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Abstract

This paper proposes a joint methodology for the identification and inference of structural vector autore-

gressive models in the frequency domain. We show that identifying restrictions can be written naturally

as an asymptotic least squares problem (Gourieroux, Monfort and Trognon, 1985) in which there is a

continuum of nonlinear estimating equations. Following Carrasco and Florens (2000), we then develop a

continuum asymptotic least squares estimator (C-ALS) that exploits efficiently the continuum of estimat-

ing equations thereby allowing to obtain optimal consistent estimates of impulse responses and reliable

confidence intervals. Moreover the identifying restrictions can be formally tested using an appropriate

J-stat and the frequency band can be selected with a data-driven procedure. Finally, we provide some

new results using Monte Carlo simulations and applications regarding the hours-productivity debate and

the impact of news shocks.
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1 Introduction

While the ability of vector autoregressive models (VAR) models as descriptive and/or forecasting tools is

well established, structural interpretation of VAR models is still subject to effervescent debates. Following

the seminal works of Sims (1980a, 1980b), moving from atheoretical VAR models to structural VAR models

requires identifying assumptions that rest on economic theory (among others)—VAR results cannot be inter-

preted independently of a more structural macroeconomic model (Cooley and Leroy, 1985; Bernanke, 1986).1

In this paper, we propose a joint methodology for the identification and inference of structural vector autore-

gressive models in the frequency domain. Our starting point is that identifying restrictions in the frequency

domain condition the impulse response functions and correspond to constraints on (multivariate) spectral

density functions. Accordingly, there is a general mapping between identifying restrictions and the power

spectra of the variables of interest. Said differently, imposing identifying restrictions on a frequency band

is equivalent to constraint the contribution of structural shocks to explain the variance of given variables at

those frequencies. To illustrate it, consider the model of Gaĺı (1999) that attributes variation in U.S. labour

productivity and hours worked to a technology shock and a non-technology shock. Identification is achieved

by imposing that the latter has no long-run effects, i.e. at the frequency ω = 0, on labour productivity. As

suggested by Faut and Lepper (1997), Faust (1998) and Pötscher (2002), we can impose restrictions on the

effects of the non-technology shock not only at the zero frequency but also its neighborhood, say ω ∈ (−ω, ω).

Intuitively, it means that the contribution of the non-technology shock is expected to be negligible to explain

the variance of the (level) real GDP in the medium- to long-term. More generally, our approach allows for

identifying restrictions on the frequency bands of interest in finance and macroeconomics, which correspond

to short-run, business cycles, medium-term and long-run fluctuations. In this respect, this generalization

permits a much richer set of identifying restrictions and possibly to better capture a wide range of structural

shocks that are only weakly identified through existing methods.

Our main contribution is to define and solve the identification and inference of structural vector autore-

gressive models using identifying restrictions in the frequency domain as an appropriate asymptotic least

squares problem. Indeed, ignoring for the moment the writing of identifying restrictions in the frequency

domain, it is well-known that imposing short-run and/or long-run restrictions leads to a finite set of nonlinear

equations.2 A somewhat different perspective is to see this problem from the angle of the Asymptotic Least

Squares (henceforth, ALS) theory developed by Gourieroux, Monfort and Trognon (1985). Indeed, the iden-

tification of structural shocks/parameters is obviously concomitant to the estimation of the autoregressive

parameters of the reduced-form VAR as well as the variance-covariance matrix of the innovations. In this

respect, the set of nonlinear equations that defines the mapping between the structural representation and

the reduced-form can be interpreted as nonlinear estimating functions in which the structural parameters of

1In a different perspective, Gourieroux, Monfort and Renne (2020) propose a statistical identification of structural shocks in

a non-Gaussian framework. See also Guay (2021).
2See Kilian and Lütkepohl (2017), Chapters 11 and 12.
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interest depend on auxiliary parameters, those of the reduced form, which are estimated in a first step. In

doing so, we proceed as in the ALS approach and this framework therefore makes it possible to naturally

study the identification and inference of structural VAR models. Returning now in the frequency domain, the

counterpart of these (finite) nonlinear estimating functions is a continuum of nonlinear functional equations

defined on a frequency band ω ∈ (−ω, ω).

To do this, after reinterpreting the structural identification in an ALS perspective, we take advantage

of the methodology proposed by Carrasco and Florens (2000), and Carrasco et al. (2007), namely the

Continuum-GMM estimator (henceforth, C-GMM). Notably, Carrasco and Florens (2000) show that there

exists a C-GMM estimator—in the presence of a continuum of (generalized) moment conditions—that closely

mimics the efficient two-step GMM of Hansen (1982). The main idea is to minimize a quadratic form, with

metrics a regularized inverse of the asymptotic covariance operator, in a Hilbertian functional space than

spans the continuum of estimating equations. Then the first step based on the identity operator metrics

leads to a consistent estimator and the second step delivers an efficient estimator. In our context, this

amounts of considering the Hilbertian functional space that spans the continuum of identifying restrictions

or their dual representation with the constrained power spectra, i.e. to project the continuum of moment

restrictions onto the space engendered by the auxiliary parameters of the reduced-form VAR. Intuitively, it

means that one exploits efficiently the information embedded in the estimation of the reduced-form VAR.

More fundamentally, the cornerstone of our approach is that the second step involves a set of overidentified

estimating equations, thanks to the projection defined on the Hilbertian functional space. This opens the

window to test such restrictions and to select the frequency band.

As a by-product, the fact that the dimension of the vector of auxiliary parameters is finite, say q, has at least

three fundamental implications. First, while the Hilbert-Schmidt covariance operator is not invertible on

the full reference space as in Carrasco and Florens (2000), it has a finite dimensional closed range (at most)

equal to q. Second, the objective function only involves a one-dimensional integral against a well-chosen

measure and thus does not require any quadrature method or Monte Carlo integration.3 Third, the practical

implementation of the (regularized) objective function and the optimal weighting matrix does not depend

on the inverse of a matrix of dimension T , but rather on a matrix of dimension q. These three properties

render our approach quite appealing and attractive from a computational point of view. To summarize, we

propose a new efficient estimator (C-ALS estimator) that combines the seminal work of Carrasco and Florens

(2000) with the asymptotic least squares method (Gourieroux et al., 1985; Gourieroux and Monfort, 1995)

in the presence of a continuum of identifying restrictions. Importantly, our approach is optimal compared

to an alternative strategy based on a selection of a sufficiently refined grid through a discretization of the

frequency band and thus to a discretized ALS estimator, and does not involve any numerical approximation.4

3In general, the objective function of the C-GMM involves a d-dimensional integral against a well-chosen measure, where d

is the dimension of the multivariate (random) process.
4For instance, we discuss thoroughly the case of a bivariate SVAR models and show that the discretized ALS estimator

makes use of a different weighting procedure, which results in a loss of efficiency.
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Our new methodology for the identification and inference of structural VAR models has also other ap-

pealing features. First, Monte-Carlo simulations highlight that the C-ALS estimator has very interesting

finite sample properties and performs better than traditional alternatives in terms of bias and mean squared

errors irrespective of the IRF horizon. This results from two key elements. On the one hand, using a fre-

quency band allows more substantial information for the identification of structural shocks and thus the

structural impulse responses functions. On the other hand, the second-step exploits efficiently this infor-

mation. Intuitively, and as reported in our Monte Carlo simulations and applications, the IRF confidence

bands are sharply reduced with respect to the first-step C-ALS estimator and other alternatives. Second,

when imposing restrictions on a neighborhood of ω = 0, we offer a credible alternative to the so-called un-

reliability problem (Faust, 1996; Faust and Leeper, 1997) and especially the fact that one can neither form

asymptotically correct confidence intervals for the impulse response functions nor can offer any consistent

test of the nullity of the latter from any inconsistent estimate of the long-run multiplier.

Third, it offers the opportunity to implement testing procedures and thus to provide new insights on the va-

lidity of both the identifying restrictions and the frequency band of interest. Following Carrasco and Florens

(2000), we propose tests of overidentification with a modified J-stat using any positive definite weighting

matrix including the optimal one.5 The modified J-stat allows for selecting the frequency band (i.e., the

reliability of the imposed restrictions), thereby permitting us to conduct a data-driven procedure in order to

assess frequency intervals on which the imposed restrictions might be satisfied. We illustrate the usefulness

of the overidentification test and the interval selection in two applications regarding the identification of a

technology shock and a news shock.6

Our paper is closely related to two strands of the literature in the frequency domain, namely the full

identification of structural shocks, as well as the (agnostic) partial identification case using the max-share

approach. On the one hand, Wen (2001, 2002) proposes a min-effect/max-effect frequency estimator in a

bivariate VAR model. We show that it corresponds to the first-step C-ALS estimation in the bivariate case.

Similarly, Chahrour and Jurado (2018, 2021) propose an identification condition of structural shocks in the

context of expectations-driven fluctuations using spectral density on the whole frequency band ω ∈ [−π, π].

Especially they relax the assumption of a fundamental representation with a less restrictive condition, called

recoverability—structural shocks can be backed out from all past, present and future observables available

to the econometrician. It turns out that an optimal C-ALS two-step estimator can also be performed in

this context, thereby permitting to test the imposed identification restrictions to recover the noise and the

fundamental structural shocks.

On the other hand, our paper is also related to the strand of the literature on the max-share frequency

5Overidentification tests have been proposed when the number of restrictions is greater than required in the identification

procedure (see Bernanke and Mihov, 1998).
6Section 3 illustrates several possible applications of these two testing procedures.
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approach. Starting from the seminal contributions of Faust (1998) and Uhlig (2003, 2004) in the time do-

main, DiCecio and Owyang (2010) propose a frequency-based max-share identification in the case of bivariate

SVAR models, which amounts of finding a structural shock (e.g., the technology shock) that maximizes the

share of the forecast-error variance in the two variables of interest (e.g., productivity growth and hours

worked) on various frequency bands (see also Dieppe et al., 2019). Using the max-share frequency approach

with a larger VAR dimension, Angeletos et al. (2020) and Basu et al. (2021) provide evidence that a single

shock mostly explains the variance of a wide range of financial and macroeconomic variables over selected

band of frequencies. Such max-share approach in the frequency domain can also be seen as a particular case

of our proposed approach in the partial identification situation.

The rest of the paper is organized as follows. Section 2 reviews notation and present our identification

strategy at a given frequency and then a frequency band. Section 3 discusses some applications of the C-

ALS methodology. Section 4 presents the (optimal) C-ALS estimator using the methodology proposed by

Carrasco and Florens (2000). Section 5 first provides the derivations for any multivariate VAR model in the

case of full identification and then applies these results to a bivariate structural VAR. We then turn to the

partial identification case, especially for a single structural shock. Section 6 proposes a comparative study

of competing identification schemes using some Monte-Carlo simulations. Section 7 revisits the empirical

evidence of two main applications of structural VAR models. The last section contains concluding comments

and future extensions. Proofs are gathered in Appendix.

2 Frequency identification of structural VAR models

In this section, we first introduce preliminary notation and provide an overview of our frequency-based

approach.

2.1 Notation

It is assumed that a N -dimensional multiple time series X1, X2, · · · , XT with Xt = (X1t, · · · , XNt)
′ is

available and that these variables are second-order stationary. The vector Xt can include level stationary

variables, integrated variables in difference or stationary linear combination of integrated variables.7 Ac-

cordingly, Xt = (X1t, · · · , XNt)
′ is a (N × 1) random vector and X = (X1, · · · , XT ) is a (N × T ) random

matrix. To simplify the notation, presample values for each variable are assumed to be available. Further-

more all deterministic regressors have been suppressed for notational convenience. Xt is approximated by a

stationary, stable, reduced-form VAR(p) process:

Xt = φ1Xt−1 + · · ·+ φpXt−p + ut (2.1)

where the φi are fixed (N ×N) coefficient matrices for lag i, Φp = [φ1 φ2 . . . φp] is a (N × (pN)) matrix of

all autoregressive coefficients, ut = (u1t, · · · , uNt)′ is a N -dimensional white noise (innovation process), that

7The identification strategy proposed here could be extended to VECM.
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is, E(ut) = 0N×1, E(utu
′
t) = Σ is nonsingular and E(utu

′
s) = 0N×N for s 6= t.

The corresponding reduced-form vector moving average representation is defined by:

Xt =

∞∑
i=0

Ciut−i = C(L)ut (2.2)

where C(L) =
∑∞
i=0 CiL

i, L is the lag operator, and C0 = C(0) = IN (with IN the identity matrix of order

N), Ci =
∑i
j=1 Ci−jφj .

The structural VAR model can be written as:

Xt =

∞∑
i=0

Aiεt−i = A(L)εt (2.3)

where A(L) =
∑∞
i=0AiL

i, A0 ≡ A(0), and εt is a random N × 1 vector of structural shocks with E(εt) = 0

and E(εtε
′
t) = Γ. A common identification assumption is Γ = IN .

Taking equations (2.2) and (2.3), the error terms of the reduced-form model are related to the structural

shocks as follows:8

ut = A(0)εt, (2.4)

with C(L)A(0) = A(L), and thus

C(0)ΣC(0)′ ≡ Σ = A(0)A(0)′. (2.5)

Then the central question is how to recover the elements of A(0) from consistent estimates of the reduced-form

parameters. In the sequel, we propose a frequency-based approach of structural identification.

2.2 Imposing restrictions on a frequency band

We first present a unifying framework embedding the short-run and long-run restrictions, and those in the

frequency domain. Let z ∈ C, the mapping of the reduced-form innovations and the structural shocks using

equation (2.5) can be written generically as follows:

C(z)ΣC(z)∗ = A(z)A(z)∗ (2.6)

where C(z) = [IN − φ1z − · · · − φpzp]−1
, C(z)∗ = C(z)

′
and A(z)∗ = A(z)

′
denote the transpose complex

conjugate of C and A, respectively. For z = 0, this corresponds to equation (2.5) and for z = 1, to the

equality between the long-run variance-covariance matrices of the reduced-form innovations and the struc-

tural shocks. When z = e−iω ∈ C for any ω ∈ [−π, π], the left-hand side term (respectively, right-hand side

8For a more general presentation, see Amisano and Giannini (1997), Lüktepohl (2007), Kilian (2013), and Kilian and

Lüktepohl (2017).
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term) is the Fourier transform of the reduced-form VAR (respectively, the structural VAR) for any frequency

in [0, π]. Said differently, up to the constant term 1/2π, it is simply the equality between the multivariate

spectral density matrix of the reduced-form VAR and the one of the structural VAR for any frequency ω.

Equation (2.6) implies the following mapping between the reduced-form autoregressive matrix and the struc-

tural autoregressive matrix:

C(z)A(0) = A(z). (2.7)

Starting from equation (2.6), the key observation is that Σ and C(z) can be estimated from data, using

some estimates of the autoregressive parameters β = (vec(Φp)
′, vech(Σ)′)

′
, denoted β̂T . By equation (2.7),

if one puts enough restrictions on A(z), the remaining elements of A(z) and thus A(0) can be pinned down.

Especially, identifying restrictions are generally imposed on some (i, j) elements of A(z):

aij(z) = 0 for a given z

or

[C(z)]i· [A(0)]·j = 0

where [B]i· and [B]·j denote the i-th row and j-th column of the B matrix, respectively. Consider the

bivariate case with the restriction: a12(z) = 0. This gives the following equation:

ĉ11(z)a12(0) + ĉ12(z)a22(0) = 0

where ĉij(z) and aij(0) are respectively the (i, j) element of the matrices Ĉ(z) and A(0). When z = 0, one

obviously recovers the usual short-run restriction a12(0) = 0 corresponding to the Cholesky decomposition

since ĉ11(0) = 1 and ĉ12(0) = 0 using C(0) = I2. Following Gaĺı (1999), using a long-run restriction (z = 1),

for a bivariate VAR model including labor productivity and hours worked, the technology shock can be

identified by assuming that the second structural shock has no long-run impact on the first variable:

ĉ11(1)a12(0) + ĉ12(1)a22(0) = a12(1) ≡ 0.

In general, when z = 1 (or ω = 0), one recovers the standard long-run identification scheme of Blanchard and

Quah (1989), C(1)ΣC(1)′ = A(1)A(1)′. Only N(N − 1)/2 restrictions on A(1) are then required to satisfy

the order condition in the case of exact identification and the matrix A(0) is recovered from the relationship:

C(1)A(0) = A(1).

Finally, using equations (2.6) and (2.7) and the economic interpretation of the spectral density matrix,

imposing structural identifying restrictions on a frequency band is equivalent to minimize the contribution

of certain structural shocks for the variables of interest. For instance, in a bivariate structural VAR model,

the identifying restriction that the second structural shock has no permanent effect on the first variable at

a given frequency, say in the long-run, translates into the fact that the partial spectrum of the first variable

7



with respect to the second structural shock is minimized at this frequency. Without loss of generality, we

discuss the estimating equations using equation (2.7) and we differ the discussion of the spectral-based rep-

resentation in Section 5.

For any given z, the r-identifying restrictions write as follows:

Hvec (A(z)− C(z)A(0)) = 0r×1 (2.8)

or

H (IN ⊗ C(z)) a(0) = b(z)

where H is an r ×N2 selection matrix, a(0) = vec(A(0)), and b(z) = Hvec(A(z)).

Using equations (2.5) and (2.8), the identifying restrictions can be written as:

g(a(0), β, z) =

 vech (Σ−A(0)A(0)′)

H (IN ⊗ C(z)) a(0)− b(z)

 = 0 (2.9)

where 0 is a conformable vector of zeroes.

These moment conditions (2.9) define a system of estimating equations linking the (structural) parameters

of interest α (here a(0)) and the vector of auxiliary parameters β. This estimation framework corresponds to

the asymptotic least squares procedure proposed by Gourieroux et al. (1985) and Gourieroux and Monfort

(1995).

Indeed, using some consistent estimates of β, denoted β̂T , an estimator of α can be obtained by mini-

mizing the system of estimating equations in a given metric. More specifically, a first step proceeds with

the estimation of the reduced-form parameters β whereas a second step makes use of the asymptotic least

squares procedure. To the best of our knowledge, the asymptotic least squares procedure has not yet been

used to study SVARs in a unified framework. By appropriately defining the fonction g(α, β̂T , z) that maps

the parameters of interest α and the auxiliary parameters β, we show that the ALS methodology allows

to jointly investigate a large class of identification, estimation and inference issues based on SVARs. The

next section presents several examples in the case of full or partial identification and estimation of structural

IRFs, as well as when estimating and validating structural dynamic models based on structural IRFs.

Turning now to any frequency interval ω ∈ [ω, ω] ⊆ [−π, π], we can consider a continuum of frequency

conditions indexed by ω as follows:

g(a(0), β, ω) =

 vech (Σ−A(0)A(0)′)

H
(
IN ⊗ C(e−iω)

)
a(0)− b(z)

 = 0. (2.10)
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Going back to the example of Gaĺı (1999) and thus the standard Blanchard-Quah long-run restriction (equa-

tion (2.8)), the continuum of estimating equations H
(
IN ⊗ C(e−iω)

)
a(0)− b(z) in a (symmetric) neighbor-

hood of ω = 0, ω ∈ [−ω;ω], is given by:

g(a2(0), β̂, ω) ≡ ĉ11(e−iω)a12(0) + ĉ12(e−iω)a22(0) = 0

where b(z) = 0. Combining the continuum of restrictions with the relationship between the variance-

covariance matrix of the reduced form error terms and the structural shocks, Σ = A(0)A(0)′, leads to

identify the vector of structural parameters a(0).9

Similar to the case of a given frequency ω, a two-step procedure can be applied but now on a contin-

uum of estimating equations g(α, β̂T , ω) for ω ∈ [ω, ω] ⊆ [−π, π] with α = a(0). Importantly, the system of

equations based on a continuum of frequencies is overidentified even if the original structural VAR model for

a given frequency, say ω = 0, is just-identified. An overidentification test can then be performed to assess

the reliability of the imposed restrictions on the frequency band. This also raises the question of the selec-

tion of the frequency interval on which the identifying restrictions might be satisfied. This issue is further

discussed in Section 4 by means of an information criterion procedure (Hall et al., 2012). Accordingly, using

a larger window of frequencies might provide a more efficient identification and estimation of the parameters

of interest α.

3 Examples

This section provides some applications of the asymptotic least squares theory using a frequency band or

equivalently a continuum of estimating equations. The first two applications, namely the identification of

technology and news shocks, are further discussed as applications in Section 7. The third application regard-

ing neutral versus investment technology shocks is presented formally in Section 5. The fourth application

is related to the recoverability condition of Chahrour and Jurado (2021) and the structural identification

of expectations-driven fluctuations. The last two applications, the identification and inference of common

features, and the estimation and validation of dynamic stochastic structural models with structural VAR in

the frequency domain, are left for future work.10

3.1 The hours-productivity debate using bivariate SVAR models

The predominant role of technology shock as the main source behind movements in macro data has been

sharply challenged since the important contribution of Gaĺı (1999). Indeed, bivariate structural vector au-

9See also Section 5.2.
10It is worth emphasizing that this section is not exhaustive in the sense that our methodology applies for general zero

restrictions, i.e. with a mixture of short-run and long-run restriction (e.g., in the monetary policy model of Rubio-Ramirez et

al. (2010)), as well as for structural VARs based on present value models (e.g., Campbell and Shiller (1987,1988)), for structual

VECM (e.g., King et al. (1991)) and for the identification and contribution of seasonal cycles versus business cyles (Wen, 2002),

among others.
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toregressive models including labor productivity and hours worked yield conflicting results on the effect of

technology shocks on hours worked, generally due to the assumed data generating process for the measure

of hours worked (in level or in difference). On the other hand, Francis and Ramey (2009) show that demo-

graphic trends and sectoral allocation are important sources of low-frequency movements in hours worked

and labor productivity. Consequently, labor productivity might be driven by two permanent shocks, the

technology shock and the demographic shock, and thus the usual long-run restriction of hours-productivity

VAR models might be violated. A SVAR model with some identifying restrictions on a frequency band allows

to focus in a neighborhood more or less close to ω = 0 rather than just the zero frequency, and thus to assess

the effects of other low-frequency movements, such as those advocated by Francis and Ramey (2005), on

the identification of technology shocks. In Section 5.2, we show how the technology shock can be identified

by restrictions (2.11) and by the equality between the variance-covariance matrix of the reduced form error

terms and the structural shocks, Σ = A(0)A(0)′.

Our strategy has three advantages with respect to the usual long-run restrictions. First, the set of identify-

ing restrictions in the frequency domain has a Lebesgue measure strictly greater than zero. Indeed the fact

that standard long-run restrictions (when ω = 0) have a zero Lebesgue measure (Faust, 1996) leads to the

so-called unreliability problem (Faust and Leeper, 1997). Notably, unreliable long-run effects of shocks are

transferred on estimates of other model parameters through the long-run identification scheme and thus any

test of the null hypothesis that the kth coefficient of an autoregressive polynomial in the SVAR equals zero

is not consistent, i.e., the test has significance level greater than or equal to maximum power. In addition,

one cannot compute asymptotically correct confidence intervals for impulse responses since the unreliability

of the long run effect estimator is transferred to the estimator of the dynamic multipliers of the structural

shocks. In contrast, and as suggested by Faust and Lepper (1997), Faust (1998) and Pötscher (2002), this

issue can be circumvented by imposing restrictions on the (long-run) effect of these shocks at non-zero fre-

quencies and not only at the zero-frequency so that the problem is no-longer ill-posed in the terminology

of Pötscher (2002). Second, the overidentification testing procedure proposed in the next section allows to

assess the hypothesis that only the first shock drives the long-run movements in labor productivity (Francis

and Ramey, 2009). Third, using a wider frequency band relative to the zero frequency should help to better

identify and estimate the structural shocks driving long-run movements.

3.2 News shock

Using structural VAR’s and partial identification schemes, recent empirical literature delivered controversial

results concerning the role of anticipated neutral technology—news—shocks in business cycle fluctuations.

By imposing long-run restrictions, Beaudry and Portier (2006) and Beaudry and Lucke (2010) conclude that

news shocks about future productivity are one of the main drivers of business cycles and there is a positive

(contemporaneous) impact of the news shock on hours worked. These results have been challenged in several

dimensions. For instance, adopting partial identification schemes based on different max-share approaches,

Barsky and Sims (2011) and Kurmann and Sims (2019) find results incompatible with the news-driven
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explanation of business cycles and thereby more in line with the implications of the standard neoclassical

framework. These alternative identification strategies are based on the forecast error variance decomposition

over a horizon of up to 40 quarters (Barsky and Sims, 2011) or 80 quarters (Kurmann and Sims, 2019):

both strategies encompassing short-run and business cycle fluctuations. In contrast, using an appropriate

frequency band (see Section 7.2.) has the advantage to focus on the medium and long-run frequencies of

TFP and thus allows to isolate the identification of the news shocks from the effects of short-run and business

cycles fluctuations. In addition we can test whether TFP is driven by one structural shock (the news shock)

or two structural shocks (the surprise TFP shock and the news shock) in the medium to long-run. In the

latter, any linear combination of the two structural shocks would be a main driver and thus there is a lack

of proper identification.

3.3 Neutral versus investment-related technology shocks

Fisher (2006) examines the relative importance of neutral technology shocks and the investment-related

technology shocks in the explanation of business cycles by incorporating long-run restrictions that separately

identify these two sources of technology shocks.11 Pursuing this decomposition, Chen and Wemy (2015) argue

that long-run movements in the capital-producing sector can spread and spillover to the rest of the economy

and enhance TFP in long-run. Accordingly, the long-run fluctuations of TFP may be characterized by two

stochastic trends driven unequivocally either by the long-run movements of specific TFP or the spillover effect

of long-run movements due to investment-specific technological (IST) changes. This implies that long-run

movements of the TFP series would be caused by two shocks while long-run movements of investment-specific

technology are only driven by its own (structural) shock. In this respect, consider a SVAR in which the first

variable is the IST series and the second variable is the TFP series of Fernald (2014). The two restrictions

that only one shock has long-run effects on IST, and the same shock and the neutral technology shocks have

long-run effects on TFP lead to the following restrictions for an interval of frequencies around zero:

C(e−iω)A(0) = A(e−iω) =


a11(e−iω) 0 01×(N−2)

a21(e−iω) a22(e−iω) 01×(N−2)

Ã31(e−iω) Ã32(e−iω) Ã33(e−iω)


where Ã31(e−iω) is the first column of the matrix A(e−iω) after dropping the two first elements a11(e−iω)

and a21(e−iω) and the column vector Ã32(e−iω) is the corresponding second column and the submatrix

A33(e−iω) contains the other columns of A(e−iω) (except the two first rows of those columns). Proceeding

with a frequency band in a neighboorhood of ω = 0 allows to perform a statistical test on the assumption

that one stochastic trend against the alternative hypothesis of two stochastic trends drives the long-run

movements of TFP. We further discuss formally this example in Section 5.1.

11See Ramey (2016) for a survey on the debate on the relative importance of the neutral TFP shocks and the investment

specific technology shocks. See also Ben Zeev and Khan (2015) for the effect of IST news shocks.
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3.4 Recoverability and expectations-driven fluctuations

Chahrour and Jurado (2021) propose an identification condition of structural shocks, which is less restrictive

than the usual condition of fundamentalness—the so-called recoverability. This condition only imposes that

the structural shocks can be recovered from the past, present and future observables available to the econo-

metrician. Indeed, the econometrician has access to the entire sample to identify the structural shocks and

not only to the information available in the observables up to time t as required by fundamentalness. Said

differently, the econometrician can also use available observables at time t + 1, . . . , t + h to infer structural

shocks at time t. In this respect, the necessary and sufficient condition of recoverability depends on the in-

vertibility of the Fourier transform of the two-side moving average representation of the observable variables

as function of the structural shocks.

Consider the example in Section 3 of Chahrour and Jurado (2021) regarding the identification of a noise and

a fundamental structural shock about technology as potential drivers of business cycle fluctuations. Their

VAR procedure can be summarized as follows. On the one hand, the VAR estimation is conducted with a

set of observables/variables including a technology measure (at). On the other hand, one can get the joint

spectral density of technology at as well as the optimal forecast of technology bt implied by the VAR. Finally,

the identification of the structural shocks is then achieved by matching the joint spectral density resulting

from the VAR and the joint spectral density implied by the structural two-side moving average of at and bt

as function of the two structural shocks for the interval ω ∈ [−π, π]. In our framework, this can be written

as:

g(α, β̂, ω) = vech
(
Ĉab(e

−iω)Σ̂Ĉab(e
−iω)∗ −Aab(e−iω)Aab(e

−iω)∗
)

for ω ∈ [−π, π] where Ĉab(e
−iω)Σ̂Ĉab(e

−iω)∗ is the estimated joint spectral density of the technology series

at and its optimal forecast bt implied by the VAR, and Aab(e
−iω)Aab(e

−iω)∗ is the structural joint spectral

density compatible with the identification restrictions. Then Chahrour and Jurado (2021) solves a minimiza-

tion problem by using the factorization proposed by Rozanov (1967), and thus can derive the mapping from

observables to structural disturbances, as well as the impulse response functions and the (historical) variance

decomposition. An optimal two-step C-ALS estimator can then be performed allowing to formally test the

imposed identification restrictions that lead to recover the noise and the fundamental technology shocks. In

the event of rejection, the measure of technology at could be contaminated by measurement errors or short-

run fluctuations such that the identification restrictions hold only for medium-run and long-run frequencies.

The C-ALS framework is well-suited to investigate such a conjecture.

3.5 Common features in the frequency domain

Since the seminal contribution of Engle and Kozicki (1993), a common feature can be defined as follows: a

feature is common if a group of variables of interest possesses this feature and a combination of these vari-

ables does not have the feature. Canonical examples include cointegration in which some (all) variables have

stochastic trends but some linear combinations of these variables do not have stochastic trends; common
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serial correlation in which some linear combinations of serially correlated variables correspond to a weak

white noise process (Engle and Kozicki, 1993); common cycles in which linear combinations of the cycle

components of a group of variables have no cyclical component (Vahid and Engle, 1993, and Hecq, Palm

and Urbain, 2006).12 It turns out that this concept of a common feature can be extended to the existence

of common business cycles, i.e. a set of series is characterized by some common business cycle fluctuations

whereas some linear combinations does not have this feature.13

To go one step further, suppose that the number of structural shocks is less than the number of vari-

ables and thus that there exist some common business cycles, say on a frequency band ω ∈ [ω, ω]. In this

case, it turns out that the matrix C(e−iω) have less than full rank for all ω ∈ [ω, ω], meaning that the left

null space of the matrix C(e−iω) is non-empty:

C(e−iω)A(0) = A(e−iω) =
[
A1(e−iω) A2(e−iω)m×s

]
=
[
A1(e−iω) 0N×s

]
.

Accordingly, there exists a set of s linear independent combinations such that the rank of the matrix A(e−iω)

is equal to N − s and thus this rank restriction allows the identification of a subset of structural shocks.

Moreover, since these linear combinations define a set of estimating equations, an overidentification test,

such as the one proposed in Section 4.4, can be conducted and interpreted as a reduced-rank test of common

business cycles.

3.6 Estimation and validation of dynamic structural models with SVAR in the

frequency domain

Rotemberg and Woodford (1999) and Christiano, Eichenbaum and Evans (2005) propose a limited informa-

tion econometric strategy to estimate and evaluate dynamic structural models by matching impulse response

functions. This is based on the minimization of the distance between a selected subset of impulse response

functions from a SVAR with the corresponding impulse response functions from a DSGE model. For exam-

ple, Christiano, Eichenbaum and Evans (2005) select the impulse response functions of eight macroeconomic

variables to an identified monetary shock using a SVAR with short-run restrictions. Since DGSE models

aim at explaining business cycles, it then appears natural to estimate and evaluate the structural model by

matching the impulse responses but at the business cycle frequencies.14

Let Âj(e
−iω) denote the vector containing the impulse response functions estimates of the variables of inter-

est to the structural shock j, which depends on the reduced-form parameter estimates of β, and Ãj(e
−iω, α)

12Other common features have been proposed in the literature which include common seasonally Engle and Hylleberg, 1996),

codependence (Gouriéroux and Peaucelle, 1992), common structural breaks (Hendry, 1999) among others.
13Angeletos, Collard and Dellas (2020) find some support for a main business-cycle driver which implies that the business

cycles fluctuations can be explained by a small number of structural shocks.
14See Christiano and Vigfusson (2003), Diebold, Ohanian and Berkowitz (1998) for the estimation and the evaluation of

DSGE models in the frequency domain.
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the mapping from the vector of structural parameters α to the corresponding model impulse responses.15 An

estimator of the structural parameter vector α of the DSGE model is given by the following minimization

problem :

α̂ = argmin‖g(α, β̂, ω)‖2W

with g(α, β̂, ω) = Âj(e
−iω) − Ãj(e−iω, α) for all ω ∈ [ω, ω] and W is a weighting matrix which can depend

on the frequency interval. The estimating equations are then defined on a continuum, i.e. the frequency

interval, and the methodology developed hereafter can be applied to estimate and evaluate the structural

DSGE model.16

4 Asymptotic Least Squares in the frequency domain

In this section, we propose a general asymptotic least squares estimator in the presence of a continuum

of restrictions (hereafter, C-ALS estimator). After briefly reviewing the asymptotic least squares theory

proposed by Gourieroux et al. (1985) and then fixing some notations, we proceed in two steps. First, we

define the class of C-ALS estimators for every sequence of random bounded linear operators. Second, the

optimal C-ALS estimator is presented. Finally, a test of overidentification and a data-driven procedure for

the choice of the frequency interval are discussed.

4.1 Notation

Let the q-vector β̂T denote a first-step M-estimator defined by:

β̂T = arg min
β∈B

QT (ZT , β) (4.11)

where β0 = P0 limT→∞ β̂T denotes the true unknown value of the instrumental parameters, P0 the true

unknown probability distribution of the data generating process, and QT the (sample) objective function.

Under standard regularity conditions
√
T
(
β̂T − β0

)
d→ N (0,Ω) and Ω = lim

T→∞
Var

(√
T β̂T

)
under P0.

The asymptotic least squares method consists in estimating the parameters of interest through J constraints:

g(α0, β̂T ) = 0,

where β̂T is the vector of auxiliary parameters from the first-step estimation procedure and α is vector of

the parameters of interest such that α0 = P0 limT→∞ α̂T is the true unknown value. The ALS estimator is

15The impulse response functions from the model can be computed directly from the state-space representation of the

linearized solution of the model or by simulations (indirect inference).
16Diebold, Ohanian and Berkowitz (1998) propose to estimate the spectral density using the Blackman-Tukey lag-window

approach instead of using the VAR-based spectral density and an approximation of the corresponding integral by a sum at the

selected (discretized) frequencies.
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thus defined by:

α̂T (ST ) = arg min
α∈A

g(α, β̂T )′ST g(α, β̂T )

= arg min
α∈A

∥∥∥S1/2
T g(α, β̂T )

∥∥∥2

where ST is a symmetric positive definite matrix which possibly depends on the observations and S =

P0 limT→∞ ST .

Gourieroux et al. (1985) and Gourieroux and Monfort (1995) show that under suitable regularity condi-

tions the estimator α̂T (ST ) is asymptotically normally distributed with:

√
T (α̂(ST )− α0)

d→ N (0, Q(S))

where

Q(S) =

(
∂g

∂α′
(α0, β0)S

∂g′

∂α
(α0, β0)

)−1(
∂g

∂α′
(α0, β0)S

∂g

∂β′
(α0, β0)Ω

∂g′

∂β
(α0, β0)S

∂g′

∂α
(α0, β0)

)
×
(
∂g

∂α′
(α0, β0)S

∂g′

∂α
(α0, β0)

)−1

.

An optimal ALS estimator is then obtained for a sequence of matrices ST converging to

S0 =

(
∂g

∂β′
(α0, β0)Ω

∂g′

∂β
(α0, β0)

)−1

and the corresponding optimal asymptotic variance is equal to:

Q(S0) =

(
∂g

∂α′
(α0, β0)

(
∂g

∂β′
(α0, β0)Ω

∂g′

∂β
(α0, β0)

)−1
∂g′

∂α
(α0, β0)

)−1

.

It is worth emphasizing that local identification requires a full rank condition on the Jacobian matrix of the

estimating equations (2.9) with respect to the vector a(0) at the true value:

rk

(
∂g(α, β)

∂α′
|α=α0

)
= N2

where α = a(0). Notably the necessary part implies that dim(α) ≤ dim(g(α, β).17 Accordingly, the number

of estimating equations is constrained by the dimension of the vector β in the case of an optimal weighting

matrix, i.e. dim(g(α, β)) ≤ dim(β). This condition also holds to preserve the validity of standard asymptotic

distributions for statistical tests based on impulse response functions.18 Finally, this rank condition also

needs to be satisfied for either a given frequency or a frequency band.19

17It corresponds to Proposition 9.2 of Lütkepohl (2017) in the context of structural VAR’s.
18See Inoue and Killian (2016) and Guerron-Quintana, Inoue and Killian (2017) for inference when the dimension of a set of

impulse responses investigated exceeds the dimension of the vector β.
19Intuitively, suppose that the identifying restrictions are observed on a discrete finite support, i.e. one proceeds with a

discretization of the frequency interval, say ω = ω1 < ω2 < · · · < ωm = ω, and thus there are r ×m identifying restrictions.

In this respect, the rank condition would be satisfied if the discretization scheme is not too thin and thus avoids redundant

moment conditions. To circumvent this issue of a discretized asymptotic least squares estimator on a frequency band, we rather

consider a continuum perspective and make use of a suitable kernel operator (and its regularized version). Note that such a

discretized asymptotic least squares estimator is derived for a bivariate VAR model in the supplementary material.
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In contrast, we consider a system of J constraints defined on a continuum of frequencies (e.g., equation

(2.10)) with the true vector of interest α0 under P0 . These constraint functions are complex-valued and

indexed by a parameter ω taking its values on the interval I = [−π, π]:

g(α0, β̂T , ω) = 0,

where g(·, ·, ω) takes its values in H = (L2(I, ϕ))J , a Hilbert space with the inner product < ., . > and the

norm ‖ ·‖. L2(I, ϕ) ≡ L2(ϕ) is the space of complex valued functions that are square integrable with respect

to the probability density function ϕ of a distribution for ω.20 Let S denote a bounded linear operator

defined on (L2(I, ϕ))J or a subspace of (L2(I, ϕ))J and g(·, ·, ω) denote the complex conjugate of g(·, ·, ω).21

4.2 The class of C-ALS estimators

The C-ALS estimator is defined by replacing the common sequence of symmetric positive definite matrices

in the GMM literature by a converging sequence of random bounded linear operators (Carrasco and Florens,

2000; Carrasco et al., 2007). Hence, for a given sequence, say ST , converging to S an operator from

(L2(I, ϕ))J in (L2(I, ϕ))J , the C-ALS estimator is defined by:

α̂T (ST ) = arg min
α∈A

∥∥∥S1/2
T g(α, β̂T , ω)

∥∥∥2

.

Therefore the C-ALS estimator renders the constraints, g(α, β̂T , ω) = 0 for ω ∈ [ω, ω], as close as possible to

zero by using the metric associated with the inner product defined by ST and ϕ is the uniform probability

measure on the interval [−π, π]. For instance, if ω belongs to the interval [ω, ω], the C-ALS estimator is

given by:

α̂T (ST ) = arg min
α∈A

∫ ω

ω

∫ ω

ω

g(α, β̂T , ω1)′ST (ω1, ω2)g(α, β̂T , ω2)dω1dω2.

The following proposition provides its asymptotic properties.

Proposition 4.1. Suppose that Assumptions A.1 to A.11 are satisfied and that ST denote a sequence of

random bounded linear operators converging to S, the C-ALS estimator associated with ST is a solution

α̂T (ST ) to the problem:

α̂T (ST ) = arg min
α∈A
‖S1/2

T g(α, β̂T , ω)‖2. (4.12)

The C-ALS estimator exists and α̂T
p→ α0. Moreover it is asymptotically normally distributed:

√
T (α̂T (ST )− α0)

d→ N(0, Q(S))

20All assumptions are given in Appendix 1.
21Alternatively, the J constraint functions can be rewritten as a scalar function g̃(α0, β̂T , ω̃j) with ω̃j = (ω, j) where ω ∈

[−π, π] and j ∈ {1, 2, . . . , J} which takes its value in a suitably defined Hilbert space of a scalar function (see Kailath, 1971).
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with

Q(S) =

〈
S1/2 ∂g

∂α′
(α0, β0, ω), S1/2 ∂g

∂α′
(α0, β0, ω)

〉−1〈
S1/2 ∂g

∂α′
(α0, β0, ω),

(
S1/2KS1/2

)
S1/2 ∂g

∂α′
(α0, β0, ω)

〉
×
〈
S1/2 ∂g

∂α′
(α0, β0, ω), S1/2 ∂g

∂α′
(α0, β0, ω)

〉−1

where K : (L2(ϕ))J → (L2(ϕ))J is an integral (Hilbert-Schmidt) operator such that for all fl in L2(ϕ):22

Kf(ω1) =

(
J∑
l=1

∫
EP0 [kjl(ω1, ω2)] fl(ω2)ϕ(ω2)dω2

)
j=1,...,J

with

kjl(ω1, ω2) =
∂gj
∂β′

(α0, β0, ω1)Ω
∂gl
∂β

(α0, β0, ω2)′.

Proof: See Appendix 2.

Several points are worth commenting. First, the previous proposition is an implication of the following

functional convergence (as T →∞):

∂g

∂β′
(α0, β̂T , ω)

√
T (β̂T − β0)⇒ N(0,K)

where N(0,K) is the Gaussian random vector of (L2(ϕ))J .23 Second, the Hilbert-Schmidt operator K is

not invertible on the full reference space but has a finite dimensional closed range (at most) equal to q—the

dimension of the (asymptotic) variance-covariance matrix of the parameter vector β. This differs from the

framework of Carrasco and Florens (2000) and Carrasco et al. (2007) in which the inverse of K is not

bounded because the range of K is not closed in general.24,25 In contrast, since the operator K depends on

the first step estimation through β̂T in our approach, the range of K, denoted R(K), is then known and

R(K) = dim(β). However, as explained below, the derivation of the (Moore-Penrose) generalized inverse of

K can be cumbersome in finite samples due to the presence of tiny eigenvalues and thus a regularization

method cannot be precluded in our framework.

Third, since the range of K equals (at most) q, the number of its eigenvalues different from zero is finite

and, according to the Mercer’s Theorem, K admits the following spectral decomposition:

K(ω1, ω2) =

q∑
i=1

λiγi(ω1)γi(ω2)′

22See Wahba (1992) for reproducing kernel Hilbert space (RKHS) of vector-valued functions.
23See Chen and White (1998) and Carrasco and Florens (2000, remark 2 p. 803) for a univariate version of the functional

central limit theorem. A multivariate version can be established by applying the functional Cramér-Wold device (White, 2000).
24For a general discussion of linear inverse problems in econometrics, see Carrasco, Florens and Renault (2007).
25Indeed the Moore-Penrose inverse operator K−1 is not bounded and the solution K−1f to a Fredholm equation of the first

kind Kφ = f is not continuous in f , i.e. K does not admit a generalized inverse over the entire Hilbert space of reference.

Consequently, to guarantee the stability of the solution, Carrasco and Florens (2000) replace the operator K by some nearby

operator (e.g., using a Tikhonov regularization)—see also Carrasco (2012).
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where λi, i = 1, . . . , q denote the q eigenvalues of K different from zero and γi(ω1) the corresponding vector

of orthonormalized eigenfunctions, that is,

Kγi(ω1) = λiγi(ω1)

for i = 1, . . . , q. It follows that

Kf(ω1) =

q∑
i=1

λiγi(ω1) 〈f, γi〉 .

This implies that the Moore-Penrose generalized inverse of K, denoted K−1, satisfies:

K−1f(ω1) =

q∑
i=1

1

λi
γi(ω1) 〈f, γi〉 .

and that a consistent estimator of K−1 can be obtained as follows.

Proposition 4.2. Let α̂1
T denote a first-step consistent estimator of α0. A consistent estimator of the

Moore-Penrose generalized inverse is defined by:

K−1
T f(ω1) =

q∑
i=1

1

λi,T
γi,T (ω1) 〈f, γi,T 〉

where γi,T (ω1) is given by:

∂g

∂β′
(α̂1
T , β̂T , ω1)Ω̂

1/2
T Di,

the eigenvalues λi,T are those of the q × q matrix:∫
Ω̂

1/2
T

∂g′

∂β
(α̂1
T , β̂T , ω2)

∂g

∂β′
(α̂1
T , β̂T , ω2)Ω̂

1/2
T ϕ(ω2)dω2,

and the matrix D = [D1 · · ·Dq] and the diagonal matrix Λ of eigenvalues λi satisfy∫
Ω̂

1/2
T

∂g′

∂β
(α̂1
T , β̂T , ω2)

∂g

∂β′
(α̂1
T , β̂T , ω2)Ω̂

1/2
T ϕ(ω2)dω2D = DΛ.

where Ω̂T is a consistent estimate of Ω.

Proof: See Appendix 2.

The eigenfunctions γi,T (ω) for i = 1, . . . , q are linear combinations that result from the (orthogonal) pro-

jection of the (nonlinear) estimating equations g(α̂1
T , β̂T , ω) onto the subspace spanned by β̂T , namely

∂g
∂β′ (α̂

1
T , β̂T , ω)Ω̂

1/2
T . It makes sense since the estimation of the parameters of interest α is completely deter-

mined by the estimator of the auxiliary parameters β̂T .
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4.3 The optimal C-ALS estimator

Using Proposition 4.1, it can be shown that choosing ST = K
−1/2
T leads to the estimator of minimum variance

and thus the optimal C-ALS estimator.26

Proposition 4.3. Let KT denote a consistent estimator of K and K−1
T a Moore-Penrose generalized inverse

estimator of K−1. The optimal C-ALS estimator of α0 is given by:

α̂T = arg min
a∈A
‖K−1/2

T g(α, β̂T , ω)‖2 (4.13)

and α̂T is consistent and asymptotically normally distributed:

√
T
(
α̂T (K

−1/2
T )− α0

)
d→ N

(
0,

〈
∂g

∂α′
(α0, β0),K−1 ∂g

∂α′
(α0, β0)

〉−1
)
.

Proof: See Appendix 2.

Proposition 4.13 implies that the asymptotic variance of an alternative estimator of α based on a discretized

ALS is necessarily greater or equal to the lower bound achieved with the optimal C-ALS estimator. Conse-

quently, the optimal C-ALS reaches the asymptotic efficiency by exploiting all the information contained in

the interval of frequencies.

Taking the eigenfunctions and eigenvalues decomposition of KT , the optimal C-ALS objective function

to minimize can be rewritten as:

‖K−1/2
T g(α, β̂T , ω)‖2 =

q∑
i=1

1

λi,T

〈
g(α, β̂T , ω), γi,T (ω)

〉2

.

However, this computation can be burdensome, especially for large q. As in Carrasco et al. (2007), we

propose a simple expression of the objective function. This requires a first-step consistent C-ALS estimator,

denoted α̂1
T , defined by (using the identity operator as a kernel operator):

α̂1
T = arg min

α∈A

∫ ω

ω

∫ ω

ω

g(α, β̂T , ω1)′g(α, β̂T , ω2)dω1dω2.

Proposition 4.4. A simplified expression for the objective function of the C-ALS problem is given by :

α̂T = arg min
α∈A

s(α, β̂T )′W̃ 2
T s(α, β̂T )

where W̃T is a generalized inverse of WT and

WT =

∫
Ω

1/2
T

∂g′

∂β
(α̂1
T , β̂T , ω)

∂g

∂β′
(α̂1
T , β̂T , ω)Ω

1/2
T ϕ(ω)dω

is a q × q-matrix and

s(α, β̂T ) =

∫
Ω

1/2
T

∂g′

∂β
(α̂1
T , β̂T , ω)g(α, β̂T , ω)ϕ(ω)dω

is a q-vector. When the matrix W is of full rank, then W̃ = W−1.

26Intuitively, S is chosen such that S1/2KS1/2 is equal to the identity operator.

19



Proof: See Appendix 2.

Intuitively, the system of functions s(α, β̂T ) corresponds to the orthogonality conditions between the es-

timating equations that link α and β̂T , and the projection of this nonlinear system of equations g(α, β̂T , ω)

on the subspace spanned by β̂T given by ∂g
∂β′ (α̂

1
T , β̂T , ω)Ω̂

1/2
T .

As explained before, one key issue is that the matrix W might not be of full rank q, especially as the

frequency interval shrinks toward a point (e.g., the zero frequency). As proposed by Carrasco and Flo-

rens (2000) in a C-GMM context, a generalized inverse of WT might be obtained through a Tikhonov’s

regularization.27

Proposition 4.5. A simplified expression for the regularized objective function of the second-step C-ALS

problem is given by :

α̂T = arg min
α∈A

s(α, β̂T )′[ηT Iq +W 2
T ]−1s(α, β̂T )

where the regularization parameter ηT goes to zero at a suitable rate (see Carrasco et al., 2007; Carrasco,

2012).

Note that the finite sample behavior of this regularized estimator does depend obviously on the choice of

the regularization parameter. Using a higher-order expansion of the mean squared error, Carrasco (2012)

proposes a data-driven procedure for selecting such a parameter for estimation purposes. However, such a

procedure might not be well-suited for testing procedures.28 One key issue is that the variance-covariance

matrix affects obviously the finite sample properties of the test statistics that rest on the parameters of

interest. This is also the case when considering some overidentification tests or interval selection tests (see

Sections 4.4 and 4.5). Yet the literature has only provided asymptotic theory (for estimation) when the

regularization parameter goes to zero at some rate, but there is no guideline regarding the selection of the

smoothing parameter in finite samples for statistical tests.

4.4 Test of overidentification

Using Carrasco and Florens (2000), a test of overidentification can also be performed using the following

J-statistic.

Proposition 4.6. The overidentification test is based on the statistic:

JT = ‖
√
TK

−1/2
T g(α̂, β̂T , ω)‖2

27Different regularization schemes can be used: Tikhonov, Landweber-Fridman, spectral cut-off or principal components

regularization (Carrasco, 2012). The first three aforementioned methods have a long tradition in statistics (Kress, 1999)

whereas the principal components approach is widely used in factor models (Stock and Watson, 2002). All of these methods

do involve a regularization term ηT that is defined on a continuous support (Tikhonov) or a discrete support (the other three

approaches).
28See also Carrasco and Kochoni (2017, 2019).
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The statistic JT is χ2-distributed with q − r degrees of freedom.

In the presence of a rank-order deficiency, Proposition 4.5 can be used to define a regularized version of

the test statistic. More specifically, for a given value of ηT , the JT statistic converges to the following

distribution:

Ts(α̂T , β̂T )′[ηT Iq + Ŵ 2]−1s(α̂T , β̂T )
d−→

q∑
j=1

λ2
j

λ2
j + ηT

Z2
i (4.14)

where {Zi}qi=1 are independent standard normal variates and the λj terms are the eigenvalues of the matrix

W . As {Zi}2 ∼ χ2(1), the limiting distribution is a weighted sum of independent Chi-squared variables (see

Arellano, Hansen and Sentana, 2012; Vuong, 1989).

Interestingly, as shown in Proposition 4.7, a specification test can still be performed for any arbitrary

positive definite matrix ST (e.g., the identity operator) that depends on ω.

Proposition 4.7. The JT statistic based on the objective function of Proposition 4.1 for any ST has the

following asymptotic distribution:

‖S1/2
T

√
Tg(α̂T , β̂T , ω)‖2 d−→

q∑
i=1

λiZ
2
i (4.15)

where λi are the eigenvalues of the asymptotic variance matrix of S
1/2
T

√
Tg(α̂T , β̂T , ω) given by:

lim
T→∞

V ar
(
S1/2
√
Tg(α̂T , β̂T , ω)

)
=

〈
S1/2[I −M(ω)], (S1/2KS1/2

′
)S1/2[I −M(ω)]

〉
where M(ω) = S1/2 ∂g

∂α′ (α0, β0, ω)
〈
S1/2 ∂g

∂α′ (α0, β0, ω), S−1/2 ∂g
∂α′ (α0, β0, ω)

〉−1
∂g′

∂α (α0, β0, ω)S1/2.

Critical values of the limiting distribution (4.14) and (4.15) can be obtained either by implementing the

numerical inversion of the characteristic function proposed by Imhof (1961) or by simulating independent

Chi-squared distributions (see Robin and Smith, 2000)—both methods requiring a plug-in procedure and thus

to replace the true eigenvalues by some consistent estimates. These critical values can also be approximated

by a gamma distribution (Shorack, 2000).29

4.5 Data-driven procedure for the frequency interval

The next question to address is the determination of the interval Iω = (ω, ω) on which one might impose and

assess the reliability of the identifying restrictions. For sake of simplicity, we consider the class of symmetric

intervals of ω around zero, i.e. Iω = (−ω, ω) and we use the information criteria-based methodology of

29The theoretical justification of a CLT approximation based on a Gamma distribution for a summand of random variables

when the underlying distribution is positively skewed is given in Shorack (2000), Theorem 4.1. In this case, the distribution

is function of two parameters: the shape parameter ζ and the scale parameter δ. These parameters are obtained by using an

estimator of the mean and standard deviation of
∑m
i=1 λiZ

2
i given by ζδ and ζδ2 respectively. Taking that E

[∑m
i=1 λiZ

2
i

]
=∑m

i=1 λi and V
[∑m

i=1 λiZ
2
i

]
= 2

∑m
i=1 λi, an estimator of the mean and the variance is obtained by replacing λi by λ̂i.
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Hall et al. (2012) in order to propose a statistical criterion which selects the largest interval Iω that might

guarantee consistent estimation of α̂T . In so doing, we select the frequency interval by minimizing the Valid

Interval Selection Criterion (VISC) defined by:

ω̂T = argmin
ω∈C(ω)

VISCT (ω)

where C(ω) is the class of symmetric intervals around zero and:

VISCT (ω) = JT (ω)− h(|w|)κT (4.16)

where h(|w|)κT is a deterministic penalty, which is an increasing function of the length of the interval.

Proposition 4.8 shows that ω̂T converges in probability to the unique ω0 that chooses the maximal bound

for a valid consistent estimation of α̂T .

Proposition 4.8. Suppose that (1) There exists a lower bound ωlb such that the restrictions are respected for

the interval (ωlb, ωlb), (2) ωmax = (−ω0, ω0), and (3) h(·) is strictly increasing and κT →∞ as T →∞ with

κT = o(T ). Then the estimator ω̂T defined as the solution of the criterion (4.16) converges in probability to

ω0.

Note that the first assumption imposes that the restrictions are valid for at least an interval with minimal

length characterized by the lower bound ωlb. The second assumption ensures that the interval (−ω, ω) is

uniquely identified. The last one imposes restrictions on the penalty terms that guarantee the validity of the

criterion. The SIC-type penalty term ((h|ω|) = 2ω and κT = ln(T )) and the Hannan-Quinn-type penalty

term ((h|ω|) = 2ω and κT = ln(ln(T ))) satisfy this assumption while the AIC-type penalty term ((h|ω|) = 2ω

and κT = 2), does not.

5 Asymptotic least squares in the frequency domain for structural

VAR models

In this section, we make use of the general results of Section 4 and show how they can be applied to identify

structural VAR models with frequency-based restrictions. We first consider the full identification case for

any N-variate VAR model. Then we apply these results in the case of a (structural) bivariate VAR model.

Finally, we discuss the case of partial identification, especially for a single structural shock.

5.1 N-variate VAR

Going back to the example of identifying neutral versus investment-related technology shocks (Section 3),

one can impose a lower triangular A(z) matrix in the case of a trivariate SVAR model and thus a Cholesky

decomposition. In this respect, the frequency-based identifying restrictions are, ∀ω ∈ [ω, ω]:

[
Ĉ(e−iω)A(0)

]
ιj
j>ι

= 0⇔
3∑
`=1

cι`(e
−iω)a`j(0) = 0
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where (ι, j) = {(1, 2), (1, 3), (2, 3)} and cι` is the (ι, `) element of C(e−iω), and the estimating equations

resulting from the variance-covariance matrices of the reduced-form innovations and the structural shocks,

vech (Σ−A(0)A(0)′) are given by:

σ̂ιj,T −
3∑
`=1

aι`(0)aj`(0) = 0

where ι = 1, · · · , 3 and j ≤ ι, and σ̂ιj,T = σ̂jι,T is a consistent estimate of the (ι, j) element of Σ. Then, the

C-ALS estimator of A(0) is obtained by solving jointly these estimating equations. In a first-step, using the

identity operator, the system is just-identified.30 In contrast, the optimal second-step estimator is obtained

from an over-identified system of estimating equations, s
(
a(0), β̂T

)
(e.g., in Proposition 4.4), which corre-

spond to the q = dim(β) orthogonality conditions between the estimating equations and the projection of

the latter onto the subspace spanned by β̂T in a functional Hilbert space.

Moving on to the general case of a N-variate SVAR model and by defining31

g(a(0), β, z) =

g1(a(0), β, z)

g2(a(0), β, z)

 =

 H (IN ⊗ C(z)) a(0)

vech (Σ−A(0)A(0)′)

 = 0, (5.17)

the first-step C-ALS estimator with the identity operator is given by the following minimization problem:

â1
T = arg min

a

[∫ ω

ω

g1(a(0), β̂T , ω)′g1(a(0), β̂T , ω)dω + g2(a(0), β̂T )′g2(a(0), β̂T )

]
.

Proposition 5.1 establishes the main results irrespective of the selection of the estimating equations, H, as

long as the SVAR is just-identified or over-identified in the first-step.

Proposition 5.1. Consider the vector of just- or over-identified estimating equations defined by equation

(5.17). Suppose that the moments of order three of ut are zero. Let β = (vec(Φp)
′, vec(Σ)′)

′ ≡ (Φ′, σ′)
′

denote the vector of reduced-form parameters, and ΩT =

 ΩΦ 0

0 Ωσ

 the corresponding partitioning of the

asymptotic variance-covariance matrix of the OLS estimator of β. Then,

• The first step C-ALS estimator of a(0), denoted â1
T , solves:∫ ω

ω

|(IN ⊗ C(z)′)H ′|2 dωvec(A(0))−
(
D+
N (A(0)⊗ IN )

)′
vech

(
Σ̂T −A(0)A(0)′

)
= 0

where D+
N = (D′NDN )−1D′N and DN is the N2 × 1

2N(N + 1) duplication matrix such that vec(X) =

DNvech(X)

• The vector of estimating equations in the second step is given by:

s(a(0), β̂T ) =

 Ω
1/2
Φ

∫ ω
ω

∂g′1
∂Φ

(
â1
T , β̂T , ω

)
g1(a(0), β̂T , ω)dω

g2(a(0), β̂T )


30Derivations are provided in Appendix 4.
31Without loss of generality, we assume that b(z) = 0.
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• The second-step C-ALS estimator, denoted âT , solves:

âT = arg min
a

[
s1(a(0), β̂T )′W̃ 2

1T s1(a(0), β̂T ) + g2(a(0), β̂T )′W2T g2(a(0), β̂T )
]

where s1

(
a(0), β̂T

)
is the first set of estimating equations, W̃1T is the generalized inverse of W1T :

W1T = Ω
1/2
Φ

∫ ω

ω

∂g′1
∂Φ

(
â1
T , β̂T , ω

)∂g1

∂Φ′

(
â1
T , β̂T , ω

)
dωΩ

1/2
Φ

and W2T is the inverse of 2D+
N (Σ̂⊗ Σ̂)D+

N

′
.

Proof: See Appendix 2.

On the one hand, the first-step C-ALS estimator can be easily obtained from the first-order conditions

and only requires to solve N2 quadratic functions of the parameters of interest a(0) = vec(A(0)). Inter-

estingly, for a given ω, the two terms (IN ⊗ C(z)′)H ′ and D+
N (A(0)⊗ IN ) are those that provide the rank

condition and thus the local identification of structural VARs.32 On the other hand, taking the block diag-

onal structure of the optimal variance-covariance matrix when the moments of order three of ut are zero,

the second-step C-ALS estimator can also be derived in a straightforward way by solving numerically ei-

ther the minimization problem or the first order conditions. In both cases, there is no need for numerical

integration. Finally, the vector of estimating equations in the second step involves the optimal projection

of g1 onto the subspace spanned by the reduced-form estimates of the autoregressive parameters and the

standard N(N + 1)/2 estimating equations, g2, that defines the mapping between the variance-covariance

of the innovations and the structural shocks. At the same time, note that the objective function takes into

account the optimal weighting matrix for g2 through W2T .

5.2 Bivariate VAR

As an application of Proposition 5.1, we consider a bivariate VAR model. Suppose that the second shock

has no impact on the first variable over a (symmetric) interval around zero [ω, ω] (possibly, with ω = −ω).

The continuum of identifying restrictions is given by

ĉ11(e−iω)a12(0) + ĉ12(e−iω)a22(0) = 0 (5.18)

for all ω ∈ [ω, ω], and the system of estimating equations by:

g(a(0), β, ω) =

ĉ11(e−iω)a12(0) + ĉ12(e−iω)a22(0)

vech
(

Σ̂T −A(0)A(0)′
)  = 0.

Then one can use the results of Proposition 5.1 and derive the C-ALS estimator of a(0) = vec (A(0)).

However, for the bivariate (structural) VAR, there exists a simpler procedure, which exploits the linearity

32See Proposition 9.4. in Lütkepohl (2007).
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of the just-identifying restriction and the existence of a nontrivial solution for any z = exp(−iω).33 Indeed,

the identifying restriction can be written as a22(0)
(
ĉ11(e−iω)ã12(0) + ĉ12(e−iω)

)
= 0 for all ω ∈ [ω, ω] with

ã12 = a12(0)/a22(0), or equivalently as ĉ11(e−iω)ã12 + ĉ12(e−iω) = 0 since a22(0) 6= 0. Therefore one can

proceed with a two-step estimation procedure. In a first step, a consistent estimate of ã12 is obtained by

minimizing the restrictions (5.18) using the objective function in Proposition 4.4 or 4.5. In a second step,

the estimator of a = (a11(0), a12(0), a22(0))
′

is obtained as the solution of the locally just-identified nonlinear

system of equations:

âT = arg min
a∈A

vech
(

Σ̂T − Ã(0)Ã(0)′
)
. (5.19)

where Ã(0) is equal to A(0) but replacing â12(0) by ̂̃a12,T â22(0).

In this respect, the local identification of the parameters of A(0) is stated in Proposition 5.2.

Proposition 5.2. Consider the identifying restrictions that the effect of the second structural shock on the

first variable in a bivariate structural VAR is zero over a frequency interval:

ĉ11(e−iω)a12(0) + ĉ12(e−iω)a22(0) = 0 ∀ω ∈ [ω, ω].

Then the matrix A(0) is locally identified (up to a sign restriction) when

g(ã12, β̂T , ω) = ĉ11(e−iω)ã12 + ĉ12(e−iω) = 0

=

∞∑
j=0

[
ĉ11,je

−iωj ã12 + ĉ12,je
−iωj] = 0

where ã12 = a12(0)/a22(0), and Σ = A(0)A(0)′.

Using the identity operator, the first-step C-ALS estimator of ã12(0) solves:

̂̃a1

12,T = arg min

∫ ω

ω

∫ ω

ω

g(ã12, β̂T , ω1)′I{ω1=ω2}g(ã12, β̂T , ω2)dω1dω2

= arg min

∫ ω

ω

|g(ã12, β̂T , ω)|2dω.

with I{·} = 1 for ω1 = ω2 and zero otherwise. The objective function can be easily interpreted from

equation (2.6). Indeed, the (1,1) element of the reduced-form spectral density matrix (up to a constant

term), |C(z)A(0)|2, defines the power spectrum of the first variable:

Gr11(z) = |c11(z)a11(0) + c12(z)a21(0)|2 + |c11(z)a12(0) + c12(z)a22(0)|2.

Therefore minimizing the continuum of identifying restrictions (with the identity operator) such that the sec-

ond structural shock has no effect on the first variable, i.e. c11(z)a12(0) + c12(z)a22(0) = 0 for any z = e−iω

such that ω ∈ [ω;ω], is equivalent to maximize the partial spectrum of the first variable w.r.t. the first

33This is no longer true when N > 2 and there are at least two identifying restrictions in the frequency domain.
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structural shock or to minimize the partial spectrum of the first variable w.r.t. the second structural shock.

This dual interpretation turns out to be very convenient, especially in the case of partial identification (see

Section 5.3).

Deriving the first-order condition, it is straightforward to show that:

̂̃a1

12,T = −
∑∞
j=0

∑∞
l=0 ĉ11,j ĉ12,l

∫ ω
ω

cos((l − j)ω)dω∑∞
j=0

∑∞
l=0 ĉ11,j ĉ11,l

∫ ω
ω

cos((l − j)ω)dω
. (5.20)

In the bivariate case, this first-step estimator corresponds to the Min-effect/Max-effect frequency estimator

proposed by Wen (2001, 2002). On the other hand, taking that the standard long-run Blanchard and Quah

restriction (i.e., ω = 0) yields:

â12,T = −
∑∞
j=0

∑∞
l=0 ĉ11,j ĉ12,l∑∞

j=0

∑∞
l=0 ĉ11,j ĉ11,l

= − ĉ12(1)

ĉ11(1)
, (5.21)

the one-step C-ALS estimator can be seen as a generalized least squares estimator in which the weights

(i.e., the sine terms) capture not only the information at the zero frequency but also its neighborhood. In

the supplementary material, we show that the first-step C-ALS estimator can be written equivalently as

a function of the autoregressive parameters of the reduced-form representation, and we also compare this

estimator with a discretized ALS estimator.

Using the first-step estimator ̂̃a1

12,T and Proposition 4.4, one obtains the objective function and the explicit

expression of the optimal second-step estimator ̂̃a12,T in the form of a generalized least squares estimator.

Proposition 5.3. Consider the identifying restrictions that the effect of the second structural shock on the

first variable in a bivariate structural VAR is zero over a frequency interval:

ĉ11(e−iω)a12(0) + ĉ12(e−iω)a22(0) = 0 ∀ω ∈ [ω, ω].

Then, using the objective function defined in Proposition 4.4, the optimal C-ALS is:

̂̃a12,T = −
ŝ′11,T (Ŵ 2

T )−1ŝ12,T

ŝ′11,T (Ŵ 2
T )−1ŝ11,T

where ŝ11,T , ŝ12,T and ŴT are given by:

ŝ11,T = Ω̂′1/2
∞∑
j=0

∞∑
l=0

[(
∂ĉ11,j

∂β
̂̃a1

12,T +
∂ĉ12,j

∂β

)
ĉ11,l

] ∫ ω

ω

cos((l − j)ω)dω

ŝ12,T = Ω̂′1/2
∞∑
j=0

∞∑
l=0

[(
∂ĉ11,j

∂β
̂̃a1

12,T +
∂ĉ12,j

∂β

)
ĉ12,l

] ∫ ω

ω

cos((l − j)ω)dω

and

ŴT = Ω̂′1/2

 ∞∑
j=0

∞∑
l=0

(
∂ĉ11,j

∂β
̂̃a1

12,T +
∂ĉ12,j

∂β

)(
∂ĉ11,l

∂β′
̂̃a1

12,T +
∂ĉ12,l

∂β′

)∫ ω

ω

cos((l − j)ω)dω

 Ω̂1/2
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where ̂̃a1

12,T is a first-step estimator and
∫ ω
ω

cos((l− j)ω)dω = 1
l−j [sin((l − j)ω)]

ω
ω = 2

l−j sin((l− j)ω) with a

symmetric interval [−ω, ω] for (l − j) 6= 0 and
∫ ω
ω

cos((l − j)ω)dω = ω − ω = 2ω for l = j.

Proof: See Appendix 2.

Finally, an estimate of a(0) is obtained as the solution of equation (5.19).

5.3 Partial identification of a structural shock

As a last application, we consider the (partial) identification of a single structural shock in a VAR with more

than two variables. Without loss of generality, we assume that the structural shock of interest is the first

one. For instance, this corresponds to the identification of a technology shock in a multivariate VAR without

requiring the identification of other shocks (see Christiano et al., 2006b; Francis and Ramey, 2009) or the

identification of a news shocks (Beaudry and Portier, 2006; Barsky and Sims, 2011; Kurmann and Sims,

2019). For sake of completeness, we first provide the common sign and (long-run) exclusion restrictions and

then turns to the frequency identifying restrictions. Notably we use the equivalent representation of the

identifying restrictions in equation (2.6).

Following Christiano et al. (2006a), the dynamic effects of the first structural shock can be computed

by identifying only [A(0)]·1, the first column of A(0), since combining a sign restriction and zero restrictions

on the long-run impact does uniquely identify the vector [A(0)]·1. In this respect, one needs to impose N −1

zero-restrictions:

Ĉ(1)A(0) = A(1) =

 a11(1) 01×(N−1)

Ã21(1) Ã22(1)


where Ã21(1) is the first column of the long-run impact matrix A(1) after dropping the first element a11(1)

and the submatrix Ã22(1) contains the other columns of A(1) (except the first row of those columns).

Imposing that only the first structural shock has a long-run impact on the first variable yields the following

specification of the long-run variance-covariance matrix:34

Ĉ(1)A(0)A(0)′Ĉ(1)′ = A(1)A(1)′ =

 a11(1)2 a11(1)Ã21(1)′

Ã21(1)a11(1) Ã21(1)Ã21(1)′ + Ã22(1)Ã22(1)′

 = Ĉ(1)Σ̂T Ĉ(1)′.

This implies that a11(1)2 is the (1,1)-element of the matrix Ĉ(1)Σ̂T Ĉ(1)′ and that Ã21(1) is equal to the

corresponding elements of the matrix Ĉ(1)Σ̂T Ĉ(1)′ divided by a11(1). Since the first column of the matrix

C(1)A(0), denoted [A(1)]·1, is known, the column vector [A(0)]·1 is uniquely identified by the relation

34Note that many matrices A(0) are comfortable with these restrictions but the first column of each of these matrices A(0)1

is the same (see Christiano et al., 2006b).
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[A(0)]·1 = Ĉ(1)−1[A(1)]·1. Now consider the same restrictions but for a general operator z, one has:

|a11(z)|2 =
[
Ĉ(z)Σ̂T Ĉ(z) =′

]
11

Ã21(z)a11(z) =

[
Ĉ(z)Σ̂T Ĉ(z)

′
]
n1, n=2,...,N

where

[
Ĉ(z)Σ̂T Ĉ(z)

′
]
n1

is the element (n, 1) of the matrix Ĉ(z)Σ̂T Ĉ(z)
′
.

Proposition 5.4. Consider the following identification constraints
∑N
j=1 ĉ1j(e

−iω)ajn(0) = 0 for n =

2, . . . , N and ∀ω ∈ [ω, ω]. Let β̂T =

(
vec
(

Φ̂p

)′
, vech

(
Σ̂T

)′)′
denote the vector of dimension q = N2 × p+

N(N+1)
2 of the reduced-form parameters estimates. The estimating equations, g(α0, β̂T , ω) = 0 for ω ∈ [ω, ω],

defined by

g(α0, β̂T , ω) =
(
g1(α0, β̂T , ω), g2(α0, β̂T , ω), · · · , gN (α0, β̂T , ω)

)′
with

g1(α0, β̂T , ω) =
∣∣∣[Ĉ(e−iω)A(0)]11

∣∣∣2 − [Ĉ(e−iω)Σ̂T Ĉ(e−iω)
′
]

11

gn(α0, β̂T , ω) =
[
Ĉ(e−iω)A(0)

]
n1

[A(0)′Ĉ(e−iω)
′
]11 −

[
Ĉ(e−iω)Σ̂T Ĉ(e−iω)

′
]
n1

for n = 2, . . . , N , uniquely identify the first column of the matrix α0 = [A(0)]·1 up to a sign restriction.

Note that the moment conditions can be written, for n = 1, · · · , N :

gn(α0, β̂T , ω) =

N∑
r=1

N∑
s=1

∞∑
j=0

∞∑
l=0

c1s,jcnr,l (ar1(0)as1(0)− σ̂sr,T ) cos((j − l)ω)

where σ̂sr,T is a consistent estimate of the (s, r) element of Σ. As in Section 5.1, a first-step consistent

C-ALS estimator of α0 = [A(0)]·1 solves the following minimization problem (using the identity operator as

a weighting matrix):

α̂T = arg min
a

∫ ω

ω

g(α, β̂T , ω)′g(α, β̂T , ω)dω.

Then the second-step C-ALS results from the minimization of the simplified (regularized) objective function

in the light of Proposition 4.3. or 4.4. Appendix 2 provides the relevant analytical first-order partial

derivatives. Finally, as shown in Section 5.1, note that an equivalent solution can be obtained using a

Cholesky decomposition.

6 Monte Carlo simulations

In this section, we provide some Monte Carlo simulations to study the finite sample performances of the

C-ALS estimator. We assume that the data generating process is a bivariate VAR model (with different
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parameter configurations) in which the first variable, X1,t, is nonstationary and thus written in first-difference

and the second variable, X2,t, is a weakly stationary process:

∆X1,t = ρ11,1∆X1,t−1 + (ρ12,1 + δ)X2,t−1 − ρ12,1X2,t−2 + ε1,t (6.22)

X2,t = ρ21,1∆X1,t−1 + ρ22,1X2,t−1 + ρ22,2X2,t−2 + b21ε1,t + ε2,t (6.23)

where the vector εt = (ε1,t, ε2,t)
′

represents some structural shocks, with εt ∼ N(0, I2). The parameter δ

controls the magnitude of the long-run effect of the second shock ε2,t on the first variable X1,t. When δ = 0,

only the first shock has a long-run impact on the first variable. To some extent, the corresponding specifi-

cation can be viewed as the one often encountered in the macro literature in order to identify a permanent

shock, e.g., the identification of a technology shock with some measures of (labor or total) productivity and

hours worked (see Section 7). It is worth emphasizing that the VAR(1) specification is the data generating

process of Gospodinov et al. (2013) and Chevillon et al. (2020), whereas the VAR(2) corresponds to the one

of Gospodinov (2010) and Gospodinov et al. (2011).

Using equations (6.22) and (6.22), we generate 10,000 samples of size T = 200 observations—a sample

size often encountered in applied macro works—and the effect of initial conditions is controlled by including

200 pre-sampled observations that are subsequently discarded in the estimation. For each repetition, the lag

order is set to its true value so that results are interpreted free of any lag order misspecification issue.35 Our

method denoted C-ALS, which is based on the two-step C-ALS procedure (Section 4.2), is compared with

three approaches. The first one, denoted LR, is a standard long-run identification scheme à la Blanchard-

Quah, i.e. we only impose the identification constraint at ω = 0.36 The second alternative is the first-step

C-ALS estimator defined in equation (5.20) when the kernel operator is the identity operator. The last

alternative is the max-share procedure of DiCeccio and Owyang (2010) and Francis et al. (2014), denoted

MS, which identifies the structural shock of interest that maximizes the share of the forecast-error variance

of a given variable in the frequency domain.37

With the exception of the LR method, we consider four fixed symmetric frequency intervals ωn = (− 2π
n ,

2π
n )

for n = 30, 60, 90 and 120 quarters. Results are then assessed along three dimensions. First, we compute the

initial impact of each structural shock on each variable and determine the corresponding mean absolute bias

and root mean squared errors (RMSE). Second, we provide the cumulative mean absolute bias and RMSE

for h ∈ [0, H], with H = 4, 8, and 12, by using the impulse response functions.38 More specifically, the

35Several robustness exercises, which are available upon request, have been experimented to control for the lag order mis-

specification. All in all, our results remain unchanged and our estimator performs better than the competing estimators.
36We also implement the methodology of Christiano et al. (2006b), i.e. a nonparametric approach to estimate the zero-

frequency spectral density (with a Bartlett or Andrews-Monahan kernel). However, our Monte Carlo results show that their

approach underperforms with respect to the max-share approach and our C-ALS procedure.
37The max-share approach is developped in Faust (1998) and Uhlig (2003, 2004), and subsequently used by Barsky and Sims

(2011), Francis et al. (2014), Kurmann and Sims (2019), Angeletos et al. (2020).
38Since our results are qualitatively the same irrespective of the horizon, we only report those at the impact and well as those

at H = 12. Other results are available upon request.
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cumulative mean absolute bias is defined as cmd(H) =
∑H
h=0 |irfh(model)− irfh(svar)| where H denotes

the selected horizon, irfh(model) the impulse response at horizon h from the model defined by equations

(6.22) and (6.23), and irfh(svar) = (1/N)
∑N
j=1 irfh(svar)j the average impulse response function over

the N simulation experiments. Say differently, the cumulative mean absolute bias is a measure of the area

between the impulse response function up to a certain horizon H and the horizontal axis. Third, we con-

trast the true impulse response function of the second variable relative to the first structural shock with the

estimated impulse response functions provided by the competing methods.

In all simulation experiments, as n increases and the length of the symmetric frequency interval reduces, the

matrix W might not be of full rank so that we make use of a generalized inverse through a regularization

method and define the objective function as in equation (4.5). Indeed one main difficulty of solving the

Moore-Penrose pseudo-inverse of W without regularization is that the matrix W has tiny positive singular

values and this might lead to severe numerical instability due to round-off errors and unstable behavior of

the solution; these problems being more and more accurate as the frequency interval shrinks toward zero.

To circumvent this issue, we determine the rank of the matrix, say k, and take as regularization parameter

the kth (ordered) eigenvalue.39

In the sequel, we consider two assumptions for each parameter configuration of our Monte-Carlo simula-

tions. First, we assume that only the first structural shock has a permanent effect on the first variable, i.e.

the identifying restriction is correctly specified (null hypothesis). Second, we proceed with a misspecified

exclusion restriction (alternative hypothesis) in the sense that both shocks have a permanent effect whereas

we do only impose that the first structural shock matters permanently for the first variable.

In the first set of experiments, we consider a VAR(1) specification with (ρ11,1, ρ12,1, ρ21,1, ρ22,1, ρ22,2, b21, δ) =

(0, 0, 0.2, ρ, 0, 0.2, 0) where ρ = 0.9, 0.95, or 0.98.40 When ρ11,1 = ρ12,1 = δ = 0, the first variable, X1,t, is a

random walk, and the second variable is a persistent stationary process driven by ρ. Therefore the variance

contribution of the second structural shock to the first variable is equal to zero irrespective of the frequency

interval under consideration and, the long-run restriction is always satisfied irrespective of ωn. Figure 1

reports the mean absolute bias (left panel) and RMSE (right panel) of the contemporaneous effect of each

structural shock on each variable at different frequencies ωn. Three points are worth commenting. First,

an eye inspection of Figure 1 shows that the mean absolute bias and RMSE curves of the frequency-based

approaches are below the solid line that represents the results of the LR approach. This also holds true when

comparing with the MS approach. Second, the second-step C-ALS approach outperforms other methods for

both statistical criteria. Notably it turns out that the mean absolute bias differences between the second-step

C-ALS estimator and other alternatives are substantial irrespective of the frequency. Moreover, the discrep-

ancy between the first-step C-ALS and the second-step C-ALS illustrates that there is an effective gain to

39We also consider a truncated singular value decomposition and a pseudo-inverse method: our resuts are qualitatively the

same.
40These calibrated values are those of Gospodinov et al. (2013).
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exploit the relevant information of the reduced-form VAR estimation. All in all, the C-ALS estimator leads

to a significant bias reduction while being more efficient. Third, as to be expected, the first-step C-ALS

and max-share estimators display roughly the same finite sample properties under the null hypothesis of a

well-specified identifying restriction. Indeed, as stated in Section 5.2, the objective function of the first-step

estimator is equivalent to minimize (respectively, to maximize) the contribution of the second (respectively,

the first) structural shock to the partial spectrum of the first variable. Under the null hypothesis of a well-

specified identifying restriction, it amounts of finding the largest eigenvalue of the forecast error variance

decomposition, which is the purpose of the max-share approach.

Regarding the cumulative absolute bias between the average response in SVARs and the true response,

and the cumulative RMSE up to twelve periods for n = 30, 60, 90, 120, Figure 2 provides also very support-

ive evidence for the C-ALS approach. Indeed the cumulative bias and RMSE performances of our two-step

procedure are better than those of the competing approaches when studying the effect of each structural

shock on each variable of interest. Notably, the C-ALS methodology displays less cumulative bias and RMSE

for tiny intervals around ω = 0. Unreported results for ρ = 0.9 and ρ = 0.98 lead to the same conclusions.

To further contrast the different approaches, Figure 3 displays the true and estimated impulse response

function of the second variable relative to the first structural shock as well as the confidence intervals in the

case of the frequency interval ω60 = (− 2π
60 ,

2π
60 ).41 Interestingly, the impulse responses for the LR restriction

mimics the empirical results for the impact of a technology shock on hours worked when the hours series is

included in level in the VAR (see Christiano et al., 2006a): the response is positive at the impact and declines

toward zero, and the confidence interval contains zero at all horizons. This is also the case for the first-step

and MS estimators that display narrower confidence intervals than the one of the LR method. On the other

hand, the C-ALS-based impulse response function is more precise and one can reject the hypothesis that the

effect of the first shock on the second variable is equal to zero up to an horizon H = 20. Therefore, there

is a huge gain of efficiency by computing the optimal weighting matrix relative to the first-step C-ALS, and

the max-share approach. Finally, we implement the overidentification test (Proposition 4.6) and especially

its regularized version in equation (4.14).42 As reported in panels a, b, and c of Table 1 when δ = 0, the test

is conservative under the null hypothesis irrespective of the frequency interval.

To evaluate the robustness of the previous results, we now proceed with the alternative hypothesis, i.e.

the exclusion restriction is misspecified. As reported in Table 1, when δ = 0.05 or 0.1 and n augments

and thus the length of the frequency band reduces, the proportion of the variance explained by the second

structural shock for the first variable increases. In this respect, Figures 4 and 5 provide support that our

methodology clearly outperforms other methods in terms of (cumulative) mean absolute bias and (cumula-

41Results are qualitatively the same for ω30, ω90 and ω120.
42As explained before, one issue is the regularization of the W matrix and the fact that the test cannot be implemented if

the original weighting matrix displays a large rank-deficiency (i.e., the proportion of smaller eigenvalues is too large). However,

our worst case leads to reject 4 simulations over 10,000 for the frequency interval ω120.
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tive) RMSE. Again here, the reduction of both the bias and the RMSE is quite substantial and it is worth

emphasizing that the first-step C-ALS estimator has better finite samples properties than the max-share esti-

mation in the presence of misspecification, irrespective of ρ. Moreover, as already observed in the benchmark

parameter vector, Figure 6 shows that the discrepancy between the true impulse response function and the

one obtained from the C-ALS estimator is rather small whereas those of other methods display a significant

and substantial bias at very short horizons—the IRF estimates being even below the lower bound of the

confidence band for the first five quarters —and also in the medium term. This relative good performance

of our proposed estimator when the estimating equations are not satisfied can be explained by the fact that

the minimization solution yields a pseudo-true value, which is the closest to the true value, and that the

contribution of the second structural shock is minimized. Finally, our results seem to be consistent with the

restricted IRF estimator proposed by Gospodinov (2010) when the second variable is a strongly dependent

process that can be parameterized as local to unity and thus leads to a weak identification problem in the

instrumental variable-based framework of structural VAR identification. On the other hand, panels a,b, and

c of Table 1 shows that the overidentification test performs well. As δ augments, the contribution of the

second structural shock to the first structural variable increases and so the rejection rate: the probability of

rejecting the null hypothesis being between 90% and 99% for δ = 0.1.

We now turn to the second set of Monte Carlo simulations in which we consider a VAR(2) specification

with (ρ11,1, ρ12,1, ρ21,1, ρ22,1, ρ22,2, b21, δ) = (0,−0.08, 0.2, ρ + 0.55,−0.55ρ, 0.2, 0) where ρ = 0.9, 0.95, or

0.98. Looking at Figures 7, 8, and 9, the results are qualitatively similar to those of the VAR(1) under

the null hypothesis. Interestingly, when δ = 0, the contribution of the second structural shock to the first

variable is not zero but rather close to zero and decreases when the length of the frequency band increases,

and, as such, this case can be interpreted as a local alternative to the null hypothesis of a well-specified

identifying restriction.43 Taking that this local alternative hypothesis is often considered as a very plausible

data generating process in SVARs applications, the finite sample properties of the second-step C-ALS esti-

mator are again remarkable and appealing. At the same time, as to be expected, the J-stat has less power

but can still provide useful information in the case of a local alternative.

When δ = 0.04, three points can be stressed. First, the C-ALS estimator still dominates the first-step,

MS and LR approaches and displays a small (cumulative) mean absolute bias for interval greater than ω30

meanwhile the max-share estimator is only slightly improving relative to the standard LR approach. Notably,

the mean absolute bias of the two-step C-ALS estimator is close to zero for the widest interval ω30 while it

increases with decreasing intervals. This comes from the fact that the variance contribution of the second

shock to the first variable augments when the frequency interval becomes smaller and smaller and that the

(regularized) minimization problem of the C-ALS estimator seeks to find the optimal linear combination of

the reduced-form shocks such that the contribution of the second structural shock to the first variable is min-

imized. Second, the bias reduction of the second-step C-ALS estimator is achieved with a lower (cumulative)

43In contrast to other cases, the partial spectral density of the first variable with respect to the second structural shock is

U-shaped in a neighborhood of ω = 0.

32



RMSE relative to other estimators. Third, all of these results are robust with respect to the chosen horizon H.

Finally, Panel D of Table 1 show that the J-test has good power properties for this case. Indeed, in the former,

the probability of rejecting the null hypothesis in the presence of misspecification is close to 95% (resp., 97%)

To summarize, our Monte Carlo simulations provide evidence that the two-step C-ALS estimator outper-

forms other methods in terms of both (cumulative) mean absolute bias and RMSE. Contrasting the true

impulse responses with those of the competing methods shows also that the two-step C-ALS estimator is

more reliable and precise. At the same time, the proposed J-test behaves nicely in the presence of local

alternatives and misspecified identifying restrictions.

7 Applications

This section provides two applications of our methodology. First, we discuss the effect of a technology shock

on hours worked within the framework of bivariate structural VAR model (Section 5.2). Second, we proceed

with a (partial) identification of a news shocks (Section 5.3) using a quadrivariate structural VAR model.

7.1 The hours-productivity debate using bivariate SVAR models

Continuing from Sections 2 and 3.1, one key issue of the technology-hours debate is the assumed data generat-

ing process for the hours worked (per capita) measures. On the one hand, using a first difference specification

of the hours measure, structural VAR models predict a decline of hours in response to a positive technolog-

ical shock (e.g., Gaĺı, 1999, or Francis and Ramey, 2005), opposite of that implied by Real Business Cycles

models.44 On the other hand, entered in level, hours rise in response to a positive technological shock and the

standard result at the core of the long-standing RBC model emerges (Christiano et al, 2006a). To go one step

further, Francis and Ramey (2009) argue that one potential explanation of these conflicting results is that

the standard measure of hours per capita and productivity have significant low-frequency movements and

these movements can conduct to misleading results in the level-based specification of a structural VAR model.

More specifically, Francis and Ramey (2009) show that demographic trends and sectoral allocation are

important sources of low-frequency movements in hours worked and labor productivity.45 Consequently,

labor productivity might be driven by two permanent shocks, the technology shock and the demographic

shock, and thus the usual long-run restriction of hours-productivity VAR models might be violated. To

circumvent this problem, Francis and Ramey (2009) propose using new measures of hours worked per capita

44While standard unit root tests can not reject the presence of an unit root for hours worked series, most dynamic macroe-

conomic models with standard preference specifications imply that the hours worked per capita should be stationary in the

absence of permanent structural changes in government spending, labor income taxes and preferences (see Francis and Ramey,

2009).
45Several strands of research have discussed the existence of alternative shocks that can result in permanent effects on labor

productivity (e.g., Mertens and Ravn, 2013; Fisher, 2006; Ben Zeev and Kahn, 2015).
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and labor productivity that are more comfortable with the imposed long-run restriction(s). Taking the

adjusted series, it turns out that hours worked now respond negatively in the short run, and then become

slightly positive after a year for a structural VAR model in which the adjusted hours worked per capita series

is included in level. In this respect, a more complete test of their results asks: (1) Is there any evidence that

only technology shocks have a long-run effect on labor productivity using unadjusted hours and productivity

measures? If not, how effective is the technology shock identified with the adjusted series?

To this end, we conduct structural bivariate VAR analysis in which the first variable is labor productivity

and the second variable (in level) is subsequently the standard hours per capita measure (private business

hours per capita) and the adjusted hours series constructed by Francis and Ramey (2009). Starting from the

two-step procedure defined in Section 5.2 (Proposition 5.3), we implement the overidentification test to assess

the reliability of the identifying restrictions, and thus proceed as follows. We estimate the two reduced-form

VAR models in which the hour series enters in level. As in Francis and Ramey (2009), the sample period is

1948Q1-2007Q4 and the lag order is set to 4. To compare the results of our approach with those of Francis

and Ramey (2009), the identifying constraints are imposed over the frequency interval ω120 = (− 2π
120 ,

2π
120 ).

Finally, standard error bands are 95 percent confidence bands based on bootstrap standard errors with 1,000

replications.

As reported in Figure 13, using the standard LR restriction, Panel A shows that (unadjusted) private business

hours per capita respond significantly, with the exception of the initial period, and positively in the short run

to a positive technological shock and then decreases at intermediate to long horizons. In contrast, using our

approach, (unadjusted) private business hours per capita initially decrease, and then respond positively in

the short run (after one year) before gradually decreasing toward zero in the medium-to-long term. Moreover

none of the effect of the technological shock is statistically different from zero. As pointed out by Francis

and Ramey (2009), one explanation of this apparent discrepancy is that the identifying assumption, namely

the technological shock does explain alone the long-run effect on labor productivity for the unadjusted hours

series, is misspecified. To shed some light on this issue, we perform our identification test and find that the

JT statistic has a p-value of 0.0005. Consequently, our proposed overidentification test clearly rejects the

hypothesis that only one shock has a permanent effect on the labor productivity when using the unadjusted

series of hours.

On the other hand, as reported in Figure 13, both methods lead to the same shape of the impulse re-

sponse function, with the exception of the initial effect, when the VAR specification contains the adjusted

series of hours. More specifically, there is a statistically significant negative effect of the technological shock

on (adjusted) hours worked over the first periods in the case of our methodology whereas those effects are

not statistically different from zero using the standard LR method. Note that the LR results are consistent

with those of Francis and Ramey (2009). Interestingly, the JT statistic has now a p-value of 0.6512. Say

differently, this provides some support of the argument of Francis and Ramey (2009): the adjusted hours

worked series for demographic and sectoral changes is now compatible with the hypothesis that only the
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technology shock has long-run effect on labor productivity. Finally, we conduct our data-driven procedure to

select the optimal frequency interval such that the imposed restrictions do hold. We find significant evidence

for ω̂T = 80 quarters (with a p-value of 0.4307) and this provides additional support for the previous results

with ω̂T = 120.46

Therefore to answer our two questions, the evidence that only the technological shock has a long-run effect

on labor productivity is weak and correcting the hours series for demographic and sectoral changes is more

consistent with the Blanchard-Quah long-run restriction and leads to a negative effect of a technological

shock in the short-run.

7.2 Total factor productivity and news shocks

Continuing from Section 3.3, recent empirical literature delivered controversial results concerning the role

of anticipated technology—news—shocks in business cycle fluctuations using structural VAR approaches.

Starting with Beaudry and Portier (2004, 2006), news shocks are related to innovations driving the long-run

variations of the total factor productivity.47 Using short-run and long-run restrictions, Beaudry and Portier

(2006) conclude that news shocks about future productivity are one of the main drivers of business cycles

and there is a positive (contemporaneous) impact of the news shock on hours worked.

These results have been challenged in several directions. Especially, using a cumulative max-share ap-

proach, Barsky and Sims (2011) provide evidence that there are a negative (contemporaneous) impact of

the news shocks on hours worked and a negative conditional correlation between consumption growth and

hours, which leans against news-driven business cycles and thus is more in line with the implications of the

standard neoclassical framework. Kurman and Sims (2019) further relax the assumption that news shocks

are orthogonal to TFP at the impact to avoid cyclical mismeasurement of the long-run productivity.48 Using

a max-share approach, their results provide weak support for the news shock as the main driver of business

fluctuations.

Taking the debate regarding the importance of news shocks as a main driver of business fluctuations and the

mixed evidence regarding the response of hours worked following a news shock, we reexamine the empirical

evidence in light of our results in Sections 4 and 5. Our starting point is that the max-share approach ad-

vocated by Barsky and Sims (2001) or Kurmann and Sims (2019) still relies on both short-run and business

cycle fluctuations since the forecast error variance decomposition is based on the summation of the first

forty quarters (Barksy and Sims, 2011) or the first eighty quarters (Kurmann and Sims, 2019) and thus

46In contrast, the p-value of the J-stat is 0.0433 when ω̂T = 60 quarters.
47For an overview of the main insights and challenges of news shocks, see Beaudry and Portier (2014).
48Kurman and Sims (2019) also discuss the importance of the revisions of the utilization-adjusted series on total factor

productivity (Fernald, 2014). Using the 2016-vintage instead of the 2007-vintage leads to an opposite conclusion: hours worked

can respond positively to a news shocks at the impact (with confidence bands encompassing negative values) using the approach

of Barsky and Sims (2011).
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might partially disentangle the long-run productivity shock from lower persistent shocks. In contrast, our

frequency-based identification strategy has the advantage to focus on medium and long-run frequencies of

TFP and thus allows to exclude short-run and business cycles fluctuations. In so doing, we suppose that

the news shock is the only shock driving the productivity growth for frequency intervals corresponding to

medium and long-run fluctuations of TFP.

To compare our results, we apply four identification strategies to the same four-variable VAR investigated by

Kurmann and Sims (2019). Especially, we focus on the standard long-run identification strategy of Blanchard

and Quah (1989) denoted BQ, the cumulative forecast error variance decomposition identification of Barsky

and Sims (2001) denoted BS, the max-share identification of Kurmann and Sims (2019) denoted KS, and our

C-ALS identification. The structural VAR comprises the utilization-adjusted TFP series, real (personal)

consumption expenditures per capita, total hours worked per capita in the non-farm business sector and

inflation as measured by the growth rate of the GDP price deflator. The (quarterly) sample period is fixed

at 1960:q1 to 2018:q4. An important caution concerns the transformation of the initial series. On the one

hand, following the methodology of Fernald (2014) and the prerequisite of the (weakly) stationary assump-

tion for the spectral density matrix, the TFP series is included in first-difference. In contrast, Kurmann and

Sims (2019) and Barsky and Sims (2011) consider the TFP series in level by taking the cumulative sum of

the series constructed by Fernald (2014). By construction, the cumulative sum leads to the presence of a

unit root in the (level) series.49 Furthermore, the consumption series is also first-differenced as one can not

reject the presence of a unit root at conventional significance levels whereas the hours worked and inflation

series are left unchanged in levels.50 On the other hand, all series are in level in the case of the BS and KS

identification strategies.

Figure 14 displays the impulse response functions for the aforementioned macro series using the BQ long-

run restrictions (dash-dotted line), BS approach (dotted line), max-share of KS (dashed line) and interval

frequency restrictions (solid line). In the case of the C-ALS approach, using both the overidentification

test (Section 4.4) and the data-driven selection procedure (Section 4.5) provides empirical support for

ω ∈ [− π
120 ,

π
120 ].51 Interestingly, the KS identification strategy leads to a negative contemporaneous ef-

fect (-.0546) of the news shock on hours worked, which is consistent with their findings, whereas the BQ, BS

and C-ALS identification procedures leads to a positive response of .0320, 0.0752 and 0.0660 respectively.52

In addition, all impulse response functions display the same hump shaped dynamics.

Regarding now other macro series, the impulse response functions of consumption and inflation are rather

close. In the case of inflation, both the KS- and BS-based impulse response functions display a more long-

49See Phillips (1998) for the properties of impulse response functions in the case of VAR including unit or near unit roots.
50We also investigate a specification with the consumption series in level. The results are close to the ones with the specification

with consumption in difference and are available upon request.
51The corresponding p-value of the J-stat equals .245.
52All in all, using more recent data we find that the contemporaneous effect is less pronounced than in the original paper of

Kurman and Sims (2019), which covers the period 1961q1-2007q3.
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lasting (persistent) negative effect than the one identified with the BQ or C-ALS procedure. The result goes

the other way for the consumption series. Furthermore, whether the consumption series is in first-difference

or in level does not qualitatively alter the shape of the impulse response function, at least for the first forty

quarters. Looking at the TFP series, the BS approach, as to be expected, leads to a zero contemporaneous

effect and then can be characterized by a slow diffusion process. In contrast, by dropping out the short-run

identifying restriction, the most noticeable feature of the KS approach relative to the BS strategy is the

presence of a positive inverted hump shaped effect over the first five quarters—the two corresponding im-

pulse response functions being almost the same for horizons greater than 10 quarters. Finally, the impulse

response based on the standard long-run and the frequencies restrictions are almost the same with a statis-

tically significant positive higher impact relative to other methods. As a first conclusion, taking the impulse

response function of the hours worked and the plausible responses of other macro variables, our empirical

evidence suggests that news shocks can not be ruled out as a main driver of business fluctuations. At least,

the identification scheme of news shocks and its implications as well as the specification of the variables (in

level versus first-difference) deserve more attention.

As a robustness experiment, Figure 15 reports the impulse response functions of the hours worked to a

news shocks for different frequency intervals. The impact response is negative when one considers frequency

intervals on which the restrictions that only one shock drives the fluctuations of TFP is rejected or close

to be rejected at a level of 10%. Indeed, for the interval including business cycle frequencies ω ∈ [−π3 ,
π
3 ],

the p-value of the J-stat is .003 whereas, for ω ∈ [− π
20 ,

π
20 ] the p-value is .112. This suggests that one

possible explanation regarding the negative contemporaneous effect of the news shock on hours using the

KS identification strategy is related to the selection of the frequency band or the horizons of the max share

approach, and thus the fact that the news shock can confound short-run/business fluctuations with long-run

fluctuations of the TFP. As a second conclusion, our empirical evidence suggests that the determination of

the frequency band or the selection of the horizons of the forecast variance error decomposition must be

further investigated.

8 Conclusion

In this paper, we propose a new identification scheme and the corresponding estimation method using fre-

quency interval restrictions for structural VAR models. Using the methodology of Carrasco and Florens

(2000) and Carrasco and al. (2004), we derive a continuum asymptotic least squares estimator, the C-ALS

estimator, that allows to obtain reliable estimates of the dynamic responses of macroeconomic variables to

structural shocks and also to assess formally the relevance of the imposed restrictions over either a given set

of frequencies or a data-driven selected interval. Monte Carlo simulations argue in favor of our approach

with respect to competing methods. Finally, our first application regarding the hours-productivity debate

provides some new insights and, especially, the relevance of the argument of Francis and Ramey (2009)

whereas the second application suggest that the relevance of news shocks as a main business-cycle driver can
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not be ruled out when selecting adequately the frequency band.

From an empirical point of view, our methodology and the associated testing procedure (overidentifica-

tion, interval selection) can be used to reassess several debates, e.g. the identification and reliability of

news’ shocks (Beaudry and Portier, 2006; Barsky and Sims, 2011; Beaudry et al., 2013), the assessment

of the long-run neutrality (super-neutrality) of money or the long-run Fisher relation, or the identification

and estimation of the main driver (Angeletos et al., 2020). On the other hand, the derivation of optimal

rules for the choice of the regularization parameter for testing procedures, the extension to SVAR models

with integrated and cointegrated variables (Lütkepohl, 2007; Lütkepohl and Velinov, 2014), the existence of

nonfundamental representations (Gourieroux and Monfort, 2020) and the recoverability condition (Chahrour

and Jurado, 2021) deserve, among others, some future work.
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Appendix 1: Assumptions

Assumption A.1 The stochastic process Zt is a N × 1-vector of random variables. Zt is second-order stationary such that the

Wold’s Decomposition Theorem holds. The true unknown probability distribution of the {Zt}Tt=1 is denoted P0 which belongs

to a family of probability distribution.

Assumption A.2 It exists a sequence of estimators β̂T such that

β̂T = arg min
β∈B

QT (ZT , β),

with β0 = P0 limT→∞ β̂T is the true unknown value of the instrumental parameters and β0 is an interior point of B a compact

subset of Rq . Under standard regularity conditions,
√
T
(
β̂T − β0

)
d→ N (0,Ω) where Ω = P0 limT→∞ V ar

(√
T β̂T

)
.

Assumption A.3 ϕ is the p.d.f. of a distribution that is absolutely continuous with respect to Lebesgue measure on the

interval I = [−π, π] and admits all its moments. ϕ(ω) > 0 for all ω ∈ I. L2(I, ϕ) ≡ L2(ϕ) is the Hilbert space of complex-

valued functions that are square integrable with respect to ϕ:

L2(ϕ) = {f : I → C|
∫
I
|f(ω)|2ϕ(ω)dω <∞}.

with 〈., .〉 and ‖.‖ the inner product and the norm on L2(ϕ). The inner product is

〈f, h〉 =

∫
f(ω)h(ω)ϕ(ω)dω

where h(ω) denotes the complex conjugate of h(ω).

Assumption A.4 Let g(α, b, ω) be a vector of measurable functions from Rd × A × B into H = (L2(I, ϕ))J , a Hilbert

space with the inner product < ., . > and the norm ‖ · ‖. An element of H is a vector f(ω) = (f1(ω), f2(ω), . . . , fJ (ω))′

of square integrable functions fi(ω) for i = 1, . . . , J . The inner product is 〈f, h〉 =
∫
f(ω)′h(ω)ϕ(ω)dω with the norm

‖f‖M =
[∫
f(ω)′Mf(ω)ϕ(ω)dω

]1/2
=
[∑

l,k=1,...,J mlk
∫
fl(ω)′fk(ω)ϕ(ω)dω

]1/2
where M is a real-value positive definite sym-

metric J×J matrix with element mlk. Finally, for matrices of vector of functions F = (F1, · · · , Fp)′ and G = (G1, · · · , Gq)′ with

elements of Hp and Hq respectively, we denote 〈F,G〉 is the p×q matrix with (i, j) element defined by
∫
Fi(ω)′Gj(ω)ϕ(ω)dω.53

Assumption A.5 The J-vector of functions

g(α0, β0, ω) = 0

∀ω ∈ I, ϕ— almost everywhere, has a unique solution α0 which is an interior point of A a compact set and α0 and β0 denotes

the unknown value under P0.

Assumption A.6 (i) g(α, β, ω) is continuously differentiable with respect to α and β and g(α, β, ω) ∈ (L∞(ϕ⊗ P0))J where

L∞(ϕ⊗ P0) is the set of measurable bounded functions of (ω,Zt).

(ii) supα∈A ‖g(α, β, ω)− g(α0, β, ω)‖ = Op
(

1√
T

)
for all β ∈ B and ω ∈ I.

(iii) supα∈A0
‖∂g(α, β, ω)/∂α′ − ∂g(α0, β, ω)/∂α′‖ = Op

(
1√
T

)
for all β ∈ B and ω ∈ I where A0 is some neighborhood about

α0.

(iv) supβ∈B0 ‖∂g(α, β, ω)/∂β′−∂g(α, β0, ω)/∂β′‖ = Op
(

1√
T

)
for all α ∈ A and ω ∈ I where B0 is some neighborhood about β0.

Assumption A.7 Let S be a nonrandom bounded linear operator defined on D(S) ⊂ H valued in H. The operator S

does not depend on α but may depend on α0 and g(α, β, ω) ∈ D(S), ∀a and ∀β under P0.

53This notation differs from the definition of Frobenius inner product which is 〈F,G〉F = trG∗F .
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Assumption A.8 Let N(S) denote the null space of S, N(S) = {f ∈ H)|Sf = 0}. Suppose that g(α0, b0, ω) ∈ N(S)

implies g(α0, b0, ω) = 0.

Assumption A.9 Let ST be a sequence of bounded linear operators converging in probability to S defined on D(ST ) ⊂
H → H. Suppose that g(α, β̂T , ω) ∈ D(ST ), ∀α ∈ A and that ‖ST g(α, β̂T , ω)‖ is a continuous function of α. Moreover,

∂g(α, β, ω)/∂α ∈ D(S) for all α ∈ A′ and g(α, β, ω)/∂b ∈ D(S) for all β ∈ B0 under P0.

Assumption A.10

∂g

∂β′
(α0, β̂T , ω)

√
T (β̂T − β0)⇒ ξ ∼ N (0,K)

as T →∞ in H, where N(0,K) is the Gaussian random element of H with the covariance operator K : H → H satisfying

Kf(ω1) =

∫
EP0k(ω1, ω2)f(ω2)ϕ(ω2)dω

for all f in H where under P0

k(ω1, ω2) =
∂g

∂β′
(α0, β0, ω1)Ω

∂g′

∂β
(α0, β0, ω2).

with
∫ ∫

k(ω1, ω2)ϕ(ω1)ϕ(ω2)dω1dω2 < ∞. K is a compact Hilbert-Schmidt operator and K is self-adjoint (K = K∗). Here

ξ ∈ D(S) with probability one.

Assumption A.11 The matrices
〈
S1/2 ∂g

∂α′ (α0, β0, ω), S1/2 ∂g
∂α′ (α0, β0, ω)

〉
,
〈

Ω1/2 ∂g
∂β′ (α0, β0, ω),Ω1/2 ∂g

∂β′ (α0, β0, ω)
〉

and〈
K−1/2 ∂g

∂α′ (α0, β0, ω),K−1/2 ∂g
∂α′ (α0, β0, ω)

〉
are positive definite and symmetric which implies that dim(a) ≤ dim(g) ≤

dim(β).
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Appendix 2: Proofs of Section 4 and 5

Proof of Proposition 4.1

The estimator is given by

α̂T = arg min
α∈A

∥∥∥S1/2
T g(a, b̂T , ω)

∥∥∥
where ST is a sequence of random bounded linear operators.

First, under Assumption A.1 to Assumption A.8, α̂T
p→ α0 by Theorem 2.1 of Newey and McFadden (1994).

Now, differentiating the objective function with respect to α and β by a mean value expansion leads to:〈
S

1/2
T

∂g
∂α′ (α̂T , β̂, ωT ), S

1/2
T g(α̂T , β̂T , ω)

〉
= 0

⇐⇒
〈
S

1/2
T

∂g
∂α′ (α̂T , β̂T , ω), S

1/2
T

{
g(α0, β0, ω) + ∂g

∂α′ (āT , β̂T , ω)(α̂T − α0) + ∂g
∂β′ (α̂T , β̄T , ω)(β̂T − β0)

}〉
= 0

where āT is on the line segment joining α̂T and α0, β̄T is on the line segment joining β̂T and β0 and under Assumption A.4,

g(α0, β0, ω) = 0.

Using the linearity of the operator and g(α0, β0, , ω) = 0, we obtain:

α̂T − α0 = −
〈
S

1/2
T

∂g

∂α′
(α̂T , β̂T , ω), S

1/2
T

∂g

∂α′
(āT , β̂T , ω)

〉−1 〈
S

1/2
T

∂g

∂α′
(α̂T , β̂T , ω), S

1/2
T

∂g

∂β′
(α̂T , β̄T , ω)(β̂T − β0)

〉
.

Since α̂T
p→ α0, β̂T

p→ β0 and under the assumption that ‖ST − S‖ → 0 in probability

√
T (α̂T − α0) = −

〈
S1/2 ∂g

∂α′
(α0, β0, ω), S1/2 ∂g

∂α′
(α0, β0, ω)

〉−1 〈
S1/2 ∂g

∂α′
(α0, β0, ω), S1/2 ∂g

∂β′
(α0, β0, ω)

√
T (β̂T − β0)

〉
+op(1)

Using Assumption A.8 and Assumption A.10, one has

S
1/2
T

∂g

∂β′
(α0, β̂T , ω)

√
T (β̂T − β0)⇒ Y

and Y = N (0, S1/2KS1/2
′
).

The asymptotic variance-covariance matrix of
√
T (α̂T − α0) depends on the following expression:

E

〈
S1/2 ∂g

∂α′
(α0, β0), S1/2 ∂g

∂β′
(α0, β0)

√
T (β̂T − β0)

〉〈
S1/2

∂g

∂α′
(α0, β0), S1/2

∂g

∂β′
(α0, β0)

√
T (β̂T − β0)

〉′
=

E

[(∫ ω

ω

∂g′

∂α
(α0, β0)S1/2S1/2

∂g

∂β′
(α0, β0)

√
T (β̂T − β0)dω

)(∫ ω

ω

√
T (β̂T − β0)′

∂g′

∂β
(α0, β0)S1/2S1/2

∂g

∂α′
(α0, β0)dω

)]
=

E

[∫ ω

ω

∫ ω

ω

∂g′

∂α
(α0, β0)S1/2S1/2

∂g

∂β′
(α0, β0)

√
T (β̂T − β0)

√
T (β̂T − β0)′

∂g′

∂β
(α0, β0)S1/2S1/2

∂g

∂α′
(α0, β0)dω

]
.

Using

K∗ = E

[
∂g

∂β′
(α0, β0)

√
T (β̂T − β0)

√
T (β̂T − β0)′

∂g′

∂β
(α0, β0)

]
=

[
∂g

∂β′
(α0, β0)Ω

∂g′

∂β
(α0, β0)

]
and K = K∗ (the operator K is self-adjoint) imply

=

∫ ω

ω

∂g′

∂α
(α0, β0)S1/2

(∫ ω

ω
S1/2KS1/2(

∂g

∂α′
(α0, β0)dω

)
dω =

〈
S1/2 ∂g

∂α′
(α0, β0), (S1/2KS1/2

′
)S1/2 ∂g

∂α′
(α0, β0)

〉
.

under the assumption that S is Hermitian. Then, for

√
T (α̂T − α0) = −

〈
S1/2 ∂g

∂α′
(α0, β0), S1/2 ∂g

∂α′
(α0, β0)

〉−1 〈
S1/2 ∂g

∂α′
(α0, β0), Y

〉
+ op(1).
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using the previous result,〈
S1/2 ∂g

∂α′
(α0, β0), Y

〉
∼ N

(
0,

〈
S1/2 ∂g

∂α′
(α0, β0), (S1/2KS1/2

′
)S1/2 ∂g

∂α′
(α0, β0)

〉)
.

The result for the asymptotic distribution for a given sequence of random linear operators ST follows.

Proof of Proposition 4.2

We first show that ‖Kn −K‖ → 0 in probability. Consider for a given element (j, l) of KT (ω1, ω2) and the corresponding

element of K(ω1, ω2), the following expression:∫ ∫
k̂jl,T (ω1, ω2)− kjl(ω1, ω2)ϕ(ω1)ϕ(ω2)dω1dω2.

where k̂jl,T (ω1, ω2) =
∂gj
∂β′ (α̂

1
T , β̂T , ω1)Ω̂ ∂gl

∂β
(α̂1
T , β̂T , ω2)′ for α̂1

T ia consistent first step estimator of α0 and kjl(ω1, ω2) =

∂gj
∂β′ (α0, β0, ω1)Ω ∂gl

∂β
(α0, β0, ω2)′. Under α̂1

T

p→ α0, β̂T
p→ β0 and Ω̂

p→ Ω, the expression above converges to zero. This holds

for ∀j, l = 1, . . . , J which implies that ‖Kn −K‖ → 0 in probability. Let K̂T f(ω1) denote

K̂T f(ω1) =

(
J∑
l=1

∫
k̂jl,T (ω1, ω2)fl(ω2)ϕ(ω2)dω2

)
j=1,...,J

.

Then K̂T f(ω1) can be written as:

K̂T f(ω1) =
∂g

∂β′
(α̂1
T , β̂T , ω1)Ω

1/2
T

∫
Ω

1/2
T

∂g′

∂β
(α̂1
T , β̂T , ω2)f(ω2)ϕ(ω2)dω2.

for f(ω) = (f1(ω), f2(ω), . . . , fJ (ω))′ where fj(ω) for j = 1, . . . , J are scalar functions in L2(ϕ). In this case, R(KT ) is

the space spanned by ∂g
∂β′ (α̂

1
T , β̂T , ω2)Ω

1/2
T with rank at most equals to q. The eigenfunctions γi is necessarily of the form

∂g
∂β′ (α̂

1
T , β̂T , ω2)Ω

1/2
T Di where the matrix Di is of dimension q × 1 and D = [D1 D2 . . . Dq ] where D is of dimension q × q.

By virtue of the Mercer’s theorem, the vector γi(ω) of eigenfunctions satisfies

(KT γi) (ω1) = λiγi(ω1)

where λi is the corresponding eigenvalue of the eigenfunctions vector γi.

Using γi,T (ω) = ∂g
∂β′ (α̂

1
T , β̂T , ω)Ω

1/2
T Di yields:

KT γi(ω1) =
∂g

∂β′
(α̂1
T , β̂T , ω1)Ω

1/2
T

∫
Ω

1/2
T

∂g′

∂β
(α̂1
T , β̂T , ω2)

∂g

∂β′
(α̂1
T , β̂T , ω2)Ω

1/2
T Diϕ(ω2)dω2

Let D = [D1 D2 . . . Dq ] and Λ denote the matrices containing the eigenvectors and the eigenvalues of the following q × q
matrix: ∫

Ω
1/2
T

∂g′

∂β
(α̂1
T , β̂T , ω2)

∂g

∂β′
(α̂1
T , β̂T , ω2)Ω

1/2
T ϕ(ω2)dω2.

More specifically, the eigenvectors Di, i = 1, . . . , q and the corresponding eigenvalues λi solve the following system of q equations:∫
Ω

1/2
T

∂g′

∂β
(α̂1
T , β̂T , ω2)

∂g

∂β′
(α̂1
T , β̂T , ω2)Ω

1/2
T ϕ(ω2)dω2Di = λiDi.

Using the spectral decomposition,

KT γi(ω1) =
∂g

∂β′
(α̂1
T , β̂T , ω1)Ω

1/2
T

∫
Ω

1/2
T

∂g′

∂β
(α̂1
T , β̂T , ω2)

∂g

∂β′
(α̂1
T , β̂T , ω2)Ω

1/2
T Dϕ(ω2)dω2

=
∂g

∂β′
(α̂1
T , β̂T , ω1)Ω

1/2
T Diλi = λiγi(ω1),

which implies that γi(ω) is given by ∂g
∂β′ (α̂

1
T , β̂T , ω1)Ω

1/2
T Di. A consistent estimator of the Moore-Penrose generalized inverse

is then given by:

K−1
T f(ω1) =

q∑
i=1

1

λi,T
γi,T (ω1)

〈
f, γi,T

〉
.
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Proof of Proposition 4.3

After imposing that S1/2 = K−1/2, one obtains〈
K−1/2 ∂g

∂α′
(α0, β0), Y

〉
∼ N

(
0,

〈
∂g

∂α′
(α0, β0),K−1 ∂g

∂α′
(α0, β0)

〉)
.

Consequently, using S1/2 = K−1/2,

lim
T→∞

V ar
(√

T (α̂T − α0)
)

=

〈
∂g

∂α′
(α0, β0),K−1 ∂g

∂α′
(α0, β0)

〉−1 〈 ∂g

∂α′
(α0, β0),K−1 ∂g

∂α′
(α0, β0)

〉
×
〈
∂g

∂α′
(α0, β0),K−1 ∂g

∂α′
(α0, β0)

〉−1

=

〈
∂g

∂α′
(α0, β0),K−1 ∂g

∂α′
(α0, β0)

〉−1

.

Proof of Proposition 4.4

The C-ALS estimator is defined as the solution of the following problem:

α̂T = arg min
α∈A

‖K−1/2
T g(α, β̂T , ω)‖2

⇐⇒ α̂T = arg min
α∈A

〈
K−1
T g(α, β̂T , ω), g(α, β̂T , ω)

〉
.

We can rewrite this objective function as:

α̂T = arg min
α∈A

〈
K−1
T g(α, β̂T , ω),KTK

−1
T g(α, β̂T , ω)

〉
.

For sake of notation, g(α, β̂T , ω) ≡ g(ω). Let hT denote hT (ω) = K−1
T g(ω), the objective function is thus given by:

〈h(ω),KT h(ω)〉

where

KT h(ω) =
∂g

∂β′
(ω)Ω

1/2
T

∫
Ω

1/2
T

∂g′

∂β
(ω1)h(ω1)ϕ(ω1)dω1.

This yields

〈h(ω),KT h(ω)〉 =

∫
h(ω1)′

∂g

∂β′
(ω1)Ω

1/2
T ϕ(ω1)dω1

∫
Ω

1/2
T

∂g′

∂β
(ω2)h(ω2)ϕ(ω2)dω2.

Using the notation,

b =

∫
Ω

1/2
T

∂g′

∂β
(ω)h(ω)ϕ(ω)dω,

the objective function is then defined by b′b.

After multiplying KT h(ω) by Ω
1/2
T

∂g′

∂β
(ω1) and integrating, one obtains:∫

Ω
1/2
T

∂g′

∂β
(ω1)

∂g

∂β′
(ω)Ω

1/2
T ϕ(ω)dω

∫
Ω

1/2
T

∂g′

∂β
(ω1)h(ω1)ϕ(ω1)dω1

=

∫
Ω

1/2
T

∂g′

∂β
(ω1)g(ω1)ϕ(ω1)dω1 = s.

using KT h(ω) = g(ω). Denoting W =
∫

Ω
1/2
T

∂g′

∂β
(ω) ∂g

∂β′ (ω)Ω
1/2
T ϕ(ω)dω, we obtain: Wb = s. Now suppose that there exists

a generalized inverse of the matrix W denoted W̃ . Then b = W̃s and the objective function can be rewritten as s′W̃ 2s. This

provides the result. When W is of rank equal to p, then W̃ = W−1.
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Proof of Proposition 4.7

To derive the limiting distribution of the statistic, we need the following Lemma from Vuong (1989):

Lemma 8.1. (Vuong, 1989) Let W be a vector of q random variables distributed as N(0,Σ) with rank Σ ≤ q. Let Q be a q× q
real symmetric matrix. Then

W ′QW ∼
q∑
i=1

λiZ
2
i

where λ = (λ1, · · · , λq) is the vector of eigenvalues of QΣ and {Zi}qi=1 are m independent standard normal variables. Moreover,

the q eigenvalues are all real and nonnegative if Q is positive semi-definite.

Using the mean value expansion, one has:

S
1/2
T g(α̂T , β̂T , ω) = S

1/2
T g(α0, β0, ω) + S

1/2
T

∂g

∂α′
(ā, β̂T , ω)(α̂T − α0) + S

1/2
T

∂g

∂β′
(α̂T , β̄, ω)(β̂T − β0)

where ā is on the line segment joining α̂T and α0 and β̄ is on the line segment joining β̂T and β0. Taking the asymptotic

distribution of
√
T (α̂T − α0) derived above and g(α0, β0, ω) = 0, it follows that:

√
TS

1/2
T g(α̂T , β̂T , ω) = −S1/2

T

∂g

∂α′
(ā, β̂T , ω)

〈
S

1/2
T

∂g

∂α′
(α̂T , β̂T , ω), S

1/2
T

∂g

∂α′
(ā, β̂T , ω)

〉−1

×
〈
S

1/2
T

∂g

∂α′
(α̂T , β̂T , ω), S

1/2
T

∂g

∂β′
(α̂T , β̄, ω)

√
T (β̂T − β0)

〉
+S

1/2
T

∂g

∂β′
(α̂T , β̄, ω)

√
T (β̂T − β0).

Since α̂T
p→ α0, β̂T

p→ β0 and under the assumption that ‖ST − S‖ → 0 in probability:

√
TS

1/2
T g(α̂T , β̂T , ω) = −S1/2

T

∂g

∂α′
(α0, β0, ω)

〈
S1/2 ∂g

∂α′
(α0, β0, ω), S1/2 ∂g

∂α′
(α0, β0, ω)

〉−1

×
〈
S1/2 ∂g

∂α′
(α0, β0, ω), S1/2 ∂g

∂β′
(α0, b0, ω)

√
T (β̂T − β0)

〉
+ S

1/2
T

∂g

∂β′
(α0, b0, ω)

√
T (β̂T − β0) + op(1).

Using results obtained from the proof of Proposition 4.1, the variance of the first right-hand side term of the previous expression

above is given by:

S1/2 ∂g

∂α′
(α0, β0, ω)

〈
S1/2 ∂g

∂α′
(α0, β0, ω), S1/2 ∂g

∂α′
(α0, β0, ω)

〉−1 〈
S1/2 ∂g

∂α′
(α0, β0, ω), (S1/2KS1/2

′
)S1/2 ∂g

∂α′
(α0, β0, ω)

〉

×
〈
S1/2

∂g

∂α′
(α0, β0, ω), S1/2

∂g

∂α′
(α0, β0, ω)

〉′−1
∂g

∂α′
(α0, β0, ω)′S1/2

′
,

whereas the variance of the second right-hand side term is S1/2KS1/2
′
, and the covariance between the first and the second

terms is function of

E

[
S1/2 ∂g

∂β′
(α0, b0, ω)

√
T (β̂T − β0)

〈
S

1/2
T

∂g

∂α′
(α0, b0, ω), S

1/2
T

∂g

∂β′
(α0, b0, ω)

√
T (β̂T − β0)

〉′]
=

E

[
S1/2 ∂g

∂β′
(α0, b0, ω)

√
T (β̂T − β0)

∫ ω

ω

√
T (β̂T − β0)′

∂g′

∂β
(α0, b0, ω)S

1/2
T

′
S

1/2
T

∂g

∂α′
(α0, b0, ω)dω

]
=

S1/2 ∂g

∂β′
(α0, b0, ω)Ω

∫ ω

ω

∂g′

∂β
(α0, b0, ω)S

1/2
T

′
S

1/2
T

∂g

∂α′
(α0, b0, ω)dω =(

S
1/2
T KS

1/2
T

′)
S

1/2
T

∂g

∂α′
(α0, b0, ω).

Collecting the previous results and by Assumption A.10, one gets:

S
1/2
T

√
Tg(α̂T , β̂T , ω)

d→ N
(

0,
〈
S1/2[I −M(ω)], (S1/2KS1/2

′
)S1/2[I −M(ω)]

〉)
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with M(ω) = S1/2 ∂g
∂α′ (α0, β0, ω)

〈
S1/2 ∂g

∂α′ (α0, β0, , ω), S−1/2 ∂g
∂α′ (α0, β0, ω)

〉−1
∂g′

∂α
(α0, β0, ω)S1/2

′
.

Finally, using Lemma 8.1, 〈
S

1/2
T

√
Tg(α̂T , β̂T , ω), S

1/2
T

√
Tg(α̂T , β̂T , ω)

〉
d−→

m∑
i=1

λiZ
2
i

where λi are the eigenvalues of
〈
S1/2[I −M(ω)], (S1/2KS1/2

′
)S1/2[I −M(ω)]

〉
.

Proof of Proposition 4.8

Suppose there exists a lower bound ωlb such that for this lower bound JT (ωlb) = Op(1). The restrictions are then asymptoti-

cally valid for the interval (−ωlb, ωlb). Now, there exists two possible cases for which |ω| 6= |ω0|. First, consider the case where

|ω| > |ω0|. For this case, JT (ω) → ∞ while JT (ω0) = Op(1). Thus V ISCT (ω0) − V ISCT (ω)
p→ −∞. The criterion selects

the interval (−ω0, ω0) with a probability going to one when T is going to ∞. For the second case, |ω| < |ω0| which implies

that both JT (ω) and JT (ω0) are Op(1). Since |ω| < |ω0| and by Assumption 4.3, −h(|ω0|κT + h(|ω0|κT → −∞ which implies

V ISCT (ω0)− V ISCT (ω)
p→ −∞. By combining the two results, the criterion selects ω0 with a probability going to one when

T diverges toward ∞ for all ω 6= ω0.

Proof of Proposition 5.1

Consider the vector of just- or over-identified estimating equations defined by Eq. 2.10. Let β = (vec(Φp)′, vec(Σ)′)′ ≡ (Φ′, σ′)′

denote the vector of reduced-form parameters, and ΩT =

(
ΩΦ 0

0 Ωσ

)
the corresponding partitioning of the asymptotic

variance-covariance matrix of the OLS estimator of β. The first-order conditions of the first-step objective function with respect

to a are given by: ∫ ω

ω

∂

∂a

{
vec (C(z)A(0))′H′Hvec (C(z)A(0))

}
dω

+
∂

∂a

{
vech

(
Σ−A(0)A(0)′

)′
vech

(
Σ−A(0)A(0)′

)}
= 0

where

∂

∂a

{
vech

(
Σ−A(0)A(0)′

)′
vech

(
Σ−A(0)A(0)′

)}
= −2(D+

N (A(0)⊗ IN ))′vech
(

Σ̂T −A(0)A(0)′
)

by the result in Lütkepohl, (2007, p. 363) and

∂

∂a

{
vec (C(z)A(0))′H′Hvec (C(z)A(0))

}
=

∂

∂a

{
vec(A(0))′ (IN ⊗ C(z))′H′H(IN ⊗ C(z))vec (A(0))

}
= 2 (IN ⊗ C(z))′H′H(IN ⊗ C(z))vec (A(0))

= 2
∣∣(IN ⊗ C′(z))H′∣∣2 vec (A(0)) .

This gives the first order conditions. For the second-step estimator, using

∂vec(Σ)

∂Φ′
= 0 and

∂vec (A(0))

∂σ′
= 0,

imply that the weighting matrix is block diagonal. The optimal weighting matrix for the first set of estimating equations is

given by Proposition 4.4 and
∂vec(C(z))A(0))

∂Φ′ = (A(0)′ ⊗ I) ∂vec(C(z))
∂Φ′ where

∂vec(C(z))
∂Φ′ can be easily derived from Lütkepohl

(2007, p. 111). The optimal weighting matrix for the second set of estimating equations is given by 2D+
N (Σ̂ ⊗ Σ̂)D+

N

′
(see

Lütkepohl, 2007, p. 93).
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Proof of Proposition 5.3

The objective function of the C-ALS problem of a bivariate VAR model is based on the W and s(·, ·) matrices, with

s(ã12, β̂T ) =

∫ ω

ω

∞∑
j=0

[(
∂ĉ11,j

∂β′
eiωj ̂̃a1

12,T +
∂ĉ12,j

∂β′
eiωj

)
Ω1/2

]′ ∞∑
l=0

[
ĉ11,le

−iωlã12 + ĉ12,le
−iωl

]
dω

=

∫ ω

ω

∞∑
j=0

∞∑
l=0

[(̂̃a1
12,T

∂ĉ11,j

∂β′
Ω1/2

)′
ĉ11,lã12 +

(̂̃a1
12,T

∂ĉ11,j

∂β′
Ω1/2

)′
ĉ12,l +

(
∂Ĉ12,j

∂β′
Ω1/2

)′
ĉ11,lã12 +

(
∂ĉ12,j

∂β′
Ω1/2

)′
ĉ12,l

]
× exp((j − l)ω)dω

=
∞∑
j=0

∞∑
l=0

[(̂̃a1
12,T

∂ĉ11,j

∂β′
Ω1/2

)′
ĉ11,lã12 +

(̂̃a1
12,T

∂ĉ11,j

∂β′
Ω1/2

)′
ĉ12,l +

(
∂ĉ12,j

∂β′
Ω1/2

)′
ĉ11,lã12 +

(
∂ĉ12,j

∂β′
Ω1/2

)′
ĉ12,l

]

×
∫ ω

ω
cos((l − j)ω)dω

and

ŴT =

∫ ω

ω

∞∑
j=0

[(
∂ĉ11,j

∂β′
eiωj ̂̃a1

12,T +
∂ĉ12,j

∂β′
eiωj

)
Ω1/2

]′ ∞∑
l=0

[(
∂ĉ11,l

∂β′
e−iωl̂̃a1

12,T +
∂ĉ12,l

∂β′
e−iωl

)
Ω1/2

]
dω

=

∫ ω

ω

∞∑
j=0

∞∑
l=0

[((
∂ĉ11,j

∂β′
̂̃a1

12,T +
∂ĉ12,j

∂β′

)
Ω1/2

)′ ((∂ĉ11,l

∂β′
̂̃a1

12,T +
∂ĉ12,l

∂β′

)
Ω1/2

)]
exp((j − l)ω)dω

=

∞∑
j=0

∞∑
l=0

[((
∂ĉ11,j

∂β′
̂̃a1

12,T +
∂ĉ12,j

∂β′

)
Ω1/2

)′ ((∂ĉ11,l

∂β′
̂̃a1

12,T +
∂ĉ12,l

∂β′

)
Ω1/2

)]∫ ω

ω
cos((l − j)ω)dω

.

and the last equality holds by the symmetry of the interval around zero. The objective function can be then rewritten as:

s(ã12, β̂T )′
(
Ŵ 2
)−1

s(ã12, β̂T ) = (ŝ11,T ã12 + ŝ12,T )′(Ŵ 2
T )−1(ŝ11,T ã12 + ŝ12,T ) (8.24)

where ŝ11,T , ŝ12,T and ŴT are given by:

ŝ11,T =

∞∑
j=0

∞∑
l=0

̂̃a1
12,T ∂ĉ11,j

∂β′
Ω̂1/2

′ ĉ11,l +

(
∂ĉ12,j

∂β′
Ω̂1/2

)′
ĉ11,l

∫ ω

ω
cos((l − j)ω)dω

ŝ12,T =

∞∑
j=0

∞∑
l=0

̂̃a1
12,T ∂ĉ11,j

∂β′
Ω̂1/2

′ ĉ12,l +

(
∂ĉ12,j

∂β′
Ω̂1/2

)′
ĉ12,l

∫ ω

ω
cos((l − j)ω)dω,

and

ŴT =

∞∑
j=0

∞∑
l=0

[((
∂ĉ11,j

∂β′
̂̃a1

12,T +
∂ĉ12,j

∂β′

)
Ω̂1/2

)′ ((∂ĉ11,l

∂β′
̂̃a1

12,T +
∂ĉ12,l

∂β′

)
Ω̂1/2

)]∫ ω

ω
cos((l − j)ω)dω.

The minimizer of the objective function 8.24 is given by ̂̃a12,T = −
ŝ′11,T (Ŵ2

T )−1ŝ12,T

ŝ′
11,T

(Ŵ2
T

)−1ŝ11,T
.

First-order conditions with restrictions on |C(z)A(0)|2 = |A(z)|2 in Proposition 5.4. We provide the relevant first-order

partial derivatives in the following proposition.

Proposition 8.1. The first-order partial derivatives of the estimating equations,

g(a, β̂T , ω) = vech
(
Ĉ(z)Σ̂T Ĉ

∗(z)− Ĉ(z)A(0)A(0)′Ĉ∗(z)
)

with respect to a, Φ, and σ are respectively given by:

∂g

∂a′
(a, β̂T , ω) = −LN

(
C(z)⊗ C(z)

)
(IN2 +KNN ) (A(0)⊗ IN )

52



and

∂g

∂Φ′
(a, β̂T , ω) = LN

[(
IN ⊗ Ĉ(z)(Σ̂T −A(0)A(0)′)

) ∂vec(Ĉ∗(z))

∂Φ′
+
(
Ĉ(z)(Σ̂T −A(0)A(0)′) ⊗ IN

) ∂vec(Ĉ(z))

∂Φ′

]
∂g

∂σ′
(a, β̂T , ω) = LN (C(z)⊗ C(z))

with Ĉ∗′(z) = Ĉ(z), LN is an
(

1
2
N(N + 1)×N2

)
elimination matrix, KNN is the commutator matrix for which KNNvec(X) =

vec(X′) and X is an arbitrary N ×N matrix.

Proof: One has

∂g

∂a′
(a, β̂T , ω) = −LN

∂

∂a′
vec
(
Ĉ(z)A(0)A(0)′Ĉ∗(z)

)
= −LN

(
Ĉ(z)⊗ Ĉ(z)

) ∂

∂a′
vec
(
A(0)A(0)′

)
= −LN

(
Ĉ(z)⊗ Ĉ(z)

)[
(IN ⊗A(0))

∂vec(A(0)′)

∂a′
+ (A(0)⊗ IN )

∂vec(A(0))

∂a′

]
= −LN

(
C(z)⊗ C(z)

)
((IN ⊗A(0))KNN + (A(0)⊗ IN ))

= −LN
(
C(z)⊗ C(z)

)
(IN2 +KNN ) (A(0)⊗ IN )

using that KNN (A(0)⊗ IN ) = (IN ⊗A(0))KNN . On the other hand, the partial derivatives with respect to Φ are obtained

using the standard product rule for vector differentiation with the vec operator:

∂vec (A(θ)CD(θ))

∂θ′
= (IN ⊗A(θ)C)

∂vec (D(θ))

∂θ′
+
(
D(θ)′C′ ⊗ IN

) ∂vec (A(θ))

∂θ′
.

Moreover,
∂vec(C(z))

∂Φ′ can be derived from Lütkepohl (2007, p. 111). Finally, using the property vec(PQP ∗) = (P ?′ ⊗ P ) vec(Q)

and P ?′ = P where P is a complex-valued matrix, one has

∂g

∂σ′
(a, β̂T , ω) = LN (C(z)⊗ C(z))

∂vec(Σ)

∂σ′
= LN (C(z)⊗ C(z)).
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Figure 1: Contemporaneous bias and RMSE using a VAR(1) model with ρ = .95 and δ = 0
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Note: The solid line, long dashed line, dash-dotted line, and dotted lines represent the LR, second-step C-ALS, Max-share

and first-step estimators, respectively.
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Figure 2: Cumulative Bias and RMSE up to 12 quarters using a VAR(1) model with ρ = .95 and δ = 0
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Note: The solid line, long dashed line, dash-dotted line, and dotted lines represent the LR, second-step C-ALS, Max-share

and first-step estimators, respectively.
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Figure 3: Impulse Responses for the first shock on second variable when n = 60 quarters, ρ = .98 and δ = 0
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Note: Confidence intervals are based on the 95–percentile from 10,000 Monte–Carlo experiments.
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Figure 4: Contemporaneous bias and RMSE using a VAR(1) model with ρ = .95 and δ = .1
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Note: The solid line, long dashed line, dash-dotted line, and dotted lines represent the LR, second-step C-ALS, Max-share

and first-step estimators, respectively.
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Figure 5: Cumulative Bias and RMSE up to 12 quarters using a VAR(1) model with ρ = .95 and δ = .1
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Note: The solid line, long dashed line, dash-dotted line, and dotted lines represent the LR, second-step C-ALS, Max-share

and first-step estimators, respectively.
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Figure 6: Impulse Responses for the first shock on second variable when n = 60, ρ = .98 and δ = .05
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Note: Confidence intervals are based on the 95–percentile from 10,000 Monte–Carlo experiments.
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Figure 7: Contemporaneous bias and RMSE using a VAR(2) model with ρ = .95 and δ = 0
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Note: The solid line, long dashed line, dash-dotted line, and dotted lines represent the LR, second-step C-ALS, Max-share

and first-step estimators, respectively.
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Figure 8: Cumulative Bias and RMSE up to 12 quarters using a VAR(2) model with ρ = .95 and δ = 0

0.05 0.1 0.15 0.2

Frequencies

0

0.2

0.4

0.6

First shock on first variable: bias

0.05 0.1 0.15 0.2

Frequencies

0

1

2
First shock on first variable: RMSE

0.05 0.1 0.15 0.2

Frequencies

0

1

2
Second shock on first variable: bias

0.05 0.1 0.15 0.2

Frequencies

0

2

4

Second shock on first variable: RMSE

0.05 0.1 0.15 0.2

Frequencies

0

2

4
First shock on second variable: bias

0.05 0.1 0.15 0.2

Frequencies

2

4

6

8

First shock on second variable: RMSE

0.05 0.1 0.15 0.2

Frequencies

0.5

1

1.5

2

2.5
Second shock on second variable: bias

0.05 0.1 0.15 0.2

Frequencies

1

2

3

4

5
Second shock on second variable: RMSE

Note: The solid line, long dashed line, dash-dotted line, and dotted lines represent the LR, second-step C-ALS, Max-share

and first-step estimators, respectively.
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Figure 9: Impulse Responses for the first shock on second variable with n = 60, ρ = .95 and δ = 0
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Note: Confidence intervals are based on the 95–percentile from 10,000 Monte–Carlo experiments.
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Figure 10: Contemporaneous bias and RMSE at the impact using a VAR(2) model with ρ = .95 and δ = .04
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Note: The solid line, long dashed line, dash-dotted line, and dotted lines represent the LR, second-step C-ALS, Max-share

and first-step estimators, respectively.

63



Figure 11: Cumulative Bias and RMSE up to 12 quarters using a VAR(2) model with ρ = .95 and δ = .04
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Note: The solid line, long dashed line, dash-dotted line, and dotted lines represent the LR, second-step C-ALS, Max-share

and first-step estimators, respectively.
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Figure 12: Impulse Responses for the first shock on second variable with n = 60, ρ = .95 and δ = .04
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Note: Confidence intervals are based on the 95–percentile from 10,000 Monte–Carlo experiments.
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Figure 13: Impulse responses for the technology shock on hours worked

0 10 20 30 40
−0.5

0

0.5

1

1.5

Periods after shocks

LR restriction: unadjusted series

0 10 20 30 40
−0.5

0

0.5

1

Periods after shocks

Interval frequency restriction: unadjusted series

0 10 20 30 40
−0.5

0

0.5

1

Periods after shocks

LR restriction: adjusted series

0 10 20 30 40
−0.4

−0.2

0

0.2

0.4

0.6

Periods after shocks

Interval frequency restriction: adjusted series

Note: Confidence intervals are based on the 95–percentile from 1000 bootstraps.
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Figure 14: Impulse response functions for the news shock
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Note: The solid line, dashed line, dash-dotted line, and dotted lines represent the second-step C-ALS, max-share of KS,

BQ long-run, max-share BS, respectively.
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Figure 15: Impulse response functions for the news shock on hours worked for different frequency intervals
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Table 1: J-test

Quarters

n 30 60 90 120 30 60 90 120 30 60 90 120

a. VAR(1) : ρ = .90

δ = 0 δ = .05 δ = .1

% 2nd struct. 0 0 0 0 .1139 .1456 .1575 .1628 .3218 .3730 .3903 .3979

shock

.05 .0274 .0318 .0332 .0324 .4039 .4165 .4374 .4546 .9034 .9139 .9218 .9226

.10 .0457 .0494 .0547 .0508 .4705 .4770 .4977 .5137 .9273 .9349 .9403 .9424

b. VAR(1) : ρ = .95

δ = 0 δ = .05 δ = .1

% 2nd struct. 0 0 0 0 .2421 .3176 .3521 .3708 .5513 .6128 .6356 .6472

shock

.05 .0259 .0306 .0358 .0393 .5875 .6336 .6506 .6628 .9779 .9818 .9831 .9837

.10 .0448 .0497 .0553 .0581 .6464 .6826 .6993 .7070 .9847 .9864 .9874 .9878

c. VAR(1) : ρ = .98

δ = 0 δ = .05 δ = .1

% 2nd struct. 0 0 0 0 .5358 .6229 .6586 .6778 .8245 .8357 .8389 .8401

shock

.05 .0242 .0278 .0341 .0369 .7880 .8115 .8208 .8306 .9924 .9942 .9946 .9956

.10 .0442 .0457 .0530 .0563 .8236 .8354 .8489 .8590 .9942 .9960 .9962 .9965

d. VAR(2) : ρ = .95

δ = 0 δ = .02 δ = .04

% 2nd struct. .0213 .0150 .0103 .0073 .2201 .2846 .3139 .3297 .5101 .5773 .5966 .6083

shock

.05 .1471 .1474 .1374 .2070 .4874 .5084 .5658 .6222 .9060 .9336 .9420 .9458

.10 .2018 .2079 .2119 .2758 .5553 .5850 .6388 .6830 .9298 .9518 .9574 .9601

Note: The frequency intervals under investigation are: ωn = (− 2π
n ,

2π
n ) for n = 30, 60, 90, 120 quarters. The percentage of the second

structural shock represents the proportion of the variance explained by the second shock for the first variable in the frequency interval

of interest.
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This supplementary material presents some elements regarding:

• The expression of the one-step and two-step C-ALS estimator using the autoregressive parameters of

the reduced-form of a bivariate VAR representation;

• The derivation of a discretized ALS estimator (in the bivariate case);

• The comparison between the C-ALS estimator and the discretized ALS estimator;

• The unreliability issue of a long-run identification scheme.

1 Derivation of the C-ALS estimator using the autoregressive

VAR parameters

Taking the reduced-form specification,

Xt = φ1Xt−1 + · · ·+ φpXt−p + ut

where ut = A0εt, one has

Φ(L)Xt = ut

where Φ(L) = I2−φ1L−· · ·−φpLp. Therefore the (estimate of) matrix of spectral densities of the structural

VAR model at frequency ω is given by:

f̂FS
X (ω) =

1

2π

[
ξ(z)

′
ξ(z)

]−1

where z = exp(−iω) and ξ(z) = A−1
0 Φ̂(z). Then, imposing that the second structural shock has no impact

on the first variable over a given frequency interval, say [ω, ω], is equivalent to say that the (1, 2)-element of

ξ, defined by:

ξ(z) =
1

det(A0)

 a22(0) −a12(0)

−a21(0) a11(0)

 Φ̂11(z) Φ̂12(z)

Φ̂21(z) Φ̂22(z)


=

1

det(A0)

 a22(0)Φ̂11(z)− a12(0)Φ̂21(z) a22(0)Φ̂12(z)− a12(0)Φ̂22(z)

a11(0)Φ̂21(z)− a21(0)Φ̂11(z) a11(0)Φ̂22(z)− a21(0)Φ̂12(z)

 ,

equals zero on this frequency interval. Accordingly, the identifying restrictions are defined by:

a22(0)Φ̂12(z)− a12(0)Φ̂22(z) = 0,

2



which is equivalent to (using the structural VMA representation)

ĉ11(z)a12(0) + ĉ12(z)a22(0) = 0 ∀ω ∈ [ω, ω] .

Using the identity operator as a kernel operator and minimizing the corresponding objective function, it is

straightforward to show that the first-step consistent estimator of ã0
12 is given by:

̂̃a1

12,T =

p∑
k=0

p∑
j=0

Φ̂12,kΦ̂22,j

∫ ω
ω

cos(ω(k − j))dω

p∑
k=0

p∑
j=0

Φ̂22,kΦ̂22,j

∫ ω
ω

cos(ω(k − j))dω
.

where Φ̂22,0 = 1, Φ̂22,j = −φ̂22,j , Φ̂12,0 = 0, and Φ̂12,j = −φ̂12,j for j ≥ 1.

Finally, the optimal C-ALS estimator can be expressed as follows:

̂̃a12,T =
Â′T (Ŵ 2

T )−1B̂T

Â′T (Ŵ 2
T )−1ÂT

where ÂT , B̂T and ŴT are given by:

ÂT = −
p∑
k=0

p∑
j=0

[((
∂Φ̂22,k

∂β′
̂̃a1

12,T −
∂Φ̂12,k

∂β′

)
Ω̂1/2

)′
Φ̂22,j

]∫ ω

ω

cos((k − j)ω)dω

B̂T = −
p∑
k=0

p∑
j=0

[((
∂Φ̂22,k

∂β′
̂̃a1

12,T −
∂Φ̂12,k

∂β′

)
Ω̂1/2

)′
Φ̂12,j

]∫ ω

ω

cos((k − j)ω)dω,

and

ŴT =

p∑
k=0

p∑
j=0

[((
∂Φ̂22,k

∂β′
̂̃a1

12,T −
∂Φ̂12,k

∂β′

)
Ω̂1/2

)′((
∂Φ̂22,j

∂β′
̂̃a1

12,T −
∂Φ̂12,j

∂β′

)
Ω̂1/2

)]∫ ω

ω

cos((k − j)ω)dω.

2 Asymptotic least squares estimator using a discretization of the

frequency interval

One possible approach is to apply the standard asymptotic least squares procedure using a discretization

of the frequency band, and thus evaluating g(a0, β̂T , ωτ ) = 0 at different points/frequencies, say for τ =

1, · · · , n.

Proposition 2.1. Consider a discretization of the frequency band

ω = ω1 < ω2 < · · · < ωn = w.

Suppose that (Xt) is described by a bivariate VAR(p) model and that the identifying restriction is given by:

ĉ11(e−iω)ã12(0) + ĉ12(e−iω) = 0.
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Then, the first-step discretized ALS estimator, denoted ̂̃a1,d

12 , is:

̂̃a1,d

12 = −

∞∑
k=0

∞∑
j=0

(
ĉ11,k ĉ12,j

n∑
i=1

cos(ωi(k − j))
)

∞∑
k=0

∞∑
j=0

(
ĉ11,k ĉ11,j

n∑
i=1

cos(ωi(k − j))
) ,

and the second-step discretized ALS-estimator, ̂̃a2,d

12 , is:

̂̃a2,d

12 = −

∞∑
k=0

∞∑
j=0

ĉ11,k ĉ12,jΛ
′(ω1:n, k)

[
∞∑
k=0

∞∑
j=0

αk,j

(̂̃a1,d

12

)
Λ?(ω1:n, k, j)

]−1

Λ(ω1:n, j)

∞∑
k=0

∞∑
j=0

ĉ11,k ĉ11,jΛ′(ω1:n, k)

[
∞∑
k=0

∞∑
j=0

αk,j

(̂̃a1,d

12

)
Λ?(ω1:n, k, j)

]−1

Λ(ω1:n, j)

.

where αk,j

(̂̃a1,d

12

)
=

(
∂ĉ11,k

∂β′
̂̃a1,d

12 +
∂ĉ12,k

∂β′

)
Ω̂T

(
∂ĉ11,j

∂β
̂̃a1,d

12 +
∂ĉ12,j

∂β

)
is a scalar, Λ?(ω1:n, k, j) := Λ(ω1:n, k)Λ′(ω1:n, j),

and Λ(ω1:n, k) =
(

cos(ω1k) · · · cos(ωnk) sin(ω1k) · · · sin(ωnk)
)′

.

Proof: Following the approach of Feuerverger and McDunnough (1981), Singleton (2001) and Chacko and

Viceira (2003), we distinguish the real part and the imaginary part of the identifying restrictions:

∞∑
k=0

ĉ11,k cos(ωik)ã12 +

∞∑
k=0

ĉ12,k cos(ωik) = 0

∞∑
k=0

ĉ11,k sin(ωik)ã12 +

∞∑
k=0

ĉ12,k sin(ωik) = 0.

pour i = 1, · · · , n. Accordingly, the moment conditions are given by:

g(ã12(0), β̂T , ω1:n) =

 g1(ã12(0), β̂T , ω1:n)

g2(ã12(0), β̂T , ω1:n)


where

g1(ã12(0), β̂T , ω1:n) =


∞∑
k=0

ĉ11,k cos(ω1k)ã12(0) +
∞∑
k=0

ĉ12,k cos(ω1k)

...
∞∑
k=0

ĉ11,k cos(ωnk)ã12(0) +
∞∑
k=0

ĉ12,k cos(ωnk)


and

g2(ã12(0), β̂T , ω1:n) =


∞∑
k=0

ĉ11,k sin(ω1k)ã12(0) +
∞∑
k=0

ĉ12,k sin(ω1k)

...
∞∑
k=0

ĉ11,k sin(ωnk)ã12(0) +
∞∑
k=0

ĉ12,k sin(ωnk)

 .
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A first-step consistent estimator of ã12(0) solves the following minimization problem (using the identity

matrix of order 2n):

̂̃a1

12 = argmin
ã12

g′(ã12, β̂T , ω)g(ã12, β̂T , ω)

or

̂̃a1,d

12,T = argmin
ã12


∞∑
k=0

∞∑
j=0

[(
ĉ11,k ĉ11,j ã

2
12 + 2ĉ11,k ĉ12,j ã12 + ĉ12,k ĉ12,j

) n∑
i=1

cos(ωi(k − j))

] .

Therefore,

̂̃a1,d

12 = −

∞∑
k=0

∞∑
j=0

(
ĉ11,k ĉ12,j

n∑
i=1

cos(ωi(k − j))
)

∞∑
k=0

∞∑
j=0

(
ĉ11,k ĉ11,j

n∑
i=1

cos(ωi(k − j))
) .

Accordingly, the (discretized) second-step ALS estimator, denoted ̂̃ad12, solves:

̂̃ad

12 = argmin
ã12

g′
(
ã12, β̂T , ω

)
S−1

0 (̂̃a1,d

12 , β̂T , ω1:n)g
(
ã12, β̂T , ω

)
where S−1

0 (̂̃a1,d

12 , β̂T , ω1:n) is the 2n× 2n efficient weighting matrix defined by:

S−1
0 (̂̃a1,d

12 , β̂T , ω1:n) : =

[
∂g(̂̃a1,d

12 , β̂T , ω1:n)

∂β′
Ω̂T

∂g′(̂̃a1,d

12 , β̂T , ω1:n)

∂β

]−1

with

∂g(̂̃a1,d

12 , β̂T , ω1:n)

∂β′
Ω̂T

∂g′(̂̃a1,d

12 , β̂T , ω1:n)

∂β
=

∞∑
k=0

∞∑
j=0

Λ(ω1:n, k)

(
∂ĉ11,k

∂β′
̂̃a1,d

12 +
∂ĉ12,k

∂β′

)
Ω̂T

(
∂ĉ11,j

∂β
̂̃a1,d

12 +
∂ĉ12,j

∂β

)
Λ′(ω1:n, j)

=

∞∑
k=0

∞∑
j=0

(
∂ĉ11,k

∂β′
̂̃a1,d

12 +
∂ĉ12,k

∂β′

)
Ω̂T

(
∂ĉ11,j

∂β
̂̃a1,d

12 +
∂ĉ12,j

∂β

)
Λ?(ω1:n, k, j)

=

∞∑
k=0

∞∑
j=0

αk,j

(̂̃a1,d

12

)
Λ?(ω1:n, k, j)

where

Λ?(ω1:n, k, j) :=



cos(ω1k) cos(ω1j) · · · cos(ω1k) cos(ωnj) cos(ω1k) sin(ω1j) · · · cos(ω1k) sin(ωnj)
...

. . .
...

...
. . .

...

cos(ωnk) cos(ω1j) · · · cos(ωnk) cos(ωnj) cos(ωnk) sin(ω1j) · · · cos(ωnk) sin(ωnj)

sin(ω1k) cos(ω1j) · · · sin(ω1k) cos(ωnj) sin(ω1k) sin(ω1j) · · · sin(ω1k) sin(ωnj)
...

. . .
...

...
. . .

...

sin(ωnk) cos(ω1j) · · · sin(ωnk) cos(ωnj) sin(ωnk) sin(ω1j) · · · sin(ωnk) sin(ωnj)


.

Note that the analytical expression of
∂ĉ11,j

∂β

′
and

∂ĉ12,j

∂β′ is provided in Appendix 4. In addition, it also worth

noting that the rank of the matrix Λ?(ω1:n, k, j) is one.
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Under suitable regularity conditions, the discretized second-step ALS estimator, denoted ̂̃a2,d

12,T , solves the

first-order condition:

g′(̂̃a2,d

12 , β̂T , ω1:n)S−1
0 (̂̃a1,d

12 , β̂T , ω1:n)
∂g(̂̃a2,d

12 , β̂T , ω1:n)

∂ã′12

= 0

that is [ ∞∑
k=0

{(
ĉ11,k

̂̃a2,d

12 + ĉ12,k

)
Λ′(ω1:n, k)

}]
S−1

0 (̂̃a1,d

12 , β̂T , ω1:n)

 ∞∑
j=0

ĉ11,jΛ(ω1:n, j)

 = 0.

Finally

̂̃a2,d

12 = −

∞∑
k=0

∞∑
j=0

ĉ11,k ĉ12,jΛ
′(ω1:n, k)

[
∞∑
k=0

∞∑
j=0

αk,j

(̂̃a1,d

12

)
Λ?(ω1:n, k, j)

]−1

Λ(ω1:n, j)

∞∑
k=0

∞∑
j=0

ĉ11,k ĉ11,jΛ′(ω1:n, k)

[
∞∑
k=0

∞∑
j=0

αk,j

(̂̃a1,d

12

)
Λ?(ω1:n, k, j)

]−1

Λ(ω1:n, j)

.

3 The discretization issue

We now discuss the comparison between the C-ALS estimator and the discretized ALS estimator. In so

doing, and for sake of tractability, we compare the first-step C-ALS estimator and the discretized first-step

ALS estimator:

̂̃a1,c-als

12 = −

∞∑
k=0

∞∑
j=0

ĉ11,k ĉ12,j

∫ ωn

ω1
cos(ω(k − j))dω

∞∑
k=0

∞∑
j=0

ĉ11,k ĉ11,j

∫ ωn

ω1
cos(ω(k − j))dω

and ̂̃a1,d

12 = −

∞∑
k=0

∞∑
j=0

(
ĉ11,k ĉ12,j

n∑
i=1

cos(ωi(k − j))
)

∞∑
k=0

∞∑
j=0

(
ĉ11,k ĉ11,j

n∑
i=1

cos(ωi(k − j))
) .

Whereas the first-step C-ALS makes use of weights given by
∫ ωn

ω1
cos(ω(k−j))dω for all (j, k), the discretrized

first-step ALS estimator uses
n∑
i=1

cos(ωi(k − j)) with ω1 ≤ ... ≤ ωn. It can be easily seen that the weights∫ ωn

ω1
cos(ω(k − j)dω are bounded and belongs to (−1, 1) (assuming that ωn − ω1 ∈ (−1, 1) when k = j)

whereas the sum
n∑
i=1

cos(ωi(k − j)) belongs to (−n, n). To simplify the analysis, we now assume that the

increment of the discretization is constant, i.e. ∆ = ωn−ω1

n−1 and

ωl = ω1 + (`− 1) ∆

for ` = 1, · · · , n. Before comparing the two estimator, we first need an intermediate result.

Corollary 3.1. Suppose that the increment of the discretization is constant, ∆ = ωn−ω1

n−1 . Then, the first-step

discretized ALS estimator is given by:

̂̃a1,d

12,T = −

∞∑
k=0

∞∑
j=0

ĉ11,k ĉ12,j cos
(
ω1+ωn

n (k − j)
) sin(ωn−ω1

2
n

n−1 (k−j))
sin(ωn−ω1

2
1

n−1 (k−j))
∞∑
k=0

∞∑
j=0

ĉ11,k ĉ11,j cos
(
ω1+ωn

n (k − j)
) sin(ωn−ω1

2
n

n−1 (k−j))
sin(ωn−ω1

2
1

n−1 (k−j))
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When ω1 = −ωn,

̂̃a1,d

12,T = −

∞∑
k=0

∞∑
j=0

ĉ11,k ĉ12,j
sin( n

n−1 (k−j)ωn)
sin( 1

n−1 (k−j)ωn)
∞∑
k=0

∞∑
j=0

ĉ11,k ĉ11,j
sin( n

n−1 (k−j)ωn)
sin( 1

n−1 (k−j)ωn)

Proof: Using the Moivre representation and the notation ξ = k − j ,

n∑
`=1

exp (iξωl) =

n∑
`=1

exp (iξ (ω1 + (`− 1)∆))

= exp (iξω1)

n−1∑
`=0

exp (iξ`∆) = exp (iξω1)
1− exp(iξn∆)

1− exp(iξ∆)

= exp (iξω1)
exp

(
inξ∆

2

)
exp

(
iξ∆

2

) (exp
(
inξ∆

2

)
− exp

(
−inξ∆

2

))
/2i(

exp
(
iξ∆

2

)
− exp

(
−iξ∆

2

))
/2i

= exp

(
iξ

(
ω1 + (n− 1)

∆

2

))
sin
(
nξ∆

2

)
sin
(
ξ∆

2

)
= exp

(
iξ
ω1 + ωn

2

) sin
(
ξ ωn−ω1

2
n
n−1

)
sin
(
ξ ωn−ω1

2
1

n−1

)
Since

∑n
`=1 exp (iξωl) =

∑n
`=1 cos(ω`ξ) + i

∑n
`=1 sin(ω`ξ), the result follows by identification with the previ-

ous expression, and one can also deduce the corresponding expression when ω1 = −ωn (symmetric interval).

Note that
∑n
`=1 cos(ω`(k − j)) = n when k = j.�

Using the previous corollary, we are now in a position to characterize the normalized error 1
∆

∫ ωn

ω1
cos(ω(k−

j))dω −
∑n
`=1 cos(ω`(k − j)).

Corollary 3.2. Suppose that the increment of the discretization is constant, ∆ = ωn−ω1

n−1 . Then,

1

∆

∫ ωn

ω1

cos(ω(k − j))dω −
n∑
`=1

cos(ω`(k − j)) =
−1 when k = j

cos
(
ωn+ω1

2 (k − j)
) [

2
k−j

1
∆ sin

(
(n− 1)∆

2 (k − j)
)
− sin(n∆

2 (k−j))
sin( ∆

2 (k−j))

]
when k 6= j.

In the case of a symmetric interval (for k 6= j), one has

1

∆

∫ ωn

−ωn

cos(ω(k − j))dω −
n∑
`=1

cos(ω`(k − j)) =
2

k − j
1

∆
sin (ωn(k − j))−

sin
(

n
n−1 (k − j)ωn

)
sin
(

1
n−1 (k − j)ωn

) .
Proof: Noting that

∫ ωn

ω1

cos(ω(k − j))dω =

 ωn − ω1 when k = j

1
k−j (sin (ωn(k − j))− sin (ω1(k − j))) when k 6= j
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with sin (ωn(k − j)) − sin (ω1(k − j)) = 2 sin
(
ωn−ω1

2 (k − j)
)

cos
(
ωn+ω1

2 (k − j)
)
, and, in the case of a sym-

metric interval, ∫ ωn

−ωn

cos(ω(k − j))dω =

 2ωn when k = j

2
k−j sin (ωn(k − j)) when k 6= j

,

the result follows by virtue of Corollary 3.1.�

Using a simple trapezoidal rule for integration,∫ ωn

ω1

cos(ω(k − j)dω = ∆

n∑
i=1

cos(ωi(k − j))−∆
cos(ωn(k − j)) + cos(ω1(k − j))

2
+ Rn

= ∆

n∑
i=1

cos(ωi(k − j))−∆ cos

((
ωn + ω1

2

)
(k − j)

)
cos

((
ωn − ω1

2

)
(k − j)

)
+ Rn

where the reminder Rn is negligible for n large enough, it turns out that an approximation of the normalized

error when ω1 = −ωn is given by :

1

∆

∫ ωn

−ωn

cos(ω(k − j))dω −
n∑
`=1

cos(ω`(k − j)) ' cos(ωn(k − j)).

In the technical Appendix, Figure 1 reports the normalized error and its approximation.

From a numerical point of view, using the integral weights will reduce the round-off errors and some instabil-

ity with respect to the first-step discretized ALS estimator. This argument is also true when comparing the

two-step C-ALS and the two-step discretized ALS estimators. On top of the approximation of the integral

by a sum (up to a constant term—inverse of the increment), one key issue is the existence of the inverse in

the expression of S−1
0 (.) (see above) :(

∂g(̂̃a1,d

12 , β̂T , ω1:n)

∂β′
Ω̂T

∂g′(̂̃a1,d

12 , β̂T , ω1:n)

∂β

)−1

and thus the rank of the matrix
∂g(̂̃a1,d

12 ,β̂T ,ω1:n)
∂β′ Ω̂T

∂g′(̂̃a1,d

12 ,β̂T ,ω1:n)
∂β . This matrix is a linear combination of the

matrices Λ∗(w1:n, k, j) for all k, j, which are singular—the rank of each matrix Λ∗(w1:n, k, j) being one. It

turns out that for large n and thus a refined grid, the matrix is not invertible. Finally, as one refines and

extends the grid, i.e. ∆→ 0, the discrete set of estimating equations converges to the continuous estimating

function, i.e. the identifying restriction on a frequency band, while the optimal weighting matrix will now

converge to the covariance operator associated with that estimating function.

4 Unreliability of long-run identification scheme

We discuss the unreliability of the long-run identification scheme. It can be explained from these two

fundamental relationships:

C(1)A(0) = A(1), (4.1)
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and

A(L) = C(L)A(0) = C(L)C(1)−1A(1), . (4.2)

It turns out that the long-run identification scheme conducts to reliable inference if and only if the A(1) is

consistently estimated in finite samples and especially the lag order p is not misspecified. Otherwise, any

inconsistent estimate of A(1) leads to unreliable long-run effects of shocks (in finite samples). This in turn

is transferred to the estimates of the dynamic multipliers of the structural shocks by virtue of Eq. (4.2).1

In particular, one cannot form asymptotically correct confidence intervals for impulse responses of each

structural shock and there is no consistent test that an individual impulse response coefficient is zero (Faust

and Leeper, 1997). The fundamental issue is that the true data generating process may have an infinite-

ordered VAR representation with Φ0(L) =
∑∞
j=1 Φ0,jL

j and thus the infinite sequence Φ0 = {Φ0,1,Φ0,2, · · · }
must be approximated by a finite sequence Φ̃p = {Φ1, · · · ,Φp} (i.e., a misspecified VAR model). Such

finite-parameter approximations to infinite lag distributions have been studied extensively by Sims (1971,

1972) and Pötscher (2002), especially for least-squares criterion.2 An accurate approximation from the point

of view of least-squares fit does not imply an accurate approximation of the long run effect.3 This means

that convergence of the sequence Φ̃p is not sufficient to guarantee the convergence of some functions of those

parameters (Sims, 1971,1972; Pötscher, 2002) as pointwise convergence does not imply (locally) uniform

convergence. More specifically, functions of a lag distribution (e.g., the sum of coefficients) are in general

discontinuous with respect to the metric implied be least-squares estimation.4 Say differently, the best least-

squares approximation of Φ0, Φp, might be arbitrarily close (w.r.t. L2-norm) whereas Φ(1) and Φ̃p(1) are

arbitrarily far apart and thus converge to different limits. This stems also from the fact that the least-squares

criterion at a single frequency admits a zero Lebesgue measure. From a practical point of view, it turns out

that standard errors of estimates or the coefficient of determination might approach their optimum values

in arbitrarily large samples while the estimated sum of coefficients remains arbitrarily far from their true

values. Inference based on the sum of coefficients is then highly unreliable unless Φ is in fact contained in

Φp, and not only close to it (Pötscher, 2002).5

1Using Monte Carlo simulations, Erceg et al. (2005) and Chari et al. (2008) study the extent of these small-sample estimation

problems.
2A similar argument can be found in Christiano et al. (2006a).
3See Faust (1996,1999) for an application of this result to unit root tests and confidence intervals for points on spectrum.
4The functional S∆X → S∆X(0), with S∆X the spectrum of the stochastic process (∆Xt), is highly discontinuous w.r.t.

L2-distance. This makes the problem fall into the category of ill-posed problem (Sims, 1972; Pötscher, 2002).
5Note that it might occur regardless of how large the sample size is.
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Figure 1:
∫ ωn

−ωn
cos(ω(k − j))dω versus

∑n
`=1 cos(ω`(k − j))

 

Note: The blue solid line and the red dotted line represent the normalized error 1
∆

∫ ωn
ω1

cos(ω(k−j))dω−
∑n

`=1 cos(ω`(k−
j)) and the approximation of this error, cos(ωn(k − j)).
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