provide evidence

suggesting that campaign contributions serve to gain access to legislators in order

for interest groups to communicate their information. The prevalence of lobbying is

associated with legislators�reliance on the information provided by interest groups,

as noted in Hansen (1991: 5): �Lawmakers operate in highly uncertain electoral

environments. They have an idea of the positions they need to take to gain reelec-

tion, but they do not know for sure. Interest groups o¤er to help ... They provide

political intelligence about the preferences of congressional constituents.�Because

of legislators�reliance on interest groups�information, lobbying can be an e¤ective

instrument of interest group in�uence (e.g., Gawande, Maloney and Montes-Rojas,

2009; Igan and Mishra, 2014; Belloc, 2015). As Baumgartner et al. (2009: 124)

writes: �There is evidence that organizational advocates are often successful in

getting Congress to make policy decisions that are informed by research and the

technical expertise that they provide.�

This paper investigates the question of which legislators should an interest group

lobby and in which order.1 This question is empirically relevant as evidence sug-

gests that interest groups engage in selective persuasion, targeting some legislators

and ignoring others (e.g., Bombardini and Trebbi, 2020). To investigate this ques-

tion, I propose a model of interest group in�uence that includes both informational

1There is a large literature on informational lobbying, with the seminal contributions of Potters

and van Winden (1992), Austen-Smith and Wright (1992) and Rasmusen (1993), and including,

among others, Austen-Smith (1995, 1998), Lohmann (1995) and Cotton (2009). However, these

contributions consider settings with a single policymaker, not a legislative assembly. There is

also a smaller literature on interest groups seeking to in�uence a legislative assembly, with the

seminal contribution of Snyder (1991), and including, among others, Groseclose and Snyder (1996),

Diermeier and Myerson (1999), Baron (2006), Dekel, Jackson and Wolinsky (2009), Schneider

(2014), and Battaglini and Patacchini (2018). However, these contributions look at vote buying,

not informational lobbying.
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lobbying and legislative policymaking. The model is set in the context of distribu-

tive politics.2 Moreover, the legislative proposal is endogenous to the information

provided by interest groups.3

Speci�cally, the model considers a legislative assembly consisting of N + 1 leg-

islators, each representing a di¤erent district. The legislature must decide on the

allocation of district-speci�c goods and projects (hereafter referred to as goods) that

can be local public goods or pork-barrel projects such as road construction, mass-

transit projects, grants-in-aid, or recreational projects such as sports arenas and

public libraries. Goods are �nanced by a national tax base. One legislator serves

as the agenda setter, proposing an allocation of goods across the N + 1 districts.

The agenda setter can be, for instance, the chair of the Appropriations commit-

tee. Adoption of the agenda setter�s proposed allocation requires the approval of

at least M other legislators, where M can take a value between 0 (dictatorship of

the agenda setter) and N (unanimity). Each district has a valuation of the goods

which, to keep things simple, is either low or high. Districts are ex ante heteroge-

neous, varying in their prospects of high valuation. Districts�valuations are ex ante

unknown to all, but an interest group that bene�ts from the provision of goods can

search information on districts�valuations. The interest group can be, for instance,

the union of road builders, the national association for the promotion of the arts,

or a sports league. Lobbying is modelled as persuasion, where information takes

the form of veri�able evidence. Search is costly and sequential; the interest group

searches one district at a time, observing the outcome of its search on a district�s

valuation before deciding whether to search on another district�s valuation.

In equilibrium, the agenda setter forms a legislative coalition consisting of him-

self and M other legislators whose districts have the highest (expected) valuations.

Districts in the legislative coalition are o¤ered goods, those outside are not. Two

2Distributive politics is de�ned as �those projects, programs, and grants that concentrate the

bene�ts in geographically speci�c constituencies, while spreading their costs across all constituen-

cies through generalized taxation.� (Weingast, Shepsle and Johnsen, 1981: 643).
3Bennedsen and Feldmann (2002), Schnakenberg (2015, 2017) and Awad (2020) are other for-

mal contributions studying legislative informational lobbying. In contrast with my paper, Benned-

sen and Feldmann (2002) does not investigate the question of legislator targeting. Schnakenberg

(2015, 2017) and Awad (2020) study this question, but, in contrast with my paper, do so in the

context of regulatory politics where the legislative proposal is exogenous and does not respond to

the information provided by interest groups. I discuss further these papers in the next section.
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features of the legislative choice are critical drivers of legislator targeting by the

interest group. First, the proposed allocation of goods and the composition of

the legislative coalition are endogenous to the information provided by the interest

group. Second, the goods function, that speci�es the total quantity of goods as

a function of the (expected) valuations of districts in the legislative coalition, is

strictly increasing in each of its arguments and, depending on the provision cost of

goods, can be either concave or convex.

The interest group engages in selective persuasion, choosing strategically the

districts on which it searches information and in which order it searches districts.

When the provision cost of goods is such that the goods function is convex, the

interest group starts by searching districts with the best prospects of high valuation,

and then moves gradually to districts with worse prospects. The equilibrium stop-

ping rule prescribes the interest group to continue searching until it has obtained

favorable information (that is, information of high valuation) forM districts, so that

the agenda setter will form a legislative coalition consisting exclusively of known

high-valuation districts.

When the provision cost of goods is such that the goods function is concave,

the interest group starts by searching districts with �moderate�prospects of high

valuation, and then moves gradually towards districts with the highest and lowest

prospects of high valuation. To be more speci�c, let�s label districts (other than the

agenda setter�s) in a decreasing order, with district 1 having the best prospects of

high valuation and district N having the worst prospects. The interest group starts

by searching district M + 1, that is, the district with the best prospects of high

valuation among the districts that otherwise would not be included in the legislative

coalition. If the interest group obtains favorable information, it then moves to

district M , that is, the next district with better prospects. If the interest group

rather obtains unfavorable information (that is, information of low valuation), it

moves instead to districtM+2, that is, the next district with worse prospects. This

process is repeated afterwards, with the interest group moving gradually towards

districts 1 and N . The equilibrium stopping rule prescribes that the interest group

continues searching until one of two things happens. Either the interest group has

obtained favorable information for M districts, so that the agenda setter will form

a legislative coalition consisting exclusively of known high-valuation districts. Or
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the interest group has obtained unfavorable information for N �M districts, so

that if the interest group were to search one more district, the agenda setter might

have to include a known low-valuation district in the legislative coalition.

The analysis delivers two interesting implications. First, I relate legislator tar-

geting to the nature of lobbying. Empirical studies (e.g., de Figueiredo and Richter,

2014; You, 2020) show that interest groups lobby both legislative allies (friendly lob-

bying) and opponents (confrontational lobbying), and that friendly lobbying tends

to prevail over confrontational lobbying. While confrontational lobbying makes

sense in terms of persuasion, friendly lobbying is more di¢ cult to rationalize. The

analysis shows that both friendly and confrontational lobbying can be rationalized

in the context of distributive politics where the legislative proposal is endogenous

to the information provided by interest groups. The analysis further identi�es con-

ditions under which friendly lobbying prevails over confrontational lobbying, and

predicts that confrontational lobbying is more predominant when many districts

end up having a low valuation.

Second, I relate information provision to the legislative majority requirement

M . When the goods function is convex, the (expected) number of districts for

which IG provides information increases monotonically with the majority require-

ment, reaching a maximum when the adoption of a proposal requires unanimity

(M = N). When the goods function is concave, the relationship between legislative

majority requirement and expected number of searched districts is single-peaked,

with the location of the peak depending on districts�prospects of high valuation. In

either case, this yields an interesting institutional implication: while Diermeier and

Myerson (1999) suggests that legislators in a unicameral legislature may want to

adopt infra-majority requirements (by delegating authority to a leader) if they seek

to maximize the expected amount ofmonetary contributions they receive, my analy-

sis suggests that legislators may be better o¤ adopting simple- or super-majority

requirements if they seek to maximize the expected amount of information they

receive.

While the present analysis is developed in the context of lobbying, it applies

more generally to collective decisionmaking, with the interest group acting as the

sender and the legislators as the receivers. Institutions with collective decision-

making to which the model applies are boards of directors or shareholders in �rms,
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boards of governors in professional sports leagues (such as the NHL), coalition

governments or academic recruiting committees.

The model considers districts that vary ex ante in their prospects of high val-

uation. In a supplementary online appendix I study an extended version of the

model in which districts vary in the quality of information that can be obtained on

their valuation. I brie�y discuss the main results from this setting in the conclusion

section of the paper.

The remainder of the paper is organized as follows. Section 2 discusses the

related literature. Section 3 describes the model. Section 4 characterizes the leg-

islative choice. Section 5 analyses the interest group�s search. Section 6 presents

two implications from the analysis, one on the relationship between legislative ma-

jority requirement and information provision, and another one on the friendly or

confrontational nature of lobbying. Section 7 concludes. All proofs are in the

appendix. A supplementary online appendix contains additional material.

2. RELATED LITERATURE

The contribution of this paper is to study selective persuasion by an interest

group. In this section, I relate my paper to the most relevant existing contributions

in the literature.

This paper contributes to the literatures on legislative lobbying and group per-

suasion. Bennedsen and Feldmann (2002), Schnakenberg (2015, 2017) and Awad

(2020) all study legislative informational lobbying.

As in Bennedsen and Feldmann (2002), I consider a setting of distributive pol-

itics, involving a decision on allocating district-speci�c goods, in which an interest

group seeks to persuade legislators by producing veri�able evidence on districts�

valuations of their goods. However, Bennedsen and Feldmann do not study legisla-

tor targeting, as I do here, but rather study how the vote of con�dence procedure

a¤ects the incentives to lobby. Accordingly, they assume ex ante homogeneous dis-

tricts. To study legislator targeting, I relax this assumption and consider ex ante

heterogeneous districts. The two papers di¤er furthermore in the search process.

Bennedsen and Feldmann consider a simultaneous search process where the interest

group chooses ex ante the number of districts it will search. By contrast, I con-

sider a sequential process where the interest group searches one district at a time,
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observing the search outcome on a district�s valuation before deciding whether to

continue searching. The sequential nature of the lobbying process is consistent with

You�s (2020) empirical �ndings.

Schnakenberg (2015, 2017) and Awad (2020) consider a setting of regulatory

politics in which an interest group seeks to induce legislators to vote in favor of a

policy proposal. Schnakenberg (2015, 2017) use this setup to demonstrate that, in

situations of collective choice instability, cheap talk messaging can a¤ect negatively

the ex ante expected utilities of all legislators. Schnakenberg (2017) and Awad

(2020) use this setup to rationalize friendly lobbying, showing that an interest group

may choose to enroll legislative allies as intermediaries who help persuade opposed

legislators. In Schnakenberg (2017), friendly lobbying arises because of costly ac-

cess to legislators and the possibility for legislators to lobby their colleagues. In

Awad (2020), friendly lobbying arises because of the correlation between legislators�

preferences, which allows the emergence of persuasion cascades. My paper di¤ers

from these in several key ways. First, while these papers consider a setting of reg-

ulatory politics with an exogenous binary policy proposal, I consider a setting of

distributive politics with an allocation proposal that is endogenous to the informa-

tion provided by the interest group. Second, the rationales for friendly lobbying in

Schnakenberg (2017) and Awad (2020) are not present in my analysis since access

to legislators can be seen as costless and districts�valuations are drawn indepen-

dently, thereby precluding persuasion cascades. Third, while Schnakenberg (2015,

2017) consider a privately informed interest group sending cheap talk messages, I

consider an uninformed interest group producing veri�able evidence.

Caillaud and Tirole (2007) and Alonso and Câmara (2016) are two key contri-

butions in the emerging literature on group persuasion, in which a sender seeks to

persuade multiple receivers who have to make a collective decision. Caillaud and

Tirole (2007) studies the emergence of persuasion cascades which, as noted above,

cannot arise in my model. Alonso and Câmara (2016) shows how Bayesian persua-

sion by an uninformed politician can reduce the welfare of a majority of voters. My

paper di¤ers in many ways, notably in that these papers consider a group deciding

on an exogeneous binary proposal, while I consider a group deciding on a proposal

that is endogenous to the information provided by a sender.

The present paper is also related to the literature on the Pandora box problem
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initiated by Weitzman (1979), and, at a more general level, to the literature on

multi-armed bandit problems. In its seminal form, the Pandora box problem con-

sists in an agent who is presented with a �nite set of boxes. Each box contains a

prize. Boxes are ex ante heterogeneous, di¤ering in their probability distributions

over the value of the prize contained in the box. The agent can open boxes to

reveal the prizes they contain. Search is sequential and costly. At the end of the

search process, the agent chooses one of the opened boxes.4 Legislative lobbying

exhibits several features of the Pandora box problem. Districts can be interpreted

as boxes, the interest group as the agent, and districts�valuations as prizes. At

the same time, the legislative lobbying problem di¤ers in multiple ways from the

seminal Pandora box problem. First, Weitzman�s Pandora box problem applies

to an individual choice problem, with the agent selecting one box at the end of

the search process. By contrast, the legislative lobbying problem applies to a col-

lective choice problem, where a legislature decides on an allocation of goods that

involves selecting multiple districts. Second, in the Pandora box problem, the agent

is responsible for both the search and the selection of a box. By contrast, in the

legislative lobbying problem, the interest group is responsible for the search, while

the legislators are responsible for the choice of allocation. Third, in Weitzman�s

Pandora box problem, the order of the search is history independent, which allows

for an index characterization (related to Gittins index for bandit processes). By

contrast, in the legislative lobbying problem, the order of the search can be history

dependent.

3. MODEL

Consider a country which is divided into a �nite number N +1 of districts, with

N 2 N. I denote the set of districts by N0 = f0; 1; :::; Ng, with typical element n.

Each district is represented by a legislator. The legislature decides on the allocation

of district-speci�c goods. Let gn 2 R+ be the quantity of good provided to district

n. I denote the allocation of goods across districts by g = (g0; g1; :::; gN ). The total

quantity of goods provided in the country is equal to G =
PN

n=0 gn. It costs c (G)

4Weitzman�s setup has been generalized (i) to allow the agent�s payo¤ to depend not just on

the prize in the chosen box but on all uncovered prizes (Olszewski and Weber, 2015), and (ii) to

allow the agent to choose an unopened box (Doval, 2018).
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to provide a quantity of goods G, where c (�) 2 C3 is a strictly increasing, strictly

convex function, c (0) = 0 and limG#0 c0 (G) = 0. The cost of providing goods is

�nanced by a national tax base, and is divided equally across districts, that is, each

district bears a cost c (G) = (N + 1).

Each district n has a valuation for the good rn, which can take on two values:

rn = r (low valuation) or rn = r (high valuation), where r > r > 0. District

n 2 N0 has a high valuation, rn = r, with commonly-known probability pn 2 (0; 1).

Districts valuations are drawn independently and are ex ante unknown to all. I

denote district n�s ex ante expected valuation by Ern = pnr+(1� pn) r. Following

Bennedsen and Feldmann (2002), I assume that the legislator from district n gets

a payo¤ un (g) = rngn � c(G)
N+1 from allocation g = (g0; g1; :::; gN ).

The legislator from district 0 is the proposer or agenda setter (henceforth, AS).

I denote the set of legislators other than AS by N = f1; :::; Ng. The legislature

operates under a closed rule, with AS proposing an allocation g = (g0; g1; :::; gN )

and the legislators voting for or against the proposal. The proposal is adopted,

and each district n 2 N0 receives the proposed quantity of good gn, if at least

M 2 f0; :::; Ng legislators in N vote in favor of the proposal. Otherwise, the

proposal is defeated and gn = 0 for each district n. In order to study the e¤ect

of majority requirements on informational lobbying, I let M take value between

M = 0, which corresponds to a dictatorship of AS, and M = N , where unanimity

is required to pass a proposal. Simple majority corresponds to M = bN=2c.

There is an interest group (henceforth, IG) that bene�ts from the provision of

goods. IG can produce information on districts�valuations. If IG searches district

n, it receives a signal �n = rn 2 fr; rg that reveals district n�s valuation.5 Signals

are publicly observed.6 IG gets a payo¤ v (g; I) = G�I" when it searches I districts

and the resulting allocation of goods is g, where " > 0 is the cost of searching a

district. To simplify the analysis, I assume that " is su¢ ciently small so that IG

is always willing to search a district if it anticipates that the search will trigger an

5 In the Supplementary online appendix, I allow for signals to be uninformative and for signal

informativeness to vary across districts. Speci�cally, I assume the signal �n reveals district n�s

valuation (�n = rn 2 fr; rg) with probability qn 2 (0; 1], and conveys no information about rn
(�n = ;) with probability 1� qn.

6Alternatively, IG could choose whether to reveal a signal or not. This would complicate the

analysis without changing qualitatively the results.
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increase in the expected total quantity of goods.7

The policymaking process has four stages. At stage 0, Nature chooses districts�

valuations. Realized valuations are unknown to IG and the legislators. At stage 1,

IG chooses on information collection. It proceeds sequentially, observing the signal

just obtained before deciding whether to search yet another district. The search

process stops when IG chooses to not search one more district. The game then

moves to stage 2, where AS proposes an allocation g. At stage 3, legislators vote

on AS�proposal.

Legislator n�s (pure) voting strategy on AS�proposed allocation is �n : RN+1+ �

fr; r; ;g ! f0; 1g, where �n (g; �n) = 1 if legislator n votes in favor of proposal g

and �n (g; �n) = 0 if she votes against the proposal, where �n = rn if IG searched

district n and �n = ; otherwise.

AS�(pure) proposal strategy is 
 : fr; r; ;gN+1 ! RN+1+ , where 
 (�0; �1; :::; �N ) =

(g0; g1; :::; gN ) is the allocation that AS proposes given a pro�le of signals (�0; �1; :::; �N )

on (r0; r1; :::; rN ).

IG�s (pure) search strategy speci�es for each round t = 1; :::; N +1 of the search

process a search decision as a function of the signals received in the previous rounds

of the search process. I denote round-t search history by ht, where h1 = ; and

ht = f(s� ; �� )gt�1�=1 for t = 2; :::; N + 1, where s� = n 2 N0 and �� = rn 2 fr; rg

if IG searched district n at round � , and s� = �� = ; if IG did not search at

round � . IG�s search strategy, s, is a sequence of functions fst (�)gN+1t=1 , where

st (ht) is IG�s search decision at round t given history ht. At each round t we have

st (ht) 2 (N0nIt (ht)) [ f;g, where It (ht) � fn 2 N0 : s� = n for some � � t� 1g

is the set of districts that have been searched by round t. Since the search process

stops when IG chooses to not search at one round, we have that st (ht) = ; implies

st+1
�
ht+1

�
= ;.

Beliefs are derived using Bayes�rule. I denote district n�s posterior expected

valuation by Eern, where Eern = rn if IG searched district n and Eern = Ern

otherwise.

The solution concept is (pure-strategy) Perfect Bayesian equilibrium, with the

standard re�nement of weakly undominated voting strategies for the legislators.

7As we shall see, there is an implicit cost of searching a district that is associated with the

e¤ect of a search on the composition of the legislative coalition. The assumption of a small explicit

cost of searching " allows me to focus on this implicit cost of searching.
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Throughout the analysis, I shall order districts such that p1 > p2 > ::: > pN .8

4. LEGISLATIVE CHOICE

To characterize equilibria, I proceed backwards, analyzing each stage of the

game in reverse order. In this section, I analyze the legislative process, that is,

Stages 2 and 3 of the game.

I start by characterizing legislators�voting strategies at Stage 3 of the game.

Suppose AS has proposed an allocation g0 = (g00; g
0
1; :::; g

0
N ). A legislator votes in

favor of the proposal if she is better o¤ with the proposal being adopted than with

the proposal being rejected. Thus, legislator n 2 N votes in favor of the proposal

(�n (g0; �n) = 1) when

Eern g0n � c (G0)

N + 1
� 0: (1)

Let L (g0) � N denote the set of districts (other than AS�district) which legislators

vote in favor of proposal g0. I call L (g0) the legislative coalition associated with

proposal g0. Proposal g0 is adopted if and only if #L (g0) �M .

I now move backwards and characterize AS�proposal strategy at Stage 2 of the

game. AS proposes an allocation g that maximizes his expected utility Eer0g0 �
c (G) = (N + 1) subject to the constraint that #L (g) �M .

Since the provision of goods is costly, AS seeks to provide districts other than his

own with as few goods as possible. This has two implications for AS�equilibrium

proposal g�. First, AS o¤ers g�n = 0 to any n =2 L (g�), that is, AS does not

o¤er goods to districts outside the legislative coalition. Second, AS o¤ers g�n =

c (G�) = (N + 1)Eern to any n 2 L (g�), that is, AS o¤ers to any district in the

legislative coalition a quantity of good that binds the participation constraint of

the district�s legislator (equation (1)).

8Considering a strict, rather than weak, ordering of districts is made to simplify exposition; it

avoids a multiplicity of equilibrium search sequences that would result from IG being indi¤erent

between searching two a priori identical districts. Also, I do not include AS�s district (district

0) in the ordering of districts since, as we shall see, p0 does not matter for the equilibrium

characterization.
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Given these two implications, AS�problem can be written as

max
g2RN+1

+

Eer0 g0 � c(G)
N+1

s.t. (i) : #L (g) �M , and

(ii) : gn =

8<:
c(G)

(N+1) Eern if n 2 L (g)

0 if n =2 L (g)
for any n 2 N :

Observe that AS�payo¤ decreases with the quantity of goods o¤ered to districts

in N , and that this quantity increases with the number of districts included in

the legislative coalition. Furthermore, the quantity of good gn o¤ered to a district

n 2 L (g) decreases with the district�s expected valuation, Eern. As a result, AS
forms a legislative coalition that consists of exactly M districts whose expected

valuations are among the highest ones.

Given that g0 = G�
P

n2N gn, AS chooses a total quantity of goods

G� 2 argmax
G2R+

Eer0 �
24G� c (G)

N + 1

X
n2L(g)[f0g

1

Eern
35 .

The solution to this problem is given by

G� = c0�1

 
N + 1P

n2L(g�)[f0g (1=Eern)
!
: (2)

Relabelling districts in N such that Eer1 � ::: � EerN , we get that AS proposes
an allocation of goods (
 (�0; �1; :::; �N ) = g�) such that

g�n =

8<:
c(G�)

(N+1) Eern if n 2 L (g�)

0 if n =2 L (g�)
for any n 2 N

g�0 = G� �
X
n2N

g�n;

where L (g�) = f1; :::;Mg and G� = � (Eer0; Eer1; :::; EerM ) is given in (2).
Two properties of the goods function � (�) are key for IG�s search decision. First,

the goods function � (�) is strictly increasing in Eern for each n 2 L (g�)[f0g, that
is, the total quantity of goods increases with the expected valuation of each of the

districts in the legislative coalition (including AS�s district). Second, depending on

the cost function c (�), the goods function � (�) can be convex or concave in each of

its arguments. For example, if the cost function c (�) is given by c (G) = G�=� for

� > 1, then the goods function � (�) is strictly convex (resp. concave) in each of its
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arguments for � close to 1 (resp. � � 2).9 In the rest of the analysis, I consider the

case where � (�) is strictly convex in each of its arguments (hereafter, the convex

case) and the case where � (�) is strictly concave (hereafter, the concave case).

5. INTEREST GROUP�S SEARCH PROCESS

In this section, I analyze IG�s search process, that is, Stage 1 of the game.

First, I characterize IG�s search decision on AS�s district. I then characterize the

equilibrium stopping rule that speci�es when IG stops searching. Finally, I charac-

terize the equilibrium search sequence that speci�es the order in which IG searches

districts.

5.1. Searching AS�s district

AS�s district (district 0) is always part of the legislative coalition. As a result,

IG searches district 0 in the convex case since it then yields a higher expected total

quantity of goods. By contrast, IG does not search district 0 in the concave case

since it would yield a lower expected total quantity of goods.10

9To see this, observe that for a cost function c (G) = G�=� for � > 1, equation (2) writes as

G� =

"
N + 1P

n2L(g�)[f0g (1=Eern)
#1=(��1)

:

We then get
@2�

@Eer2i = H �K

where

H =
G�

� � 1
1

(Eeri)4 1hP
n2L(g�)[f0g (1=Eern)i2

and

K =

�
2� �
� � 1

�
� 2

X
n2(L(g�)[f0g)nfig

�
Eeri
Eern

�
:

Observe that H > 0 for every � > 1. At the same time, K is strictly decreasing and continuous

in �, with lim�#1K = +1 and K < 0 for � = 2. Hence K > 0 (resp. K < 0) and, therefore � (�)

is strictly convex (resp. concave) in each of its arguments, when � is close to 1 (resp. � � 2).

Note that Bennedsen and Feldmann (2002) considers the case where � = 2, which gives a goods

function that is strictly concave in each of its arguments.
10Empirical evidence shows that committee chairs in the US Congress are more likely to be

lobbied than rank-and-�le members (see, for example, Hojnacki and Kimball, 1998; You, 2020).

This observation is consistent with the convex case. Having said this, there are also several

ways to reconcile this observation with the concave case. First, IG�s search in my model can be

interpreted as a form of legislative subsidy with IG lobbying AS by providing him information

13



From now on, I shall focus on IG�s search among districts in N , that is, districts

other than AS�s. I can then limit the number of search rounds to N , assuming,

without loss of generality, that in the convex case IG starts by searching AS�s

district at a preliminary round 0.11

5.2. Equilibrium stopping rule

I now characterize the equilibrium stopping rule, which speci�es when IG stops

searching. I start by introducing extra notation. Given round-t search history ht,

let

it+
�
ht
�
�

8<: # f� 2 f1; :::; t� 1g : �� = rg for t = 2; :::; N

0 for t = 1

be the number of favorable signals (that is, r-signals) received prior to round t.

Likewise, let

it�
�
ht
�
�

8<: # f� 2 f1; :::; t� 1g : �� = rg for t = 2; :::; N

0 for t = 1

be the number of unfavorable signals (that is, r-signals) received prior to round t.

Proposition 1. Consider a round t 2 f1; :::; Ng and search history ht.

1. In the concave case, we have that

st
�
ht
�
= ; if and only if it+

�
ht
�
�M or it�

�
ht
�
� N �M:

2. In the convex case, we have that

st
�
ht
�
= ; if and only if it+

�
ht
�
�M:

Thus, in the concave case IG stops searching if and only if either the search

process has already produced enough favorable signals for AS to form a legislative

coalition composed only of known high valuation districts (it+ (ht) � M), or the

about districts�valuations in order to help AS forming a legislative coalition. Second, committee

chairs� control over the agenda can explain why they are lobbied more often than rank-and-�le

members. This rationale for lobbying AS is absent from my model where the agenda is a singleton

(namely, the decision on an allocation of goods). Third, one may consider AS in my model not as

a congressional committee chair but as a member of the executive branch of governement (e.g., a

cabinet minister or a secretary).
11This is consistent with You�s (2020) �nding that US Congress committee chairs are lobbied

earlier in the legislative process compared to rank-and-�le members.
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search process has already produced enough unfavorable signals such that one more

unfavorable signal would force AS to include a known low valuation district in the

legislative coalition (it� (ht) � N �M).

The intuition underlying the su¢ ciency of these conditions runs as follows. As

soon as IG has received M favorable signals (it+ (ht) = M), it no longer wants

to search since searching is costly and the total quantity of goods would anyway

remain unchanged at � (Er0; r; :::; r). Likewise, as soon as IG has received N �

M unfavorable signals (it� (ht) = N �M), IG stops its search since continuing

searching would yield a lower expected total quantity of goods due to the strict

concavity of � (�) in each of its arguments.

The intuition underlying the necessity of the two conditions runs as follows.

Consider round t at which IG stops searching. Suppose the search history ht is

such that it+ (ht) � M � 1 and it� (ht) � N � M � 1. Pick a yet unsearched

district n that would not be included in the legislative coalition. Suppose that

IG deviates, searching district n at round t and then stopping its search at round

t + 1. If the signal on rn is favorable, AS will include district n in the legislative

coalition in lieu of an unsearched district j. This will yield an increase in the total

quantity of goods given that (i) Eern = r will replace Eerj = Erj < r in � (�) and
(ii) � (�) is strictly increasing in each of its arguments. If instead IG receives an

unfavorable signal on rn, AS will keep district n outside the legislative coalition,

and the total quantity of goods will be the same as if IG had stopped searching at

round t. Hence, the expected total quantity of goods will be strictly bigger than if

IG had stopped searching at round t. IG is then better o¤ deviating and searching

district n than stopping its search at round t.

In the convex case IG stops searching if and only if the search process has already

produced enough favorable signals for AS to form a legislative coalition composed

only of known high valuation districts (it+ (ht) �M). The intuition underlying this

condition is the same as in the concave case. To understand why the condition on

the number of unfavorable signals (it� (ht) � N �M) does not apply in the convex

case, consider a round t at which it+ (ht) �M�1 and it� (ht) = N�M . If IG were

to stop searching at round t, then the legislative coalition would consist of all M

districts for which no unfavorable signal has been received. Pick a yet unsearched

district n (which would then be included in the legislative coalition if IG were

15



to stop searching at round t) with the lowest Ern, and suppose that IG searches

district n at round t and then stops searching at round t + 1. With probability

pn, IG will receive a favorable signal (rn = r), in which case r will replace Ern in

the goods function � (�). With probability (1� pn), IG will receive an unfavorable

signal (rn = r), in which case r will replace Ern in the goods function � (�). Given

the strict convexity of � (�) in each of its arguments, the expected total quantity

of goods will then be strictly bigger than if IG had stopped searching at round t,

meaning IG is better o¤ continuing searching at round t.

5.3. Equilibrium search sequence

I now characterize the order in which IG searches districts in N .

5.3.1. The concave case

The following proposition characterizes the equilibrium search sequence for the

concave case.

Proposition 2. Consider the concave case. At round t 2 f1; :::; Ng and search

history ht with it+ (ht) < M and it� (ht) < N �M , we have

st
�
ht
�
=

8<: M + 1� it+ (ht) if �t�1 = r or t = 1

M + 1 + it� (ht) if �t�1 = r:

Thus, IG starts by searching district M +1. After a favorable signal, IG moves

to the closest unsearched district with higher probability of high valuation. Af-

ter an unfavorable signal, IG moves to the closest unsearched district with lower

probability of high valuation.

The following example illustrates the equilibrium search strategy.

Example 1. Consider a country with �ve districts (N0 = f0; 1; 2; 3; 4g) where

the legislative assembly takes its decisions by simple majority (M = 2, implying

N � M = 2). Suppose the realized pro�le of valuations for districts in N =

f1; 2; 3; 4g is (r; r; r; r), that is, districts 1 and 3 have high valuations, while districts

2 and 4 have low valuations. Following Propositions 1 and 2, IG starts with district

3 (=M +1). It receives a favorable signal, and then searches district 2 at round 2.

This time, IG receives an unfavorable signal, and then searches district 4 at round

3. IG receives a second unfavorable signal, and then stops searching (i4�
�
h4
�
= 2).
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AS forms a legislative coalition L� = f1; 3g, and the total quantity of goods is equal

to G� = � (Er0; Er1; r). �

The intuition underlying the equilibrium search sequence runs as follows. On

the one hand, the costly search implies IG wants to minimize the number of dis-

tricts it searches (while maximizing the prospects of receiving favorable signals).

This induces IG to search districts with the highest probabilities of high valuation

(Lemma 2 in the Appendix). On the other hand, the concavity of � (�) implies IG

wants to keep unsearched districts with the highest expected valuations, and thus

the highest probabilities of high valuation (Lemma 1 in the Appendix). This is

because AS will choose to include those districts in the legislative coalition in the

event where IG would receive N �M unfavorable signals. Taken together, these

two e¤ects imply that at each round t of the search process, IG searches the district

for which the probability of receiving a favorable signal is the highest while keeping

unsearched the M � it+ (ht) districts with highest expected valuations (which AS

will include in the legislative coalition in the event IG will not receive any favorable

signal from round t on12).

The following example illustrates this intuition.

Example 2. Consider a country with four districts (N0 = f0; 1; 2; 3g) and a

legislative majority requirement M = 1. We know that IG searches until it has

received either one favorable signal (M = 1) or two unfavorable signals (N�M = 2).

I am going to show that IG will start its search with district 2 and, conditional on

receiving an unfavorable signal, will search district 3 at round 2.

Let�s start with round 2. Suppose IG had searched district 2 at round 1 and

received an unfavorable signal. If IG searches district 1 at round 2, it will receive

a favorable signal with probability p1, in which case AS will form a legislative

coalition L� = f1g and the total quantity of goods will be equal to � (Er0; r). With

probability 1 � p1 IG will instead receive an unfavorable signal, in which case AS

will form a legislative coalition L� = f3g and the total quantity of goods will be

equal to � (Er0; Er3). Thus, the expected total quantity of goods at round 2 if IG

searches district 1 is given by

EG1j2 = p1 � � (Er0; r) + (1� p1) � � (Er0; Er3) .
12 If this event occurs, AS will form a legislative coalition L� consisting of the it+

�
ht
�
districts

with known high valuation and the M � it+
�
ht
�
unsearched districts.
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Likewise, the expected total quantity of goods at round 2 if IG searches district 3,

instead of district 1, is given by

EG3j2 = p3 � � (Er0; r) + (1� p3) � � (Er0; Er1) .

Given the strict concavity of � (Er0; �) and Er1 = 1�p1
1�p3Er3+

p1�p3
1�p3 r, we get EG3j2 >

EG1j2, that is, the concavity of the goods function implies IG is better o¤ searching

district 3 at round 2 and keeping district 1 unsearched.13

Let�s now move to round 1 of the search process. On the one hand, the concavity

of the goods function implies IG is better o¤ starting its search with district 2

than with district 1.14 On the other hand, the costly search implies IG is better

o¤ starting the search process with district 2 than with district 3. To see this,

suppose IG searches district 3 at round 1. With probability p3, IG will receive a

favorable signal, in which case AS will form a legislative coalition L� = f3g and the

total quantity of goods will be � (Er0; r). With probability 1� p3, IG will receive

an unfavorable signal and then search district 2 at round 2. The expected total

quantity of goods is then given by

EG3 = p3 � � (Er0; r) + (1� p3) � [p2 � � (Er0; r) + (1� p2) � � (Er0; Er1)] :

The expected total quantity of goods is the same whether IG starts the search

process with district 2 or with district 3, that is, EG2 = EG3 (see EG2 in footnote

13). At the same time, p2 > p3 implies IG is more likely to stop its search after

only one round (instead of two) if it starts the search process with district 2 than

13Likewise, the concavity of the goods function implies that if IG seaches district 1 (resp. district

3) at round 1 and receives an unfavorable signal, IG will be better o¤ searching district 3 (resp.

district 2) at round 2.
14 If IG searches district 2 at round 1, it receives a favorable signal with probability p2, in

which case AS forms a legislative coalition L� = f2g and the total quantity of goods is equal

to � (Er0; r). With probability 1 � p2, IG receives an unfavorable signal and the expected total

quantity of goods is given by EG3j2. Thus, the expected total quantity of goods if IG starts the

search process with district 2 is given by

EG2 = p2 � � (Er0; r) + (1� p2) � [p3 � � (Er0; r) + (1� p3) � � (Er0; Er1)] :

If instead IG searches district 1 at round 1, the expected total quantity of goods is given by

EG1 = p1 � � (Er0; r) + (1� p1) � [p3 � � (Er0; r) + (1� p3) � � (Er0; Er2)] :

The strict concavity of � (Er0; �) and Er1 = 1�p1
1�p2

Er2 +
p1�p2
1�p2

r imply EG2 > EG1.
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with district 3. Hence, the costly search (together with EG2 = EG3) implies that

at round 1, IG is better o¤ searching district 2 than district 3. �

5.3.2. The convex case

I now characterize the equilibrium search sequence for the convex case. I start

by introducing extra notation. Given a round-t search history ht, let Ct (ht) �

NnIt (ht) be the set of districts in N that are yet unsearched at round t. I relabel

districts in Ct (ht) such that Ct (ht) = f1; :::; N + 1� tg with p1 > ::: > pN+1�t.

Also, let Kt � min fM � it+ (ht) ; N + 1� tg be the minimum number of districts

IG will search from round t on. This number is equal to the minimum of: (i)

M � it+ (ht), that is, the number of additional favorable signals necessary for the

condition of the equilibrium stopping rule to be met; and (ii) N + 1 � t, that is,

the number of yet unsearched districts in N (= #Ct (ht)).

Proposition 3. Consider the convex case. At round t 2 f1; :::; Ng and search

history ht with Kt � 1, we have

st
�
ht
�
2
�
1; :::;Kt

	
� Ct

�
ht
�
.

Thus, at each round t IG is indi¤erent searching any of the Kt yet unsearched

districts with the highest probabilities of high valuation. This means that IG starts

the search process with any of the districts in f1; :::;Mg. After a favorable signal,

IG moves to any of the yet unsearched districts in f1; :::;Mg, that is, any of the

other M � 1 districts in f1; :::;Mg. After an unfavorable signal, IG moves to any

of the yet unsearched districts in f1; :::;M + 1g, that is, any of the other M � 1

districts in f1; :::;Mg or district M + 1. This process is repeated until IG reaches

a round t at which Kt = 0.

The following example illustrates the equilibrium search strategy.

Example 3. Consider the country described in Example 1, where there are

�ve districts (N0 = f0; 1; 2; 3; 4g), the legislative assembly takes its decisions by

simple majority (M = 2), and the realized pro�le of valuations for districts in N =

f1; 2; 3; 4g is given by (r; r; r; r). Following Propositions 1 and 3, IG is indi¤erent

starting the search process with district 1 or district 2.15 Without loss of generality,

15Recall that in the convex case, IG searches district 0 (at a preliminary stage of the search

process).
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let IG start with district 1. IG receives a favorable signal, and then searches district

2 at round 2. This time IG receives an unfavorable signal, and then searches district

3 at round 3. IG now receives a second favorable signal, and then stops searching

(i3+
�
h3
�
= 2).16 AS forms a legislative coalition L� = f1; 3g, and the total quantity

of goods is equal to G� = � (r0; r; r).17 �

The intuition underlying the equilibrium search sequence runs as follows. On the

one hand, the equilibrium stopping rule prescribes that IG continues searching as

long as it has not yet receivedM favorable signals (Proposition 1). The implication

of this stopping rule is that AS will form a legislative coalition that includes only

searched districts, either becauseM favorable signals have been received or because

all districts have been searched. It thus follows that any search sequence satisfying

the equilibrium stopping rule yields the same total quantity of goods (Lemma 3

in the Appendix). Hence, in terms of the quantity of goods, IG is indi¤erent

between any search sequence that satis�es the equilibrium stopping rule.18 On the

other hand, the costly search implies IG wants to minimize the number of districts

it searches (while maximizing the prospects of receiving favorable signals). This

induces IG to search districts with the highest probabilities of high valuation. That

at each round t IG is indi¤erent searching any of the Kt yet unsearched districts

with the highest probabilities of high valuation follows because IG will anyway end

up searching all these districts.

The following example illustrates this intuition.

Example 4. Consider the country described in Example 2, where there are

16 If instead IG had started its search with district 2, it would have received an unfavorable

signal. At round 2 of the search process, IG would then have been indi¤erent searching district 1

or district 3. Searching either of these two districts, IG would have received a favorable signal and,

at round 3, would have searched the other of the latter two districts. Receiving again a favorable

signal, IG would have stopped its search. Thus, IG would have searched the same set of districts

as when it starts with district 1, the only di¤erence being the order in which it searches districts.
17By comparison, in the concave case IG searches districts 2, 3 and 4 (rather than districts 1,

2 and 3), AS forms the same legislative coalition L� = f1; 3g, but the total quantity of goods is

equal to � (Er0; Er1; r) instead of � (r0; r; r) since IG searches neither district 1 nor AS�s district.
18This contrasts with the concave case where the equilibrium stopping rule prescribes IG to

stop searching as soon as it has received N �M unfavorable signals, meaning AS may include

unsearched districts in the legislative coalition (see Examples 1 and 2). This explains why in the

concave case, IG wants at each round t to keep unsearched the M � it+
�
ht
�
districts with the

highest expected valuations.
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four districts (N0 = f0; 1; 2; 3g) and the legislative majority requirement is M = 1.

We know from Proposition 1 that IG searches until it receives one favorable signal

(since M = 1). I am going to show that IG will start its search with district 1 and,

conditional on receiving unfavorable signals, will continue with district 2 and then

district 3.

If IG reaches round 3 of the search process, this means it has already received

two unfavorable signals, and there is only one district left for IG to search.

Let�s consider round 2. Suppose IG had searched district 1 at round 1 and

received an unfavorable signal. If IG searches district 2 at round 2, it will receive

a favorable signal with probability p2, in which case AS will form a legislative

coalition L� = f2g and the total quantity of goods will be equal to � (r0; r). With

probability 1�p2 IG will instead receive an unfavorable signal, in which case it will

search district 3 at stage 3 and the total quantity of goods will be determined by

the signal IG will receive at round 3. Thus, the expected total quantity of goods

at round 2 if IG searches district 2 is given by

EG2j1 = [p2 + (1� p2) � p3] � � (r0; r) + (1� p2) (1� p3) � � (r0; r) :

Likewise, the expected total quantity of goods at round 2 if IG searches district 3,

instead of district 2, is given by

EG3j1 = [p3 + (1� p3) � p2] � � (r0; r) + (1� p3) (1� p2) � � (r0; r) :

The expected total quantity of goods is then the same whether IG searches district

2 or district 3, that is, EG2j1 = EG3j1. At the same time, p2 > p3 implies IG is

more likely to stop its search after round 2 if it searches district 2 than if it searches

district 3. Hence, the costly search (together with EG2j1 = EG3j1) implies IG is

better o¤ at round 2 searching district 2 than searching district 3.19

Let�s now move to round 1. On the one hand, we get by the same argument as

for round 2 that the total quantity of goods will be the same whether IG starts the

search process with district 1 or district 2 or district 3:

EG1 = EG2 = EG3 =

8<: � (r0; r) if r1 = r2 = r3 = r

� (r0; r) otherwise.

19Likewise, IG is better o¤ searching district 1 at round 2 if it starts the search process with

district 2 or district 3 and receives an unfavorable signal.
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On the other hand, p1 > p2 > p3 implies IG is more likely to stop searching after

only one round if it starts the search process with district 1 than with either district

2 or district 3. Hence, the costly search (together with EG1 = EG2 = EG3) implies

IG is better o¤ starting the search process with district 1. �

5.4. Discussion

I now underline four interesting di¤erences between the concave and convex

cases.

First, while there is a unique equilibrium search sequence in the concave case,

there can be multiple ones in the convex case. However, all equilibrium search

sequences in the convex case yield the same set of searched districts (Lemma 4 in

the Appendix) and the same total quantity of goods (Lemma 3 in the Appendix).20

Second, in the concave case IG starts the search process with district M + 1

and then moves non-monotonically towards districts 1 and N. By contrast, in the

convex case an equilibrium search sequence exists in which IG starts with district

1 and then moves monotonically towards district N.

Third, IG never searches all districts in N in the concave case, while it may

do so in the convex case. This di¤erence between the concave and convex cases

follows from the equilibrium stopping rules. In the convex case, the equilibrium

stopping rule prescribes IG to continue searching as long as it has not yet received

M favorable signals. By contrast, in the concave case, the equilibrium stopping

rule prescribes IG to stop searching as soon as it has received either M favorable

signals or N �M unfavorable signals. This implies that IG never searches at round

N of the search process (since for every search history h, either iN+
�
hN
�
� M or

iN�
�
hN
�
� N �M) and, therefore, never searches all districts in N .

Finally, IG always searches district 1 in the convex case (except forM = 0), but

never does so in the concave case. We get from Proposition 3 that, in the convex

case, IG searches all districts in f1; :::;Mg, which includes district 1. We get from

Proposition 2 that, in the concave case, IG starts the search process with district

M + 1, and then moves towards district 1 each time it receives a favorable signal.

20Lemma 4 in the Appendix establishes that for a realized pro�le of valuations r = (r1; :::; rN )

and a majority requirement M 2 f1; :::; Ng, there exists �r;M 2 f1; :::; Ng such that the set of

searched districts is
�
1; :::; �r;M

	
for any equilibrium search sequence.
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Since the equilibrium stopping rule prescribes IG to stop searching as soon as it

has received M favorable signals, IG stops its search before it reaches district 1.

6. MAJORITY REQUIREMENT AND THE NATURE OF LOBBYING

I now discuss two implications from the model.

6.1. Information provision and majority requirement

The relationship between information provision and majority requirement (M)

is monotonic in the convex case. This follows because the equilibrium stopping rule

prescribes IG to continue searching if and only if it has not yet receivedM favorable

signals. This means that IG provides no information on districts in N whenM = 0,

that is, in the polar case of a dictatorship of AS. This means furthermore that

IG provides information on every district when M = N , that is, in the polar

case of unanimity. Finally, this means that given a pro�le of realized valuations

r = (r1; :::; rN ), the number of districts on which IG provides information increases

with M . Hence, the (expected) number of districts in N for which IG provides

information increases monotonically with M , from none when M = 0 up to all

when M = N .

By contrast, the relationship between information provision and majority re-

quirement is non-monotonic in the concave case. This follows because the equilib-

rium stopping rule prescribes IG to continue searching if and only if it has not yet

received either M favorable signals or N �M unfavorable signals. This means that

IG provides no information in the two polar cases of a dictatorship of AS (M = 0)

and of unanimity (M = N). At the same time, IG searches at least one district

in N for every M 2 f1; :::; N � 1g. Hence the non-monotonicity since the number

of searched districts increases between M = 0 and M = 1, and decreases between

M = N � 1 and M = N .

We can furthermore establish that in the concave case, the relationship between

M and the minimum number of searched districts is single-peaked. This happens

because the equilibrium stopping rule implies IG searches at least min fM;N �Mg

districts in N . Hence the minimum number of searched districts: (i) increases

monotonically with M for infra majorities, where min fM;N �Mg = M ; (ii)
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reaches a maximum around simple majority, that is, M = bN=2c;21 and (iii)

decreases monotonically with M for super majorities, where min fM;N �Mg =

N �M .

The relationship between M and the expected number of searched districts is

likewise single-peaked in the concave case, with the majority requirement M at

which the peak is reached depending on the probability pro�le p = (p2; :::; pN ).22

More formally, let #IM;p be the expected equilibrium number of searched districts

given majority requirement M and probability pro�le p. For every probability

pro�le p, there exists �p 2 f1; :::; N � 1g such that #IM;p increases with M when

M < �p, and decreases with M when M > �p.
23 The following example provides

an illustration.

Example 5. Consider a country with �ve districts (N0 = f0; 1; 2; 3; 4g). We

already know that #I0;p = #I4;p = 0 and #IM;p � 1 for every M 2 f1; 2; 3g.

Furthermore, simple computations give

#I2;p �#I1;p = p3 + p2 (1� p3) + (1� p3) [p2p4 � (1� p2) (1� p4)] (3)

#I2;p �#I3;p = (1� p3) + p3 (1� p4) + p3 [(1� p2) (1� p4)� p2p4] : (4)

Consider �rst a probability pro�le p for which #I1;p > #I2;p. It follows from

(3) that (1� p2) (1� p4) > p2p4, in which case (4) implies #I2;p > #I3;p. Thus,

if the expected equilibrium number of searched districts decreases between M = 1

and M = 2, so does it between M = 2 and M = 3. Hence, for those probability

21When N is an odd integer, there are actually two adjacent, equal peaks at (N � 1) =2 and

(N + 1) =2.
22Observe that we can ignore p1 since, as was noted above, IG never searches district 1 in the

concave case.
23We can easily characterize �p for some probability pro�les p = (p2; :::; pN ).

� For p where pn � 1 for all n 2 f2; :::; Ng, �p � N � 1.

� For p where pn � 0 for all n 2 f2; :::; Ng, �p � 1.

� For p where pn � 1=2 for all n 2 f2; :::; Ng, �p � N=2 or �p � (N � 1) =2; (N + 1) =2

depending on whether N is an even or odd integer, that is, #IM;p reaches its peak around

simple majority. Moreover, #IM;p is distributed symmetrically around simple majority,

that is, #Im;p = #IN�m;p < #Im+1;p = #IN�m�1;p for m 2
�
0; :::; �p � 1

	
.

� For p where p2; :::; pN are distributed symmetrically around 1=2, �p = N=2 or �p =

(N � 1) =2; (N + 1) =2 depending on whether N is an even or odd integer. Moreover, #IM;p

is distributed symmetrically around simple majority.
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pro�les p we have that #IM;p increases between M = 0 and M = 1, and decreases

monotonically thereafter.

Consider now a probability pro�le p for which #I2;p < #I3;p. It follows from

(4) that p2p4 > (1� p2) (1� p4), in which case (3) implies #I1;p < #I2;p. Thus,

if the expected equilibrium number of searched districts increases between M = 2

and M = 3, so does it between M = 1 and M = 2. Hence, for those probability

pro�les p we have that #IM;p increases monotonically betweenM = 0 andM = 3,

and then decreases between M = 3 and M = 4. �

I conclude this section with a comparison between two instruments of interest

group in�uence, namely, information provision and monetary contributions. On

the one hand, we have just seen that the expected equilibrium number of searched

districts is maximized under unanimity in the convex case, while in the concave

case it is maximized under an infra majority, a simple majority or a super major-

ity, depending on districts�probabilities of having a high valuation. On the other

hand, in a vote-buying model where legislators seek to maximize the total amount

of monetary contributions they receive from interest groups, Diermeier and My-

erson (1999) �nds incentives for legislators in a unicameral legislature to delegate

authority to a leader, which in my setting could be associated with delegation of

authority to AS via an infra-majority requirement. All this suggests that legislators

in a unicameral legislature may want to adopt an infra-majority requirement if they

seek to maximize the amount of monetary contributions they receive, while they

may be better o¤ adopting a simple- or super-majority requirement if instead their

objective is to get as much information as possible.

6.2. Nature of lobbying

Lobbying is said to be friendly when an interest group lobbies allies, that is,

legislators who, in the absence of lobbying, would vote along the interest group�s

position. Instead, lobbying is said to be confrontational when an interest group

lobbies opponents, that is, legislators who, in the absence of lobbying, would vote

against the interest group�s position. Does an interest group lobbies allies or op-

ponents? Answering this question matters since, as Kollman (1997: 520) writes,

people argue that �[i]f interest groups lobby their friends (the friendly model), the

in�uence of lobbying may not be as large as many people think because lobbyists

25



merely reinforce existing policy preferences among legislators.�

Empirical studies (e.g., Hojnacki and Kimball, 1998; Hall and Miler, 2008; You,

2020) show that interest groups lobby both allies and opponents. However, interest

groups are more likely to lobby allies than opponents, and to lobby allies earlier in

the legislative process. Moreover, interest groups with plenty of resources or strong

support in a legislator�s district are only slightly more likely to lobby allies than

opponents.

Lobbying opponents is rather intuitive: an interest groups provides information

to its opponents in order to persuade them to support the group�s position. By

contrast, lobbying allies is rather unintuitive. Why would an interest group waste

resources on seeking to persuade legislators who already support the group�s posi-

tion? Scholars have proposed several explanations to rationalize friendly lobbying.

Austen-Smith and Wright (1992, 1994) explain, and provide empirical evidence in

support of, friendly lobbying as an e¤ort to counteract the in�uence of groups with

opposite interests. Bauer, Dexter and De Sola Pool (1963) argues that interest

groups serve mainly as �service bureaus�to resource-constrained legislators. Based

on this argument, Hall and Deardor¤ (2006) and Groll and Ellis (2020) explain

friendly lobbying as a legislative subsidy, whereby interest groups provide informa-

tion to legislative allies in order to relax their resource constraints. In the same

spirit, Cotton and Dellis (2016) explains friendly lobbying as an e¤ort by interest

groups to push their issues at the top of the agenda. Likewise, Groll and Prum-

mer (2016), Schnakenberg (2017) and Awad (2020) explain friendly lobbying as

a choice to enroll legislative allies as intermediaries who help convince legislative

opponents.24 In other words, by directly lobbying allies, interest groups indirectly

lobby opponents. Finally, based on empirical �ndings in Blanes i Vidal, Draca and

Fons-Rosen (2012) and Bertrand, Bombardini and Trebbi (2014), friendly lobbying

could be explained by the role of past employment connections in allowing lobbyists

to transmit their information credibly to legislators.

All these explanations apply to the context of regulatory politics. By contrast,

my model applies the context of distributive politics where the policy proposal is

endogenous to lobbying activities. Applying the de�nitions of friendly and con-

24 In Groll and Prummer (2016) friendly lobbying arises because of the network structure among

legislators. In Schnakenberg (2017) it arises as a way to save on the cost of accessing legislators.

In Awad (2020) it arises because of the possibility of persuasion cascades.
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frontational lobbying to this context, we get that lobbying is friendly (resp. con-

frontational) when IG searches a district which, in the absence of lobbying, would

(resp. would not) be included in the legislative coalition and which legislator would

then vote in favor of (resp. against) the allocation AS would propose. Given

that in the absence of lobbying AS would form a legislative coalition consisting of

districts 1; :::;M , that is, the M districts in N with the highest probabilities of

high valuation, lobbying is friendly when it targets a district in f1; :::;Mg and is

confrontational when it targets a district in fM + 1; :::; Ng.

In the concave case, IG starts by searching district M + 1, that is, the district

with the best prospects of having a high valuation among districts that otherwise

would not be included in the legislative coalition. Thus, IG starts with confronta-

tional lobbying. Afterwards, and conditional on still searching, each time IG re-

ceives a favorable signal, it continues its search with a district in f1; :::;Mg, thus

moving to or keeping with friendly lobbying. Each time IG receives an unfavorable

signal, it continues its search with a district in fM + 2; :::; Ng, thus moving back

to or keeping with confrontational lobbying.25

In the convex case, IG starts by searching districts in f1; :::;Mg, that is, districts

which, in the absence of lobbying, would have been included in the legislative

coalition. Thus, IG starts with friendly lobbying. Afterwards, and conditional on

still searching, IG continues its search with districts in fM + 1; :::; Ng, thus moving

to confrontational lobbying.

Thus, my model predicts that friendly lobbying should be prevalent in circum-

stances where many districts have a high valuation, and that confrontational lob-

bying should be more prevalent in circumstances where many districts have a low

valuation. Also, while in the convex case IG engages in friendly lobbying before

it engages in confrontational lobbying, the reverse holds true in the concave case.

Moreover, IG always lobbies its strongest ally (district 1) in the convex case, while

it never does so in the concave case.26

25This search sequence is consistent with Miller�s (2020) �nding that lobbyists prefer targeting

weak allies and opponents than strong ones.
26My analysis is set in the context of distributive politics, where the proposed allocation is

endogenous to the information provided by IG. I conjecture that if applied instead to the context

of regulatory politics, with an exogenous binary policy proposal, my model would generate di¤erent

empirical implications: either there would be no lobbying or all lobbying would be confrontational.

Speci�cally, there would be no lobbying in circumstances where a majority of legislators is ex ante
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7. CONCLUSION

This paper has investigated the question of whom an interest group should

lobby in a legislative assembly, where lobbying is de�ned as the act of providing

information. To investigate this question, I have developed a model of informational

lobbying set in the context of distributive politics, where a legislature must decide

on the allocation of district-speci�c goods and projects. Districts� valuations of

the goods are ex ante unknown, and districts vary in their prospects of having a

high valuation of their good. An interest group, which bene�ts from the provision

of goods, chooses sequentially to search information on districts�valuations. The

agenda setter�s allocation proposal is endogenous to the information provided by

the interest group.

I have characterized the equilibrium stopping rule, which speci�es when the

interest group should stop searching, as well as the equilibrium search sequence,

which speci�es the order in which the interest group should search districts. The

analysis has generated two interesting implications. First, Diermeier and Myerson

(1999) suggests that legislators in a unicameral legislature may want to adopt infra-

majority requirements (by delegating authority to a leader) if they seek to max-

imize the expected amount of monetary contributions they receive. By contrast,

my analysis suggests that legislators may want to adopt simple- or super-majority

requirements if they seek to maximize the expected amount of information they re-

ceive. Second, my analysis suggests that friendly lobbying (that is, interest groups

lobbying their legislative allies) should prevail over confrontational lobbying (that

is, interest groups lobbying their legislative opponents) when many districts have

high valuations, and that confrontational lobbying should be more prevalent when

many districts have low valuations.

In a Supplementary online appendix, I extend the model to a situation where

districts vary in the quality of information that can be obtained on their valuation.

Speci�cally, if the interest group chooses to search district n, it will receive a sig-

nal revealing this district�s valuation with probability qn 2 (0; 1], and will receive

in favor of the policy proposal, that is, pM � 1=2. If instead a majority of legislators is ex ante

opposed to the policy proposal (pM < 1=2), IG would start by searching the district with the

highest pn below 1/2 (weakest opponent) and then moves to districts with smaller pn (stronger

opponents) until M legislators favor the policy proposal.
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no signal (or an uninformative signal) with probability 1 � qn. I show that the

equilibrium stopping rule is the same as when districts di¤er in their prospects of

a high valuation. I show furthermore that the interest group should then start by

searching districts for which it has a higher probability of receiving an informative

signal, and then moves to districts which signals are less likely to be informative.

In order to keep the analysis simple, I have made a number of assumptions.

First, the model involves a single interest group that bene�ts from the provision of

goods. This assumption is standard in models of lobbying and is consistent with

empirical evidence on many issues. For example, Baumgartner et al. (2009: 57)

writes: �... a surprisingly large number of issues ... consist of a single side at-

tempting to achieve a goal to which no one objects or in response to which no one

bothers to mobilize.�This being said, Baumgartner et al. (2009: 58) further writes:

�A majority of cases [58 out of 98] had two sides.� In the context of my analysis,

one could imagine a group bene�ting from the provision of goods (e.g., a road

builders�association) opposed to another group pushing for cuts in the provision

of goods (e.g., an environmental group advocating against building new roads). It

would be interesting to investigate how the presence of an opposite interest group

a¤ects legislative informational lobbying. Second, districts�valuations are drawn

independently. This means that the information obtained on a district�s valuation

provides no information on other districts�valuations. However, one could imag-

ine situations where valuations are fairly similar in adjacent legislative districts.

A variant of the model could include some degree of correlation across districts�

valuations. As in Awad (2020), this could generate persuasion cascades, where in-

formation on a district can trigger its inclusion in the legislative coalition as well

as the coincidental inclusion of another district. Furthermore, this could open the

door for introducing legislators�connections in a way similar to Battaglini and Pat-

acchini (2018), but with informational lobbying instead of vote buying. Third, I

have adopted a persuasion setting, where signals are public information. This set-

ting allows to focus on strategic information production. It would be interesting to

combine strategic information production with strategic information transmission.

Milgrom and Roberts�(1986) unravelling theorem implies that simply adding the

possibility for the interest group to not reveal (unfavorable) signals would not af-

fect the main qualitative conclusions of the analysis. But relaxing furthermore the
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assumption that legislators observe the interest group�s search decision could yield

interesting insights. Fourth, the interest group has only one instrument for in�u-

encing policy, namely, information provision. It would be interesting to allow the

interest group to make monetary contributions in addition to providing informa-

tion. One could then analyze, in a way similar to Bennedsen and Feldmann (2006)

and Dahm and Porteiro (2008), but in the context of a legislature, how the possibil-

ity for the interest group to use monetary contributions as a control-damage device

following unfavorable signals a¤ects information provision by the interest group.

Finally, in a deliberate e¤ort to focus on the question of informational lobbying,

I have adopted a simple bargaining protocol. It would be interesting to consider

alternative bargaining protocols, and investigate how legislative institutions (be-

yond majority requirements) a¤ect informational lobbying.27 These extensions go

beyond the scope of the present analysis and are left for future research.
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APPENDIX

I start by introducing extra notation. Given a round t 2 f1; :::; Ng and a search

history ht, de�ne Ct (ht) � NnIt (ht) as the set of districts in N that are still

unsearched at the beginning of round t. Given a search strategy s, let EG (s)

34



denote the expected quantity of goods, EV (s) IG�s expected utility and L (s) the

legislative coalition.

To simplify notation, I shall omit both Eer0 from � (�) and the argument ht

whenever it does not create confusion.

Proof of Proposition 1. (Su¢ ciency) I proceed by contradiction. Let (r1; :::; rN ) 2

fr; rgN be any vector of valuations for districts in N . Let s be an equilibrium search

sequence. Consider a round t 2 f1; :::; Ng at which it+ � M or, in the case where

� (�) is strictly concave in each of its arguments, it� � N �M .28 Assume by way

of contradiction that st = h 2 Ct. Construct the search sequence s0 such that

s� 0 =

8<: s� for all � < t

; for all � � t.

If it+ � M , then we get EG (s0) = EG (s) = � (r; :::; r). Given that signal

acquisition is costly, we then have EV (s0) > EV (s), which contradicts that s is an

equilibrium search sequence.

If � (�) is strictly concave in each of its arguments and it� � N � M , then

Erk > r for all k 2 Ct implies Ct � L (s0). Observe also that there is no loss of

generality in letting L (s) = L (s0). Given the concavity of � (�), we get

EG (s0) = � (Erh;R)

> ph � � (r;R) + (1� ph) � � (r;R)

� EG (s)

where R is the (M � 1)-dimensional vector of expected valuations of districts in

L (s) n fhg. Hence EV (s0) > EV (s), which contradicts that s is an equilibrium

search sequence.

(Necessity) I prove the contrapositive. Let (r1; :::; rN ) 2 fr; rgN be any vector

of valuations. Consider a round t at which it+ �M �1 and, in the case where � (�)

is strictly concave in each of its arguments, it� � N �M � 1. Assume by way of

contradiction that st = ; and, if t � 2, that st�1 6= ; (that is, IG stops searching

at round t). Observe that it+ �M � 1 implies L (s) \ Ct 6= ;.
28Observe that it++ it� = t� 1, meaning that it+ �M and it� � N �M cannot both be true

at a round t 2 f1; :::; Ng.
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I start by considering the case where � (�) is strictly convex in each of its argu-

ments. Pick some h 2 L (s) \ Ct, and construct a search sequence s0 such that

s0� =

8>>><>>>:
s� for all � < t

h for � = t

; for all � > t:

The expected quantity of goods at round t is then given by

EG (s0) � ph � � (r;R) + (1� ph) � � (r;R)

> � (Erh;R) = EG (s)

where R is the (M � 1)-vector containing Eern for every n 2 L (s) n fhg. The weak
inequality follows from the possibility that h =2 L (s0) when rh = r. The strict

inequality follows from the strict convexity of � (�;R).

I now consider the case where � (�) is strictly concave. Observe that it++ it� �

N � 2 implies #Ct � 2 and that N � it� � M + 1 implies Ct * L (s) (that is,

a proper subset of the set of unsearched districts is in the legislative coalition).

Construct a search sequence s0 such that

s� 0 =

8>>><>>>:
s� for all � < t

h for � = t

; for all � > t

where h = argmin
i2Ct

pi. Observe that Ct * L (s) and ph < pk for all k 2 Ctn fhg

implies h =2 L (s).

If rh = r, then L (s0) = (L (s) n fjg) [ fhg where j = argmin
i2L(s)\Ct

pi. If rh = r,

then L (s0) = L (s). Since � (�) is strictly increasing in each of its arguments and

r > Erj , we get that

EG (s0) = ph � � (r;R) + (1� ph) � � (Erj ;R)

> � (Erj ;R)

= EG (s)

where R is the (M � 1)-dimensional vector of expected valuations of districts in

L (s) n fjg.

Hence EV (s0) > EV (s) whether � (�) is strictly concave or convex, which con-

tradicts that s is an equilibrium search sequence. �
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Proof of Proposition 2. The proof is inductive, starting from round t = N � 1

and proceeding backwards.29 To prove the statement, it is equivalent to show that

at each round t where it+ < M and it� < N �M , we have st = Kt+1 where Kt =

M � it+ and where districts in Ct are relabelled such that Ct = f1; :::; N + 1� tg

with p1 > ::: > pN+1�t.

Consider round t = N � 1 where it+ < M and it� < N �M . It follows from

Proposition 1 that sN�1 6= ;. Observe that CN�1 = f1; 2g and that it+ = M � 1

and it� = N �M � 1. Hence Kt = 1. I am going to show that sN�1 = 2.

For sN�1 = i 2 CN�1, the expected quantity of goods is given by

EGi = pi � � (r; :::; r) + (1� pi) � � (Erj ; r; :::; r)

where fjg = CN�1n fig. We then have:

EG2�EG1 = (1� p2)�
�
� (Er1; r; :::; r)�

1� p1
1� p2

� � (Er2; r; :::; r)�
p1 � p2
1� p2

� � (r; r; :::; r)
�
> 0,

the strict inequality since Er1 =
1�p1
1�p2Er2 �

p1�p2
1�p2 r and � (�; r; :::; r) is strictly

concave. Hence sN�1 = 2.

Assume the statement is true at round (t+ 1) 2 f2; :::; N � 1g. Consider round

t with it+ < M and it� < N�M . We then have Kt 2 f1; :::;Mg and #Ct � Kt+1.

I am going to show that st = Kt + 1. To do so, I proceed in two steps. In step 1

(Lemma 1), I establish that

max
h2f1;:::;Ktg

EGh < EGKt+1 = ::: = EGN+1�t;

implying st � Kt+1. In step 2 (Lemma 2), I pin down st = Kt+1 by establishing

that

E"Kt+1 < E"Kt+2 < ::: < E"N+1�t,

where E"i denotes the expected search cost for the continuation search sequence

starting at st = i.

Lemma 1. Consider a round t at which it+ < M and it� < N �M . Letting

Kt �M � it+, we have that

max
h2f1;:::;Ktg

EGh < EGKt+1 = ::: = EGN+1�t:

29 It is easy to see from Proposition 1 that sN = ;.
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Proof of Lemma 1. Pick i 2 Ct, and suppose st = i. Recall that #Ct =

(N + 1� t) 2 fKt + 1; :::; Ng.

De�ne h (i; 1) � max Ctn fig and h (i; k) � max Ctn fi; h (i; 1) ; :::; h (i; k � 1)g

for k = 2; :::;Kt as the district in Ctn fig with the kth highest expected valuation.

We have that:

EGi =
Kt�1X
j=0

�ij � �
�
Erh(i;1); :::; Erh(i;Kt�j); r; :::; r

�
+ �iKt � � (r; :::; r) ;

where � (x1; :::; xKt) is a shorthand for � (x1; :::; xKt ; r; :::; r), �iKt =
�
1�

PKt�1
j=0 �ij

�
and

�ij =
X

S2Sj(h(i;1);:::;h(i;Kt+1�j))

"Y
`2S

p`

#24 Y
`2Ctn(S[fh(i;1);:::;h(i;Kt�j)g)

(1� p`)

35 ;
with Sj (H) the coalition of cardinality-j subsets of CtnH, is the probability that

IG will receive j r-signals starting from round t onwards.30

Observe that the set fh (i; 1) ; :::; h (i;Kt)g is the same for all i 2 fKt + 1; :::; N + 1� tg.

We then get EGKt+1 = ::: = EGN+1�t.

Pick some i 2 f1; :::;Ktg. Observe that

h (i; k) =

8<: h (Kt + 1; k) = k for k 2 f1; :::; i� 1g

h (Kt + 1; k) + 1 = k + 1 for k 2 fi; :::;Ktg :

Observe also that if i 6= 1, we have �K
t+1

j = �ij for all j 2 fKt + 2� i; :::;Ktg.31

We then get32

EGKt+1 � EGi =
Kt+1�iX
j=0

[�K
t+1

j � � (Er1; :::; ErKt�j ; r; :::; r)

��ij � �
�
Erh(i;1); :::; Erh(i;Kt�j); r; :::; r

�
]:

De�ne

Dj � (pi � pKt+1�j)�

8<: X
S2Sj(1;:::;Kt+1�j)

"Y
`2S

p`

#24 Y
`2Ctn(S[f1;:::;Kt+1�jg)

(1� pm)

359=;
30�i

Kt =
�
1�

PKt�1
j=0 �ij

�
is the probability that IG will stop searching after having received

Kt r-signals starting from round t onwards.
31For i = 1, we have �K

t+1
j = �1j for all j 2

�
0; :::;Kt

	
.

32For i = 1 and j = Kt, I write loosely �
�
Er1; :::; ErKt�j ; r; :::; r

�
and

�
�
Erh(i;1); :::; Erh(i;Kt�j); r; :::; r

�
as � (r; :::; r).
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for each j 2 f0; :::;Kt � i� 1g. We can rewrite EGKt+1 � EGi as follows

�K
t+1

0 � � (Eri;H0)�D0 � � (r;H0)� �i0 � �
�
Erh(i;Kt);H0

�
+
Kt�i�1X
j=1

n
�K

t+1
j � � (Eri;Hj)�Dj � � (r;Hj)�

�
�ij �Dj�1

�
� �
�
Erh(i;Kt�j);Hj

�o
+�K

t+1
Kt�i � � (Eri;HKt�i)�

�
�iKt�i �DKt�1�i

�
� �
�
Erh(i;i);HKt�i

�
+
�
�K

t+1
Kt+1�i � �

i
Kt+1�i

�
� � (r;HKt�i) ;

where Hj is the (Kt � 1)-dimensional vector
�
Erh(i;1); :::; Erh(i;Kt�1�j); r; :::; r

�
containing j r-entries.

After some tedious rearranging (see Supplementary online appendix), we get

EGKt+1 � EGi =
Kt�iX
j=0

8<: X
S2Sj(1;:::;Kt+1�j)

"Y
`2S

p`

#24 Y
`2Ctn(S[f1;:::;Kt�jg)

(1� p`)

359=;
�[� (Eri;Hj)�

�
pi � ph(i;Kt�j)

1� ph(i;Kt�j)

�
� � (r;Hj)��

1� pi
1� ph(i;Kt�j)

�
� �
�
Erh(i;Kt�j);Hj

�
]: (5)

We then have EGKt+1 > EGi since p` 2 (0; 1) for all ` 2 f1; :::; Ng, � (�;Hj) is

strictly concave, and Eri =
pi�pk
1�pk r +

1�pi
1�pkErk for all k > i. �

Lemma 2. Consider a round t at which it+ < M and it� < N � M . Let

Kt �M � it+. For Kt � (N + 1� t)� 2, we have that

E"Kt+1 < ::: < E"N+1�t.

Proof of Lemma 2. The proof is constructive. Pick i 2 fKt + 1; :::; N � tg. I

am going to show that E"i < E"i+1.

Observe that it++ it� = t�1 and Kt � (N + 1� t)�2 imply it� � N�M�2.

Let E"h (ri; ri+1) denote the expected search cost when the continuation search

sequence starts at st = h 2 fi; i+ 1g and districts i�s and (i+ 1)�s valuations are

ri and ri+1, respectively. Relabel districts in Ct+1 such that Ct+1 = f1; :::; N � tg,

with p1 > ::: > pN�t. There are two types of cases to consider.

(1) ri = ri+1 � r 2 fr; rg : We have8<: i(t+1)+ = it+ & i(t+1)� = it� + 1 if r = r

i(t+1)+ = it+ + 1 & i(t+1)� = it� if r = r
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whether st = i or st = i+ 1. It follows that st+1 2 Ct+1 [ f;g is the same whether

st = i or st = i + 1. Moreover, the pro�le of valuations for the districts in Ct+1,

(r1; :::; ri�1; r; ri+1; :::; rN�t), is the same whether st = i or st = i+1. It follows that

for all k = 2; :::; N � t, we have that st+k is the same whether st = i or st = i+ 1.

To sum up, as the continuation search sequences and the pro�les of valuations

are the same whether st = i or st = i+ 1, we have that E"i (r; r) = E"i+1 (r; r).

(2) ri 6= ri+1: First, consider the case where ri = r and ri+1 = r. Observe that8<: i(t+1)+ = it+ + 1 & i(t+1)� = it� if st = i

i(t+1)+ = it+ & i(t+1)� = it� + 1 if st = i+ 1

and the pro�le of valuations for the districts in Ct+1 is8<: (r1; :::; ri�1; r; ri+1; :::; rN�t) if st = i

(r1; :::; ri�1; r; ri+1; :::; rN�t) if st = i+ 1.

It follows that st+1;i 2 f;;Ktg (with st+1;i = ; if and only if Kt = 1) while

st+1;i+1 = Kt + 1 in Ct+1, where st+1;h is the signal acquisition decision at round

t + 1 following st = h. Moreover, IG needs one less r-signal to reach i+ = M

following st = i than following st = i+ 1. Finally, as i > Kt we get that IG never

reaches i� = N �M (and thus stops searching because it has obtained N �M

r-signals) before st+k;i = i + 1 and st+h;i+1 = i for some h; k � 1 (that is, before

the continuation search sequence reaches the other of the two districts, i and i+1).

I am going to show that the search cost following st = i+ 1 is at least as large

as the one following st = i for every pro�le of valuations in Ct where ri = r and

ri+1 = r, and is strictly larger for some pro�les. Pick one such pro�le. There are

two possible cases.

Either st+k;i = i + 1 for some k � 1, that is, the continuation search sequence

following st = i reaches district i + 1. Given that i(t+1)+ following st = i + 1 is

one below i(t+1)+ following st = i and that IG does not reach i� = N �M before

having searched both districts i and i + 1, we have st+h;i+1 = i for some h � 1,

that is, the continuation search sequence following st = i+ 1 reaches district i. As

both continuation search sequences involve searching both districts i and i+1, the

set of districts on which IG acquires signals is the same whether st = i or st = i+1

(although part of the ordering is di¤erent). For those valuations pro�les, the search

cost is the same whether st = i or st = i+ 1.
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Or st+k;i 6= i+1 for all k � 1, that is, the continuation search sequence following

st = i does not reach district i+ 1. This means that there is some h � 1 at which

i(t+h)+ = M following st = i and, thus, that IG does not stop searching because

i� reaches N �M . As IG needs one less r-signal to reach i+ =M following st = i

than following st = i + 1, we get that the continuation search sequence involves

searching at least one district less when st = i than when st = i + 1. For those

valuations pro�les, the search cost is bigger when st = i+ 1 than when st = i.

As these two cases exhaust all possibilities, we have that

E"i+1 (r; r)� E"i (r; r) = T > 0:

Second, consider the case where ri = r and ri+1 = r. Applying the same

argument while interchanging i and i+ 1, we get that

E"i+1 (r; r)� E"i (r; r) = �T < 0:

Valuations pro�les where ri = ri+1 occur with probability [pi � pi+1 + (1� pi) � (1� pi+1)].

Pro�les where ri = r and ri+1 = r occur with a probability equal to pi � (1� pi+1).

Finally, pro�les where ri = r and ri+1 = r occur with a probability equal to

(1� pi) � pi+1. We then have

E"i+1 � E"i = [pi � pi+1 + (1� pi) � (1� pi+1)] � 0 + pi � (1� pi+1) � T

+(1� pi) � pi+1 � (�T )

= (pi � pi+1) � T > 0:

Hence E"i+1 > E"i. �

To prove Proposition 3, I �rst state and prove two results. The �rst result

(Lemma 3) establishes that all search sequences that satisfy the stopping rule stated

in Proposition 1 generate the same (expected) total quantity of goods. The sec-

ond result (Lemma 4) characterizes the set of districts in N that IG searches in

equilibrium.

I introduce extra notation. Given a valuations pro�le (r1; :::; rN ) 2 fr; rgN ,

de�ne PN+ (r) � fn 2 N : rn = rg as the set of districts in N with high valuation.

Likewise, de�ne PN� (r) � fn 2 N : rn = rg as the set of districts in N with low

valuation.
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Lemma 3. Suppose � (�) is strictly convex in each of its arguments. Let (r1; :::; rN ) 2

fr; rgN be any pro�le of valuations for districts in N . For a search sequence s sat-

isfying the equilibrium stopping rule, the total quantity of goods is given by

EG (s) =

8>>>><>>>>:
� (r; :::; r) if #PN+ (r) �M

�

0B@ r; :::; r| {z }
#PN+(r)

; r; :::; r| {z }
M�#PN+(r)

1CA if #PN+ (r) �M � 1:

Proof of Lemma 3. If #PN+ (r) �M , then there exists t 2 f1; :::; Ng at which

it+ � M . In this case, we have Eern = r for every district n 2 L (s), meaning

EG (s) = � (r; :::; r).

If #PN+ (r) � M � 1, then st 6= ; at every round t 2 f1; :::; Ng. In this case,

we have PN+ (r) � L (s) and L (s) nPN+ (r) � PN� (r), meaning

EG (s) = �

0B@ r; :::; r| {z }
#PN+(r)

; r; :::; r| {z }
#(L(s)nPN+(r))

1CA : �

Lemma 4. Suppose � (�) is strictly convex in each of its arguments. Let (r1; :::; rN ) 2

fr; rgN be any vector of public good valuations for districts in N . At any round

t 2 f1; :::; Ng, relabel districts in Ct such that Ct = f1; :::; N + 1� tg with p1 >

p2 > ::: > pN+1�t. Pick a search sequence s where at any round t 2 f1; :::; Ng, we

have 8<: st 2 f1; :::;Ktg if it+ < M

st = ; if it+ �M

where Kt � min fM � it+; N + 1� tg. Then, the set of districts that IG searches

is given by

I (r) =

8<: N if #PN+ (r) < M

PT (r) if #PN+ (r) �M

where T � min f� : #P�+ (r) �Mg.

Proof of Lemma 4. The proof is constructive.

Consider �rst a valuations pro�le r with #PN+ (r) < M . At any round t 2

f1; :::; Ng, we have Kt � 1, meaning st 6= ;. Hence I (r) = N .

Consider now a valuations pro�le r where #PN+ (r) � M . Pick any round

t 2 f1; :::; Ng at which Kt � 1. Let st = i 2 f1; :::;Ktg � Ct. Then, the set of
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districts Ct+1 that IG may choose to search at round t+ 1 is given by

Ct+1 =

8<: (Ctn fig) [ fKt + 1g if ri = r and Kt � N � t

Ctn fig otherwise.

Observe that #Ct+1 � #Ct. Furthermore, #PN+ (r) � M implies K� = 1 and,

therefore, #C� = 1 at some round � 2 ft; :::; Ng.

Pick two districts, say h and i, with ph > pi. Suppose st
0
= i at some round

t0 2 f1; :::; Ng. There are two cases to consider:

1. st = h at some round t 2 f1; :::; t0 � 1g.

2. st 6= h at every round t 2 f1; :::; t0 � 1g. Observe that ph > pi and i 2

Ct
0
imply h 2 Ct

0 \ Ct0+1. Given that Ctn fstg � Ct+1 and #C� = 1

at some round � 2 ft0 + 1; :::; Ng, we then have st00 = h at some round

t00 2 ft0 + 1; :::; �g.

Since these two cases exhaust all possibilities, we then have st = h at some

round t. There then exists a critical district k 2 N such that8<: h 2 I (r) for all h 2 N with ph � pk
h =2 I (r) for all h 2 N with ph < pk:

That k = T � min f� : #P�+ (r) �Mg follows from C1 = f1; :::;Mg and the

sequencing of Ct for t = 1; :::; N . �

Proof of Proposition 3. The proof is inductive. We start at round t = N and

then proceed backwards.

Observe that Proposition 1 implies st 6= ; at any round t where Kt � 1. In

particular, this observation implies sN = 1 wheneverKN = 1, and sN = ; whenever

KN = 0.

Consider round t = N � 1 with KN�1 � 1. There are two cases to consider:

1. KN�1 = 2. I show that sN�1 2 f1; 2g = CN�1, that is, IG is indi¤erent

between sN�1 = 1 and sN�1 = 2. Since i(N�1)+ � M � 2, we get from

Proposition 1 that the continuation search sequence is either sN�1 = 1 and

sN = 2, or sN�1 = 2 and sN = 1. Thus, IG is indi¤erent between sN�1 = 1

and sN = 2, or sN�1 = 2 and sN = 1. Thus, IG is indi¤erent between

sN�1 = 1 and sN�1 = 2 since both continuation sequences result in the same

total quantity of goods and the same continuation search cost.
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2. KN�1 = 1. I show that sN�1 = 1. We know from Lemma 3 that the

expected quantity of goods is the same whether sN�1 = 1 or sN�1 = 2, that

is, EG1 = EG2. The expected continuation search cost for a continuation

sequence starting at sN�1 = i 2 CN�1 is equal to

E"i = pi + 2 � (1� pi) = 2� pi:

Since p1 > p2, we have E"1 < E"2 which, together with EG1 = EG2, implies

EV1 > EV2. Hence sN�1 = 1.

Assume the statement is true at round (t+ 1) 2 f2; :::; N � 1g. Consider round

t with Kt � 1. We know from Lemma 3 that the expected quantity of goods is the

same for any continuation search sequence: EG1 = ::: = EGN+1�t.

There are two cases to consider:

1. Kt = N + 1 � t. I show that st 2 f1; :::; N + 1� tg = Ct, that is, IG is

indi¤erent between any st 2 Ct. We know from Proposition 1 that I = N ,

that is, IG searches all districts. IG is therefore indi¤erent between any st 2 Ct

as they all yield the same quantity of goods (EG1 = ::: = EGN+1�t) and the

same (continuation) search cost (E"1 = ::: = E"N+1�t).

2. Kt < N + 1 � t. I show that st 2 f1; :::;Ktg � Ct, that is, IG is indi¤erent

between investigating any of the districts with the Kt highest probabilities of

high valuation. Let st = h 2 Ct. De�ne

�x (Y ) �
X

S2Sx(Y )

"Y
`2S

p`

#24 Y
`2Y nS

(1� p`)

35
as the probability that exactly x districts in set Y � N have a high valuation.

Using Lemma 4, we get that the expected continuation search cost is given

by

E"h = K
t �

24 Y
`2PKt

p`

35+ N+1�tX
i=Kt+1

i �pi ��Kt�1
�
Pi�1

�
+(N + 1� t)

KtX
i=1

�i�1
�
Ct
�

if h 2 f1; :::;Ktg, and

E"h = Kt � ph �

24 Y
`2PKt�1

p`

35+ h�1X
i=Kt

(i+ 1) � pi � �Kt�1
�
Pi�1 [ fhg

�

+
N+1�tX
i=h+1

i � pi � �Kt�1
�
Pi�1

�
+ (N + 1� t)

KtX
i=1

�i�1
�
Ct
�
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if h 2 fKt + 1; :::; N + 1� tg.

Observe that E"1 = ::: = E"Kt .

Pick k 2 fKt; :::; N � tg. I show that E"k+1 > E"k. Using the above expres-

sions for E"h, we get after tedious computations (see Supplementary online

appendix) that
E"k+1 � E"k
pk � pk+1

=

k�2X
h=Kt�1

ph � �Kt�2 (Ph�1) � (6)8<:
k+1X
i=h+1

(i� h) � pi �

24 Y
`2Pi�1nPh

(1� p`)

35+ (k � h) �
24 Y
`2Pk�1nPh

(1� p`)

359=;
+pk�1 � �Kt�2

�
Pk�2

�
:

Since pk > pk+1 and the right-hand side is strictly positive, we get E"k+1 >

E"k.

To sum up, we have8<: EG1 = ::: = EGN+1�t

E"1 = ::: = E"Kt < E"Kt+1 < ::: < E"N+1�t

which implies EV1 = ::: = EVKt > EVKt+1 > ::: > EVN+1�t. Hence st 2

f1; :::;Ktg. �
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SUPPLEMENTARY ONLINE APPENDIX

DERIVATION OF (5)

Equation (5) is obtained by rearranging

�K
t+1

0 � � (Eri;H0)�D0 � � (r;H0)� �i0 � �
�
Erh(i;Kt);H0

�
+

Kt�i�1X
j=1

n
�K

t+1
j � � (Eri;Hj)�Dj � � (r;Hj)�

�
�ij �Dj�1

�
� �
�
Erh(i;Kt�j);Hj

�o
+�K

t+1
Kt�i � � (Eri;HKt�i)�

�
�iKt�i �DKt�1�i

�
� �
�
Erh(i;i);HKt�i

�
+
�
�K

t+1
Kt+1�i � �

i
Kt+1�i

�
� � (r;HKt�i) :

I decompose this expression into three parts:

(�) �K
t+1

0 � � (Eri;H0)�D0 � � (r;H0)� �i0 � �
�
Erh(i;Kt);H0

�
:

(��)
PKt�i�1

j=1

n
�K

t+1
j � � (Eri;Hj)�Dj � � (r;Hj)�

�
�ij �Dj�1

�
� �
�
Erh(i;Kt�j);Hj

�o
:

(� � �) �K
t+1

Kt�i �� (Eri;HKt�i)�
�
�iKt�i �DKt�1�i

�
��
�
Erh(i;i);HKt�i

�
+
�
�K

t+1
Kt+1�i � �iKt+1�i

�
�

� (r;HKt�i) :

I �rst rearrange (�):24 Y
`2Ctnf1;:::;Ktg

(1� p`)

35 � � (Eri;H0)
� (pi � pKt+1) �

24 Y
`2Ctnf1;:::;Kt+1g

(1� p`)

35 � � (r;H0)
�

24 Y
`2Ctnf1;:::;i�1;i+1;:::;Kt+1g

(1� p`)

35 � � �Erh(i;Kt);H0
�

=

24 Y
`2Ctnf1;:::;Ktg

(1� p`)

35��� (Eri;H0)� pi � pKt+1

1� pKt+1
� � (r;H0)�

1� pi
1� pKt+1

� �
�
Erh(i;Kt);H0

��

=

24 Y
`2Ctnf1;:::;Ktg

(1� p`)

35 ��� (Eri;H0)� pi � ph(i;Kt)

1� ph(i;Kt)
� � (r;H0)

� 1� pi
1� ph(i;Kt)

� �
�
Erh(i;Kt);H0

��
:

i



I now rearrange (��). I �rst rewrite �ij �Dj�1 as

X
S2Sj(1;:::;i�1;i+1;:::;Kt+2�j)

"Y
`2S

p`

#24 Y
`2Ctn(S[f1;:::;i�1;i+1;:::;Kt+1�jg)

(1� p`)

35
� (pi � pKt+1�j)

X
S2Sj�i(1;:::;Kt+2�j)

"Y
`2S

p`

#24 Y
`2Ctn(S[f1;:::;Kt+2�jg)

(1� p`)

35

= pi � (1� pKt+2�j)
X

S2Sj�1(1;:::;Kt+2�j)

"Y
`2S

p`

#24 Y
`2Ctn(S[f1;:::;Kt+2�jg)

(1� p`)

35
+(1� pi) (1� pKt+2�j)

X
S2Sj(1;:::;Kt+2�j)

"Y
`2S

p`

#24 Y
`2Ctn(S[f1;:::;Kt+2�jg)

(1� p`)

35
� (pi � pKt+2�j)

X
S2Sj�1(1;:::;Kt+2�j)

"Y
`2S

p`

#24 Y
`2Ctn(S[f1;:::;Kt+2�jg)

(1� p`)

35

= (1� pi) � pKt+2�j
X

S2Sj�1(1;:::;Kt+2�j)

"Y
`2S

p`

#24 Y
`2Ctn(S[f1;:::;Kt+2�jg)

(1� p`)

35
+(1� pi) (1� pKt+2�j)

X
S2Sj(1;:::;Kt+2�j)

"Y
`2S

p`

#24 Y
`2Ctn(S[f1;:::;Kt+2�jg)

(1� p`)

35

=
1� pi

1� pKt+1�j

X
S2Sj(1;:::;Kt+1�j)

"Y
`2S

p`

#24 Y
`2Ctn(S[f1;:::;Kt�jg)

(1� p`)

35 :
The term in curly brackets in (��) can then be rewritten as8<: X

S2Sj(1;:::;Kt+1�j)

"Y
`2S

p`

#24 Y
`2Ctn(S[f1;:::;Kt�jg)

(1� p`)

359=; � � (Eri;Hj)
�pi � pK

t+1�j
1� pKt+1�j

�

8<: X
S2Sj(1;:::;Kt+1�j)

"Y
`2S

p`

#24 Y
`2Ctn(S[f1;:::;Kt�jg)

(1� p`)

359=; � � (r;Hj)
� 1� pi
1� pKt+1�j

�

8<: X
S2Sj(1;:::;Kt+1�j)

"Y
`2S

p`

#24 Y
`2Ctn(S[f1;:::;Kt�jg)

(1� p`)

359=;
��
�
Erh(i;Kt�j);Hj

�

=

8<: X
S2Sj(1;:::;Kt+1�j)

"Y
`2S

p`

#24 Y
`2Ctn(S[f1;:::;Kt�jg)

(1� p`)

359=;�
� (Eri;Hj)�

pi � pKt+1�j
1� pKt+1�j

� � (r;Hj)�
1� pi

1� pKt+1�j
� �
�
Erh(i;Kt�j);Hj

�
:

�
:
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It remains to rearrange (� � �). I �rst rewrite �iKt�i �DKt�1�i as

X
S2SKt�i(1;:::;i�1;i+1;i+2)

"Y
`2S

p`

#24 Y
`2Ctn(S[f1;:::;i�1;i+2g)

(1� p`)

35
� (pi � pi+2) �

X
S2SKt�i�1(1;:::;i+2)

"Y
`2S

p`

#24 Y
`2Ctn(S[f1;:::;i+2g)

(1� p`)

35

= pi � (1� pi+2)
X

S2SKt�i�1(1;:::;i+2)

"Y
`2S

p`

#24 Y
`2Ctn(S[f1;:::;i+2g)

(1� p`)

35
+(1� pi) � (1� pi+2)

X
S2SKt�i(1;:::;i+2)

"Y
`2S

p`

#24 Y
`2Ctn(S[f1;:::;i+2g)

(1� p`)

35
� (pi � pi+2) �

X
S2SKt�i�1(1;:::;i+2)

"Y
`2S

p`

#24 Y
`2Ctn(S[f1;:::;i+2g)

(1� p`)

35

= (1� pi) � pi+2
X

S2SKt�i�1(1;:::;i+2)

"Y
`2S

p`

#24 Y
`2Ctn(S[f1;:::;i+2g)

(1� p`)

35
+(1� pi) (1� pi+2)

X
S2SKt�i(1;:::;i+2)

"Y
`2S

p`

#24 Y
`2Ctn(S[f1;:::;i+2g)

(1� p`)

35

= (1� pi)
X

S2SKt�i(1;:::;i+1)

"Y
`2S

p`

#24 Y
`2Ctn(S[f1;:::;i+1g)

(1� p`)

35 :
I now rewrite �K

t+1
Kt+1�i � �iKt+1�i as

X
S2SKt+1�i(1;:::;i)

"Y
`2S

p`

#24 Y
`2Ctn(S[f1;:::;i�1g)

(1� p`)

35
�

X
S2SKt+1�i(1;:::;i�1;i+1)

"Y
`2S

p`

#24 Y
`2Ctn(S[f1;:::;i�1g)

(1� p`)

35
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= (1� pi)

8<:pi+1 X
S2SKt�i(1;:::;i+1)

"Y
`2S

p`

#24 Y
`2Ctn(S[f1;:::;i+1g)

(1� p`)

35
+ (1� pi+1)

X
S2SKt+1�i(1;:::;i+1)

"Y
`2S

p`

#24 Y
`2Ctn(S[f1;:::;i+1g)

(1� p`)

359=;
� (1� pi+1)

8<:pi X
S2SKt�i(1;:::;i+1)

"Y
`2S

p`

#24 Y
`2Ctn(S[f1;:::;i+1g)

(1� p`)

35
+ (1� pi)

X
S2SKt+1�i(1;:::;i+1)

"Y
`2S

p`

#24 Y
`2Ctn(S[f1;:::;i+1g)

(1� p`)

359=;
= � (pi � pi+1)

X
S2SKt�i(1;:::;i+1)

"Y
`2S

p`

#24 Y
`2Ctn(S[f1;:::;i+1g)

(1� p`)

35 :
Part (� � �) can thus be rewritten as8<: X

S2SKt�i(1;:::;i+1)

"Y
`2S

p`

#24 Y
`2Ctn(S[f1;:::;ig)

(1� p`)

359=; � � (Eri;HKt�i)

� 1� pi
1� pi+1

8<: X
S2SKt�i(1;:::;i+1)

"Y
`2S

p`

#24 Y
`2Ctn(S[f1;:::;ig)

(1� p`)

359=; � � �Erh(i;i);HKt�i
�

�pi � pi+1
1� pi+1

8<: X
S2SKt�i(1;:::;i+1)

"Y
`2S

p`

#24 Y
`2Ctn(S[f1;:::;ig)

(1� p`)

359=; � � (r;HKt�i)

=

8<: X
S2SKt�i(1;:::;i+1)

"Y
`2S

p`

#24 Y
`2Ctn(S[f1;:::;ig)

(1� p`)

359=; �
�
�
� (Eri;HKt�i)�

pi � ph(i;i)
1� ph(i;i)

� � (r;HKt�i)�
1� pi

1� ph(i;i)
� �
�
Erh(i;i);HKt�i

��
:

DERIVATION OF (6)

We have that E"k+1 � E"k is equal to

Kt � pk+1 �

24 Y
`2PKt�1

p`

35+ kX
i=Kt

(i+ 1) � pi � �Kt�1
�
Pi�1 [ fk + 1g

�

+
N+1�tX
i=k+2

i � pi � �Kt�1
�
Pi�1

�
�Kt � pk �

24 Y
`2PKt�1

p`

35� k�1X
i=Kt

(i+ 1) � pi � �Kt�1
�
Pi�1 [ fkg

�
�
N+1�tX
i=k+1

i � pi � �Kt�1
�
Pi�1

�
:
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= Kt � (pk+1 � pk) �

24 Y
`2PKt�1

p`

35+ (k + 1) � pk � �Kt�1
�
Pk�1 [ fk + 1g

�
+

k�1X
i=Kt

(i� 1) � pi �
�
pk+1 � �Kt�2

�
Pi�1

�
+ (1� pk+1) � �Kt�1

�
Pi�1

��
�

k�1X
i=Kt

(i� 1) � pi �
�
pk � �Kt�2

�
Pi�1

�
+ (1� pk) � �Kt�1

�
Pi�1

��
� (k + 1) � pk+1 � �Kt�1

�
Pk
�
.

= Kt � (pk+1 � pk) �

24 Y
`2PKt�1

p`

35+ (pk+1 � pk) � k�1X
i=Kt

(i+ 1) � pi � �Kt�2
�
Pi�1

�
� (pk � pk+1) �

k�1X
i=Kt

(i+ 1) � pi � �Kt�1
�
Pi�1

�
+ (k + 1) � (pk � pk+1) � �Kt�1

�
Pk�1

�
:

Dividing both sides by (pk � pk+1) and rearranging the right hand side, we get

that E"k+1�E"kpk�pk+1 is equal to

�Kt �

24 Y
`2PKt�1

p`

35� k�1X
i=Kt

(i+ 1) � pi � �Kt�2
�
Pi�1

�
+

k�1X
i=Kt

(i+ 1) � pi � �Kt�1
�
Pi�1

�
+ (k + 1) � �Kt�1

�
Pk�1

�
:

=

24 Y
`2PKt�1

p`

358<:�Kt +
k�1X
i=Kt

(i+ 1) � pi �

24 Y
`2Pi�1nPKt�1

(1� p`)

35
+(k + 1)

24 Y
`2Pk�1nPKt�1

(1� p`)

359=;
+pKt � �Kt�2

�
PK

t�1
�8<:� �Kt + 1

�
+

k�1X
i=Kt+1

(i+ 1) � pi �

24 Y
`2Pi�1nPKt

(1� p`)

35
+(k + 1)

24 Y
`2Pk�1nPKt

(1� p`)

359=;
+pKt+1 � �Kt�2

�
PK

t
�8<:� �Kt + 2

�
+

k�1X
i=Kt+2

(i+ 1) � pi �

24 Y
`2Pi�1nPKt+1

(1� p`)

35
+(k + 1)

24 Y
`2Pk�1nPKt+1

(1� p`)

359=;
+:::+ pk�1 � �Kt�2

�
Pk�2

�
� [�k + (k + 1)] :
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=

24 Y
`2PKt�1

p`

358<:
k�1X
i=Kt

�
i+ 1�Kt

�
� pi �

24 Y
`2Pi�1nPKt�1

(1� p`)

35
+
�
k + 1�Kt

�24 Y
`2Pk�1nPKt�1

(1� p`)

359=;
+pKt � �Kt�2

�
PK

t�1
�
�

8<:
k�1X

i=Kt+1

�
i�Kt

�
� pi �

24 Y
`2Pi�1nPKt

(1� p`)

35
+
�
k �Kt

�24 Y
`2Pk�1nPKt

(1� p`)

359=;
+pKt+1 � �Kt�2

�
PK

t
�
�

8<:
k�1X

i=Kt+2

�
i�Kt � 1

�
� pi �

24 Y
`2Pi�1nPKt+1

(1� p`)

35
+
�
k �Kt � 1

�24 Y
`2Pk�1nPKt+1

(1� p`)

359=;
+:::+ pk�1 � �Kt�2

�
Pk�2

�
.

=
k�2X

h=Kt�1
pk � �Kt�2

�
Ph�1

�8<:
k�1X
i=h+1

(i� h) � pi �

24 Y
`2Pi�1nPh

(1� p`)

35
+(k � h)

24 Y
`2Pk�1nPh

(1� p`)

359=;+ pk�1 � �Kt�2
�
Pk�2

�
:

HETEROGENEOUS INFORMATION QUALITY

I consider an extension of the model in which districts vary in the probability

IG receives a signal.

If IG searches district n 2 N0, it receives a signal �n 2 fr; r; ;g. The signal

reveals district n�s valuation (�n = rn 2 fr; rg) with probability qn 2 (0; 1], and

does not convey any information about rn (�n = ;) with probability 1� qn.33 For

simplicity, I assume that IG can search a district at most once or would receive the

same signal if it were to search a district multiple times. I label districts such that

q1 > q2 > ::: > qN and let pn = p 2 (0; 1) for every district n 2 N , that is, every

district faces the same prospects of high valuation.34 We then have Ern = Er for

33 I rule out the uninteresting case where qn = 0 since IG would then choose to not search

district n.
34Assuming a strict ordering of districts is made to simplify exposition.
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every n 2 N .

In order to shorten the exposition, I shall consider only the case where the goods

function � (�) is strictly concave in each of its arguments.

As in the case considered in the paper (hereafter, p-case), IG never searches

AS�s district in the case considered here (hereafter, q-case).

Also, the equilibrium stopping rule and the intuition underlying it are the same

as in the p-case, that is, IG searches districts until it has received eitherM favorable

signals or N �M unfavorable signals (Proposition 1). Formally, we have that:35

Proposition 4. Suppose q1 > q2 > ::: > qN and pn = p 2 (0; 1) for every

district n 2 N . At any round t 2 f1; :::; Ng and for any search history ht, we have

that:

st
�
ht
�
= ; if and only if it+

�
ht
�
�M or it�

�
ht
�
� N �M:

It remains to characterize the equilibrium search sequence. Let

Kt � min
�
M � it+

�
ht
�
; N �M � it�

�
ht
�
; N + 1� t

	
be the minimum number of districts that IG will search from round t on. This

number is equal to the minimum of: (i) M � it+ (ht), which is the number of

additional favorable signals that would trigger IG to stop searching because it has

receivedM favorable signals; (ii) N�M�it� (ht), which is the number of additional

unfavorable signals that would trigger IG to stop searching because it has received

N�M unfavorable signals; and (iii) N+1�t, which is the number of yet unsearched

districts in N , that is, #Ct (ht).

Proposition 5. Suppose q1 > q2 > ::: > qN and pn = p 2 (0; 1) for every

district n 2 N . Consider a round t 2 f1; :::; Ng and search history ht with Kt � 1.

Relabelling districts in Ct (ht) such that Ct (ht) = f1; :::; N + 1� tg with q1 > ::: >

qN+1�t, we have:

st
�
ht
�
2
�
1; :::;Kt

	
� Ct

�
ht
�
.

35 I omit the proof since it is very similar to the proof of Proposition 1. It is however available

upon request.
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The proof of Proposition 5 appears in the next section of this Supplementary

online appendix.

At each round t, IG is indi¤erent searching any district in the relabelled set

f1; :::;Ktg, that is, any of the yet unsearched districts with one of the Kt highest

qns. Thus, IG starts by searching one district among those with themin fM;N �Mg

highest qns. At each round t where IG receives a favorable signal (resp. unfavorable

signal) whenM�it+ (ht) > N�M�it� (ht) (resp. M�it+ (ht) < N�M�it� (ht)),

IG chooses at round t + 1 to search one among the yet unsearched districts in

the round-t-relabelled set f1; :::;Kt;Kt + 1g nst (ht). Conversely, at each round t

where IG receives a favorable signal (resp. unfavorable signal) whenM� it+ (ht) �

N �M � it� (ht) (resp. M � it+ (ht) � N �M � it� (ht)), IG chooses at round

t + 1 to search one among the yet unsearched districts in the round-t-relabelled

set f1; :::;Ktg nst (ht). This process continues until IG has received M favorable

signals or N �M unfavorable signals or, if neither of the two happens by round N ,

until all districts have been searched.

The intuition underlying Proposition 5 runs as follows. Given that the ex ante

expected valuation Ern is the same for every district n 2 N and that the probability

qn of receiving a signal when IG searches district n 2 N is independent of the

district�s valuation rn, any search sequence satisfying the equilibrium stopping rule

stated in Proposition 4 yields the same expected total quantity of goods (Lemma

5 in the proof of Proposition 5). At the same time, the costly search causes IG to

follow a search sequence that minimizes the number of districts it searches. This

induces IG to search districts for which the probability of receiving a signal is the

highest. At each round t IG anticipates it will ultimately search the Kt districts

with highest qns before it will stop searching, which explains why IG is indi¤erent

searching at round t any of the districts in the relabelled set f1; :::;Ktg.

The following example illustrates IG�s equilibrium search strategy.

Example 6. Consider a country where there are �ve districts (N0 = f0; 1; 2; 3; 4g)

and the legislative assembly takes its decisions by simple majority (M = 2, implying

N �M = 2). Suppose that the pro�le of valuations for districts in N = f1; 2; 3; 4g

is given by (r; r; r; r).

I start with a situation where a signal is received for any district that IG chooses

to search, that is, the pro�le of potential signal realisations is given by (r; r; r; r).
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Following Propositions 4 and 5, IG is initially indi¤erent searching district 1 or

district 2. Without loss of generality, suppose IG searches district 1. Receiving a

favorable signal, IG chooses to search district 2, from which it receives an unfa-

vorable signal, and then moves to search district 3. Receiving a second favorable

signal, IG stops searching. Thus, IG searches districts 1, 2 and 3, AS forms a

legislative coalition L� = f1; 3g, and the total quantity of goods is equal to G� =

� (Er0; r; r).36

I continue with a situation where the pro�le of potential signal realisations is

given by (;; r; r; r), that is, searching district 1 yields no signal while searching

district n 2 f2; 3; 4g yields a signal rn. IG is again indi¤erent starting with district

1 or district 2. As in the previous case, suppose IG searches district 1. Receiving

no signal, at round 2 IG is indi¤erent searching district 2 or district 3. Without

loss of generality, suppose IG searches district 2. IG then receives an unfavorable

signal and, at round 3, searches district 3. This time, IG receives a favorable signal

and then moves to search district 4, for which it receives an unfavorable signal. IG

then stops searching since it has received two unfavorable signals and, in any case,

has searched all districts. AS forms a legislative coalition L� = f1; 3g, and the total

quantity of goods is equal to G� = � (Er0; Er1; r) with Er1 = Er. �

I conclude by underlining two interesting di¤erences between the p-case con-

sidered in the paper and the q-case considered here. First, there is a unique equi-

librium search sequence in the p-case, while there are multiple equilibrium search

sequences in the q-case. However, it is important to note that in the q-case, all

equilibrium search sequences generate the same set of searched districts (Lemma

6 in the proof of Proposition 5) and the same quantity of goods (Lemma 5 in the

proof of Proposition 5), meaning the equilibrium outcome is unique. Second, in the

p-case IG starts with district M + 1 and then moves non-monotonically towards

districts 1 and N . By contrast, in the q-case an equilibrium sequence exists where

IG starts from district 1 and then moves monotonically towards district N . More

generally, given a pro�le of potential signal realisations and a majority requirement

M 2 f1; :::; N � 1g, in the q-case there exists � 2 f1; :::; Ng such that for any equi-
36 If instead IG searches district 2 at round 1, then it will receive an unfavorable signal and move

to search district 1 followed by district 3. Thus, although the order in which districts are searched

is di¤erent, the set of searched districts as well as the legislative coalition and the total quantity

of goods are the same as when IG starts its search process with district 1.
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librium search sequence, the set of searched districts is given by f1; :::; �g (Lemma

6 in the proof of Proposition 5).37

PROOF OF PROPOSITION 5

I �rst state and prove two results. The �rst result (Lemma 5) establishes that all

search sequences satisfying the equilibrium stopping rule generate the same ex ante

quantity of goods. The second result (Lemma 6) characterizes the set of searched

districts when IG follows the equilibrium search sequence.

Lemma 5. For any two search sequences, s and s0, that satisfy the condition

stated in Proposition 4, we have that EG (s) = EG (s0).

Proof of Lemma 5. Pick any sequence � that orders all the elements in N .

Construct a sequence �0 such that

�� 0 =

8>>><>>>:
��+1 if � = t

���1 if � = t+ 1

�� if � 6= t; t+ 1

for some t 2 f1; :::; N � 1g, that is, �0 is obtained from � by switching two consecu-

tive districts at rounds t and t+1. Let s (�) and s (�0) be the search sequences that

are obtained from � and �0, respectively, and that satisfy the stopping condition

stated in Proposition 4. I must show that EG (s (�)) = EG (s (�0)).

Consider � (�) aN -tuple of signals associated with sequence �. We haveG (s (�)) 6=

G (s (�0)) if and only if � (�) is such that it+ (� (�)) = M � 1 and it� (� (�)) =

N �M � 1, and

(i)
�
�t (�) = r and �t+1 (�) = r

	
, in which caseG (s (�)) = � (r; :::; r) andG (s (�0)) =

� (Er; r; :::; r), or

(ii)
�
�t (�) = r and �t+1 (�) = r

	
, in which case G (s (�)) = � (Er; r; :::; r) and

G (s (�0)) = � (r; :::; r).

As case (i) and case (ii) occur with the same probability, we get EG (s (�)) =

EG (s (�0)).

By repeatedly switching two consecutive districts, one can cover the whole set

of possible sequences, thereby establishing EG (s) = EG (s0) for any two sequences

that satisfy the equilibrium stopping rule. �
37Observe that for M = 0 or M = N , Propositions 1 and 4 imply that the equilibrium set of

searched districts is empty in both the p-case and the q-case.
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Before stating and proving Lemma 6, I introduce extra notation. De�ne P� �

f1; :::; �g � N as the set of districts with the � highest qns.

Given an N -tuple of signals over N , � = (�1; :::; �N ), de�ne

� P�+ � fn 2 P� : �n = rg as the set of districts in P� with a favorable signal

in �.

� P�� � fn 2 P� : �n = rg as the set of districts in P� with an unfavorable

signal in �.

Lemma 6. Let � = (�1; :::; �N ) be an N -tuple of signals �n 2 fr; r; ;g over N .

At any round t 2 f1; :::; Ng, relabel districts such that Ct = f1; :::; N + 1� tg with

q1 > q2 > ::: > qN+1�t. Pick a search sequence s where at any round t 2 f1; :::; Ng,

we have 8<: st 2 f1; :::;Ktg if it+ < M and it� < N �M

st = ; if it+ �M or it� � N �M

where Kt � min fM � it+; N �M � it�; N + 1� tg. Then, the set of districts that

IG searches is given by

I (�) =

8<: N if #PN+ (�) < M and #PN� (�) < N �M

PT (�) if #PN+ (�) �M or #PN� (�) � N �M

where T � min ft 2 f1; :::; Ng : it+ =M or it� = N �Mg.

Proof of Lemma 6. The proof is constructive.

Consider �rst a signal pro�le � with #PN+ (�) < M and #PN� (�) < N �M .

At any round t 2 f1; :::; Ng, we have Kt � 1, implying st 6= ;. Hence I (�) = N .

Consider now a signal pro�le � with #PN+ (�) �M or #PN� (�) � N �M .

Pick a round t 2 f1; :::; N � 1g at which Kt � 1. Let st = i 2 f1; :::;Ktg � Ct.

Then, the set Ct+1 among which IG chooses one district to investigate at round

t+ 1 is given by

� if it+ < it�,

Ct+1 =

8<: Ctn fig if �i = r

(Ct [ fhg) n fig if �i 2 fr; ;g

� if it+ > it�,

Ct+1 =

8<: Ctn fig if �i = r

(Ct [ fhg) n fig if �i 2 fr; ;g
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� if it+ = it�,

Ct+1 =

8<: Ctn fig if �i 2 fr; rg

(Ct [ fhg) n fig if �i = ;

where h = 1+maxCt. Observe that #Ct+1 � #Ct. Moreover, since #PN+ (�) �

M or #PN� (�) � N �M , there is a round � � t at which K� = 1 and, therefore,

#C� = 1.

I am now ready to show that I = PT (�). Pick two districts h and i with

qh > qi. Suppose there is a round t0 at which st
0
= i. I am going to show that

h 2 I. There are two cases to consider:

(i) st = h at some round t < t0, or

(ii) st 6= h at every round t < t0. I am going to show that st
00
= h at some

round t00 > t0. Observe that qh > qi and i 2 Ct
0
imply h 2 Ct0 . Moreover,

fh; ig � Ct
0
implies Kt0 � 2 and, therefore, h 2 Ct0+1. As #Ct is weakly

decreasing with t and #C� = 1 at some round � , there must exist a round

t00 2 ft0 + 1; :::; �g at which st00 = h.

As these two cases exhaust all possibilities, we have that st = h at some round

t. Hence there exists a critical district k 2 N such that8<: h 2 I (�) for all h 2 N with qh � qk
h =2 I (�) for all h 2 N with qh < qk:

That k = T � min f� : #P�+ (�) �M or #P�� (�) � N �Mg follows from C1 =

f1; :::;min fM;N �Mgg and the sequencing of Ct for t = 1; :::; N . �

I am now ready to prove Proposition 5. Let8>>>><>>>>:
QSk(P� ) �

P
S2Sk(P� )

� Q
`2S

q`

�" Q
`2P�nS

(1� q`p)
#

Q
Sk(P� )

�
P

S2Sk(P� )

� Q
`2S

q`

�" Q
`2P�nS

(1� q` � (1� p))
#
:

Proof of Proposition 5. The proof is inductive. We start at round t = N � 1

and then proceed backward.38

Consider round t = N � 1 with KN�1 � 1. There are two cases to consider:

(i) KN�1 = 2: I show that sN�1 2 f1; 2g = CN�1, that is, IG is indi¤erent

between sN�1 = 1 and sN�1 = 2. Since it+ � M � 2 and it� � N �M � 2,
38We already know from Proposition 4 that sN = 1 whenever KN � 1, and sN = ; otherwise.
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we get from Proposition 4 that the continuation search sequence is either

sN�1 = 1 and sN = 2, or sN�1 = 2 and sN = 1. Thus, IG is indi¤erent

between sN�1 = 1 and sN�1 = 2 since both continuation sequences result in

the same quantity of goods and the same search cost.

(ii) KN�1 = 1: I show that sN�1 = 1. We know from Lemma 5 that the expected

quantity of goods is the same whether sN�1 = 1 or sN�1 = 2, that is, EG1 =

EG2. The expected continuation search cost for a continuation sequence

starting at sN�1 = i 2 CN�1 is equal to

E"i =

8>>><>>>:
qip+ 2 (1� qip) if i(N�1)+ =M � 1 & i(N�1)� < N �M � 1

qi � (1� p) + 2 [1� qi � (1� p)] if i(N�1)+ < M � 1 & i(N�1)� = N �M � 1

qi + 2 (1� qi) if i(N�1)+ =M � 1 & i(N�1)� = N �M � 1:

Since q1 > q2, we have E"1 < E"2 which, together with EG1 = EG2, implies

sN�1 = 1.

Assume the statement is true at round (t+ 1) 2 f2; :::; N � 1g. Consider round

t with Kt � 1. We already know from Lemma 5 that the expected quantity of

goods is the same for any continuation search sequence: EG1 = ::: = EGN+1�t.

There are two cases to consider:

(i) Kt = N + 1� t: I show that st 2 f1; :::; N + 1� tg = Ct, that is, IG is indif-

ferent between any st 2 Ct. We know that st 2 Ct (Proposition 4) and that

I = N (Lemma 6 and the statement being true at round t + 1). Hence IG

searches all districts, meaning IG is indi¤erent between any st 2 Ct as they

all yield the same quantity of goods (EG1 = ::: = EGN+1�t) and the same

search cost (E"1 = ::: = E"N+1�t).

(ii) Kt < N + 1� t: I show that st 2 f1; :::;Ktg � Ct, that is, IG is indi¤erent

between searching any of the districts with the Kt highest probabilities of

getting a signal. Let st = h 2 Ct. Using Lemma 6, we get that the expected

continuation search cost is given by

E"h = (N + 1� t)�
N�tX
i=Kt

(N � i)
�
�hi + �

h
i

�
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where

�hi =

8>>>>>><>>>>>>:

0 if i < M � it+

pM�it+ � qi�1 �QSM�it+�1(Pi�2[fhg)
if h > M � it+ &

i =M � it+; :::; h

pM�it+ � qi �QSM�it+�1(Pi�1) otherwise

is the probability that ii+ =M and i(i�1)+ =M � 1, and

�hi =

8>>>>>><>>>>>>:

0 if i < N �M � it�

(1� p)N�M�it� � qi�1 �QSN�M�it��1(Pi�2[fhg)

if h > N �M � it� &

i = N �M � it�; :::; h

(1� p)N�M�it� � qi �QSN�M�it��1(Pi�1)
otherwise

is the probability that ii� = N �M and i(i�1)� = N �M � 1.

I show that 8<: E"h = E"h+1 for h 2 f1; :::;Kt � 1g

E"h < E"h+1 for h 2 fKt; :::; N � tg :

To do so, I start by writing

E"h+1 � E"h =
�
E"h+1 � E"h

�
+
�
E"h+1 � E"h

�
where 8<: E"h+1 � E"h �

PN�1
i=Kt (N � i) �

�
�hi � �h+1i

�
E"h+1 � E"h �

PN�1
i=Kt (N � i) �

�
�hi � �h+1i

�
:

After tedious computations (see next section), we get

E"h+1 � E"h
pM�it+ � (qh � qh+1)

= (7)

8>>>>>>>><>>>>>>>>:

0 if h < M � it+

�+1P
k=1

M�it++��kP
i=M�it+�1

qi � �+i �QSM�it+�2(Pi�1)

if h =M � it+ + � & it+ < M � 1

for � 2 f0; :::; it+ +N �M � tg

1 + 1h�1 �
h�1P
j=1

" Q
`2Pj

(1� qjp)
#

if it+ =M � 1

and
E"h+1 � E"h

(1� p)N�M�it� � (qh � qh+1)
=
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8>>>>>>>>>>><>>>>>>>>>>>:

0 if h < N �M � it�

�+1P
k=1

N�M�it�+��kP
i=N�M�it��1

qi � ��i �QSN�M�it��2(Pi�1)

if h = N �M � it� + � &

it� < N �M � 1

for � 2 f0; :::; it� +M � tg

1 + 1h�1 �
h�1P
j=1

" Q
`2Pj

(1� qj � (1� p))
#

if it� = N �M � 1

where

�+i �

8><>:
1 for k = 1
k�1Q
j=1

(1� qi+jp) for k > 1

��i �

8><>:
1 for k = 1
k�1Q
j=1

(1� qi+j � (1� p)) for k > 1:

Hence

E"h+1 � E"h

8<: = 0 if h < M � it+

> 0 if h �M � it+

E"h+1 � E"h

8<: = 0 if h < N �M � it�

> 0 if h � N �M � it�;

implying 8<: E"h+1 = E"h for h < Kt

E"h+1 > E"h for h 2 fKt; :::; N � tg :

To sum up, we have8<: EG1 = ::: = EGN�t+1

E"1 = ::: = E"Kt < E"Kt+1 < ::: < E"N�t+1;

which implies st 2 f1; :::;Ktg. �

DERIVATION OF (7)

Equation (7) is obtained by rearranging

E"h+1 � E"h �
N�1X
i=Kt

(N � i) �
�
�hi � �h+1i

�
:

I am going to develop the computations for the case where h =M � it++� and

it+ < M�1 for � 2 f0; :::; it+ +N �M � tg, with h 2 fM + 1� it+; :::; N � 2� it+g�;

the computations are simpler or similar for the other cases.
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We can rewrite E"h+1 � E"h as

h+1X
i=M�it+

(N � i) �
�
�hi � �h+1i

�

=
�
N �M + it+

�
�
�
�hM�it+ � �

h+1
M�it+

�
+

hX
i=M+1�it+

(N � i) �
�
�hi � �h+1i

�
+(N � h� 1) �

�
�hh+1 � �h+1h+1

�
=

�
N �M + it+

�
� pM�it+ � qM�1�it+ �

h
QSM�1�it+(PM�2�it+[fhg)

�QSM�1�it+(PM�2�it+[fh+1g)

i
+

hX
i=M+1�it+

(N � i) � pM�it+ � qi�1 �
h
QSM�1�it+ (Pi�2[fhg) �QSM�1�it+ (Pi�2[fh+1g)

i
+(N � h� 1) � pM�it+ �

h
qh+1 �QSM�1�it+ (Ph) � qh �QSM�1�it+ (Ph�1[fh+1g)

i
:

Dividing both sides by pM�it+ � (qh � qh+1) and rearranging the right hand side,

we get that E"h+1�E"h
pM�it+ �(qh�qh+1)

is equal to

�
N �M + it+

�
� qM�1�it+ �QSM�2�it+(PM�2�it+)

+
hX

i=M+1�it+
(N � i) � qi�1 �

h
QSM�2�it+ (Pi�2) � p �QSM�1�it+ (Pi�2)

i
� (N � h� 1) �QSM�1�it+ (Ph�1)

=
h�1X

k=M�1�it+
qk �QSM�2�it+ (Pk�1)

+
�
N �M + it+ � 1

�
�
h
qM�1�it+ �QSM�2�it+(PM�2�it+)

�qM�it+ � p �QSM�1�it+(PM�1�it+)

i
+

h�1X
i=M+1�it+

(N � i� 1) �
h
qi�1 �QSM�2�it+ (Pi�2) � qi � p �QSM�1�it+ (Pi�1)

i
+(N � h� 1) �

h
qh�1 �QSM�2�it+ (Ph�2) �QSM�1�it+ (Ph�1)

i
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=
h�1X

k=M�1�it+
qk �QSM�2�it+ (Pk�1)

+
�
N �M + it+ � 1

�
� qM�1�it+ � (1� qM�it+ � p) �QSM�2�it+(PM�2�it+)

+
h�1X

i=M+1�it+
(N � i� 1) � [qi�1 � (1� qi � p) �QSM�2�it+ (Pi�2)

�qi � p � (1� qi�1 � p) �QSM�1�it+ (Pi�2)]

� (N � h� 1) � (1� qh�1 � p) �QSM�1�it+ (Ph�2):

=

h�1X
k=M�1�it+

qk �QSM�2�it+ (Pk�1) +

h�2X
k=M�1�it+

qk � (1� qk+1 � p) �QSM�2�it+ (Ph�1)

+
�
N �M + it+ � 2

�
� [qM�1�it+ � (1� qM�it+ � p) �QSM�2�it+(PM�2�it+) �

�qM+1�it+ � p � (1� qM�it+ � p) �QSM�1�it+(PM�1�it+)]

+
h�2X

i=M+1�it+
(N � i� 2) � (1� qi � p) �

h
qi�1 �QSM�2�it+ (Pi�2) � qi+1 � p �QSM�1�it+ (Pi�1)

i
+(N � h� 1) � (1� qh�1 � p) �

h
qh�2 �QSM�2�it+ (Ph�3) �QSM�1�it+ (Ph�2)

i
:

By repeating this process, we obtain (7).
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