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Abstract

We analyze the dynamic effects of wildfires on employment in US counties. We con-
struct a novel spatially-detailed dataset of wildfire exposure between 2000-2021 using
hourly satellite imagery linked with monthly county-level economic statistics. We find
that on average an increase in burn area leads to a decrease in employment for about
two and a half years. These effects vary greatly across counties. In particular, employ-
ment decreases only in counties with a relatively low level of education, a relatively
high degree of income inequality, or with a relatively small number of industries. These
effects do not vary systematically by average county income or population size and are
not well-explained by out-migration. We find some positive spillover effects on employ-
ment in neighboring counties, particularly over longer horizons, which are economically
but not statistically significant. The state of the economy matters: we find that the
negative effect of wildfires on employment is much larger in periods of slack i.e., when
a county’s unemployment rate is high compared to its average unemployment rate.
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1 Introduction

Technological progress has advanced human capacity to withstand and recover from natu-
ral disasters. Yet as climate change progresses, these disasters are becoming increasingly
frequent and severe (Westerling, Hidalgo, Cayan, and Swetnam (2006); Jolly, Cochrane,
Freeborn, Holden, Brown, Williamson, and Bowman (2015); Coronese, Lamperti, Keller,
Chiaromonte, and Roventini (2019); Bhatia, Vecchi, Knutson, Murakami, Kossin, and Dixon
(2019); Kossin, Knapp, Olander, and Velden (2020); Vecchi, Landsea, Zhang, Villarini, and
Knutson (2021)). Wildfires, in particular, are becoming increasingly common in the United
States. These disasters can spread rapidly and inflict concentrated damages in counties and
smaller communities. How have wildfires tended to affect economic activity in US counties?
Are they short, sharp shocks with quick recoveries? Or slower, more drawn-out affairs?

In this paper we analyze the effects of wildfires on employment in the US using a novel
spatially-detailed monthly dataset of county-level fire exposure and employment over 2000-
2021. Figure 1 shows changes in total burned area in US counties over this period. Though
fires are generally concentrated in the West and South, the long-run trend is for more coun-
ties in these regions to experience more significant fire exposures.

Recent analyses of the effects of wildfires on labor market outcomes in the US have found
mixed effects across time and space. Nielsen-Pincus, Moseley, and Gebert (2013) examine the
effect of large wildfires (based on USDA Forest Service classifications of suppression spending)
on wage growth and volatility in the US West, finding that suppression spending can have
positive effects on wage growth and employment while also increasing their volatility. More
recently, Tran and Wilson (2022) study the local economic impact of natural disasters over
1980-2017 using Federal Emergency Management Agency (FEMA) administrative data on
disaster declarations and assistance. They find a temporary employment boost and increase
in hours though negative effects and spatial spillovers in the longer-run at the state level.
Borgschulte, Molitor, and Zou (2022) focus on the effects of wildfire smoke on annual earn-
ings, labor force participation, and Social Security claims. They find that smoke exposure
has negative effects on earnings and participation and increases Social Security claims. Their
analysis sheds light on an important biological channel through which wildfires may impact
economic activity. We contribute to this literature by (1) constructing a novel geophysical
measure of fire exposure that facilitates analysis of all fire events (regardless of suppression
or aid funding involved) in the entire US over 2000-2021, (2) identifying monthly economic
effects of a marginal increase in fire area, and (3) identifying communities that are especially
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Figure 1: Total burned area in US counties over time. Darker colors indicate larger burned
areas within counties. Data source: NASA Earthdata LPDAAC MCD64A1 product, (Giglio
et al., 2018).

vulnerable to the economic effects of wildfires.

There are two key challenges in studying monthly changes in employment growth induced
by wildfires. First, though they may have indirect effects at the national level through trade
and migration linkages, the direct effects of wildfires may be confined to relatively small
regions of a large country like the US. This limits the extent to which their impacts can be
measured using aggregate economic statistics at the national or even regional level. Second,
employment is often studied using quarterly data, but wildfires tend to be short and sharp
disruptions which may last mere days or weeks. While some disasters can have long-lasting
effects (Long and Siu (2018); Boustan, Kahn, Rhode, and Yanguas (2020)), the brevity of
wildfires themselves limits the extent to which their effects on employment can be charac-
terized using quarterly data.

To overcome these challenges, we combine satellite imagery from the National Aeronau-
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tics and Space Administration (NASA) of the universe of wildfires affecting the continental
US since November of 2001, compiled and hosted by the National Oceanic and Atmospheric
Administration (NOAA) and US Geological Survey (USGS) with monthly unemployment
rate data from the Bureau of Labor Statistics (BLS). Following the literature on real-time
economic activity measurement, we use the employment rate—a leading indicator of eco-
nomic activity in US counties (Sahm, 2019; Dupraz, Nakamura, and Steinsson, 2019)—as
our dependent variable. Our final dataset contains county-month observations with county
characteristics, the employment rate, and an estimate of the area burned in wildfires in that
county-month. Our dataset also allows us to parse out the heterogeneous employment effects
of wildfires by county characteristics like racial and age composition, median income, and
degree of urban development. We use local projections (Jordà, 2005) to estimate impulse
responses of employment to fire impulses. One key advantage of this method is its flexibility
in allowing for state dependence where the dynamic response of the unemployment rate can
vary across space and time and according to different scenarios.

Our analysis contributes to the growing literature on wildfires and economic activity, as
well as the growing literature on the economic impacts of natural disasters, in three ways.
First, we focus specifically on wildfires using a geophysical measure of fire exposure. Both
official disaster declarations and dollar value measures may be endogenous to economic con-
ditions, an issue which satellite measurements of burn area avoid.1 To our knowledge this
analysis is the first to both use a geophysical measure of fire exposure as well as cover the
entire United States for the 2000-2021 period. Our use of geophysical measures of disaster
activity mirrors Strobl (2011) and Felbermayr and Gröschl (2014), albeit for wildfires instead
of hurricanes or other disaster types. Our estimates are thus both highly informative about
the distribution of impacts over space and time, and can be used to simulate future impacts
under different fire conditions or infer historical effects of fire exposure on labor market
outcomes. We conduct such an exercise to determine the historical variation in regional
employment attributable to fire exposure over the sample period.

Second, while there is much evidence regarding the long-term growth effects of natural dis-
asters broadly (e.g., Noy (2009); Cavallo, Galiani, Noy, and Pantano (2013); Lackner (2018);
Boustan et al. (2020)), there is less evidence regarding county-level impacts of wildfires (or
disasters more generally) at the monthly frequency. Borgschulte et al. (2022) provides the

1For example, dollar-denominated damages may be systematically higher in counties with greater eco-
nomic capacity to recover from a fire event, which would bias the estimated impulse response towards
projecting faster recoveries.

3



closest match to our study in these respects. They conduct a county-level analysis using
high-frequency geophysical measures of wind flows and smoke exposure, albeit at a quar-
terly frequency. Our analysis complements theirs, as we focus on fires rather than smoke,
and jobs (i.e., extensive margin) rather than hours worked (i.e., intensive margin). Our
results are consistent with their study (i.e., fire exposure tends to reduce employment in
affected counties for nearly three years after the event), and we show that the extensive
margin effects can be substantial—a monthly fire impulse in the 90th percentile can cost on
the order of 10% of the monthly average employment growth rate for a county in the US West.

Third, we provide novel evidence on the heterogeneous impacts of wildfires across county-
level characteristics such as average education levels, industrial concentration, and income
inequality, as well as across slack states of the local labor market. We document economically
and statistically significant differences in the effects of wildfires on labor market outcomes
across counties with different characteristics, as well as increased sensitivity to wildfires dur-
ing high-slack periods. These results can help policymakers better target relief efforts over
space and time to minimize the overall cost of wildfires.

2 Data

Fire Exposure Measurements We obtain fire exposure data from the NASA Earthdata
LPDAAC MCD64A1 product, hosted by USGS (Giglio, 2015). The dataset divides the Earth
into a set of tiles which are further split into 500 m2 grid cells. Each cell contains information
about burn status when sampled, the date of the detected fire, and burn measurement un-
certainty. The underlying data comes from the MODIS satellite products, hosted by NOAA,
and contains hourly 1 km2-pixel measurements of fire activity captured by the MODIS satel-
lite (NOAA, NOAA). The LPDAAC MCD64A1 data product identifies burn status within
500 m2 grid cells by using information on cell characteristics such as burn-sensitive vegeta-
tion and reflectance (Giglio et al., 2018). We obtain the latitude-longitude coordinates of
each grid cell using the inverse mapping described in the LPDAAC MCD64A1 user guide
(Giglio, Boschetti, Roy, Hoffmann, Humber, and Hall, 2020), then link each coordinate to a
county FIPS code using the FCC’s Census Block Conversions API (FCC, 2022), and finally
aggregate from hourly to monthly frequency. The dataset covers the period from November
of 2000 to December of 2021.

Table 1 shows some summary statistics of burn areas for the US as a whole and within
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Census regions over the 2000-2021 period. Most counties do not experience fires in most
months, but those which do experience an average monthly burn area of roughly 26,100
km2. This varies widely across regions: counties in the West which experience fires observe
roughly 48,900 km2 of burn area per month on average, while counties in the Northeast
which have fires see burn areas of roughly 4,300 km2 per month.

Table 1: Summary statistics for county-level burn areas in thousands of square kilometers
per month over 2000-2021

Mean Mean | burn 95th percentile Obs
US 1.9 26.1 2 824,589
Midwest 0.9 21.5 0 268,419
Northeast 0 4.3 0 55,120
South 1.4 15.6 2.5 362,719
West 7.3 48.9 12 115,217

The first column shows the unconditional mean, the second column shows the mean for counties which
have fires, and the third column shows the 95th percentile across all counties. The final column shows the
unconditional sample size for each region.

Labor Force Statistics We obtain monthly data on the number of people employed at
the county level from the Quarterly Census of Employment and Wages (QCEW) program
available from the Bureau of Labor Statistics (BLS). The number of people employed in a
county is constructed from employer reports. Workers are therefore included in the county
where they work—not where they live. Monthly employment data is available since January
1990 and includes both part-time and full-time workers as well as workers who are on paid
vacations. We use the X-12 algorithm for seasonal adjustment as the number of employed
workers shows strong seasonal patterns. While we use the full labor force statistics dataset
for seasonal adjustment, we restrict our sample of labor force statistics to the period after
November of 2000 to match our fire data.

Table 2 shows some summary statistics of employment growth for the US as a whole
and within Census regions over the 2000-2021 period. The mean employment growth rates
nationally and across regions are close to zero, but counties in the South and West with
fire exposure appear to have higher and more widely varied employment growth. Counties
in the Midwest and Northeast which did and did not experience fires over the sample pe-
riod experienced employment declines on roughly the same order of magnitude, while in the
South and West there are small differences. The differences in employment growth between
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counties with and without fire exposure in the US as a whole, the South, and the West are
statistically significant at the 5% level.

Table 2: Summary statistics for county-level monthly employment growth in percentage
change units over 2000-2021

Mean Mean | burn 5th percentile Median 95th percentile Obs
US -1e-05 3e-04 -0.0173 4e-04 0.0174 824,589
Midwest -2e-04 -7e-04 -0.0175 1e-04 0.0171 268,419
Northeast -2e-04 -8e-04 -0.0097 1e-04 0.0101 55,120
South 4e-05 3e-04 -0.0163 6e-04 0.0163 362,719
West 4e-04 1e-03 -0.0249 9e-04 0.0256 115,217

The first column shows the unconditional mean, the second column shows the mean for counties which
have fires, and the third, fourth, and fifth columns show the 5th, 50th, and 95th percentiles across all
counties. The final column shows the unconditional sample size for each region.

County-to-County Migration Data on county-to-county migration comes from the IRS
Tax Stats Database and is computed from year-to-year address changes as reported on indi-
vidual income tax returns filed with IRS. Migration data at the county level is only available
at an annual frequency. Our sample covers the 2003-2019 period. Since migration data is
constructed from tax returns, this dataset does not include individuals who do not file a tax
return and those who file late.

Table 3 shows some summary statistics of percentage changes in net out-migration (out-
migration − in-migration) over the 2003-2019 period. The mean changes in net out-migration
tend to be small and fairly similar for counties with and without fire exposure, though some
counties do experience larger declines or increases in net out-migration. The differences
in out-migration between counties with and without fire exposure in this sample are not
statistically significant at the 5% level for any region or the US as a whole.

3 Empirical Framework

Our estimation strategy follows Jordà (2005)’s local projection method, modified for panel
data. Let t index months and c index counties. Let yc,t+h denote the natural logarithm of a
labor market outcome of interest, such as the number of people employed or the labor force
participation rate, and Dc,t denote county-level wildfire exposure. Let X ′

c,t denote a vector
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Table 3: Summary statistics for percentage changes in county-level annual out-migration
over 2003-2019

Mean Mean | burn 5th percentile Median 95th percentile Obs
US 0.002 0.005 -0.325 0.002 0.328 53,348
Midwest -0.002 0.004 -0.366 -0.002 0.361 17,901
Northeast 0.004 0.032 -0.295 -0.005 0.325 3,689
South 0.005 0.005 -0.291 0.007 0.297 24,162
West 0.002 0.004 -0.341 0.003 0.337 7,596

The first column shows the unconditional mean, the second column shows the mean for counties which
have fires, and the third, fourth, and fifth columns show the 5th, 50th, and 95th percentiles across all
counties. The final column shows the unconditional sample size for each region.

of control variables. We estimate the following equation for a series of horizons h ≥ 0:

yc,t+h − yc,t−1 = αc,h + βhDc,t + X ′
c,tγh + ϵc,t+h. (1)

The dependent variable represents the percent change in the labor market outcome of interest
at horizon h relative to before the fire occurs. The county-specific intercept, αc,h, may
reflect differences in labor force attachment across counties or other time-invariant county
characteristics. The parameter βh measures the response of the labor market outcome at
horizon h to an increase in wildfire exposure as measured by the number of fire pixels
detected in month t. γh measures the impact of the exogenous variables at horizon h. In the
benchmark model, we control for the county’s fire exposure in the previous twelve months
(∑12

s=1 Dc,t−s) as fire exposure tends to be highly persistent and may have an effect on the
labor market over several months. We also include twelve lags of the county’s labor market
outcome (∑12

s=1 yc,t−s) to account for serial correlation in labor market outcomes. To account
for factors that are common across counties that may have an impact on the labor market,
such as the financial crisis or the COVID-19 pandemic, we include month fixed effects in the
baseline model.

3.1 Identification

We rely on variation in fire exposure across counties and over time to identify the causal
effect of marginal wildfire exposure at month t on a county’s labor market outcome in month
t + h, i.e., βh. There are two key identifying assumptions. First, conditional on the control
variables, fire exposure at time t must be exogenous to county-level labor market outcomes at
times t, ..., t+h. This is a “no anticipation” assumption. Since wildfires are generally unpre-
dictable events—though the probability of a fire at any location-time pair can be calculated,
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the occurrence of a fire itself is random—and changing jobs or leaving the workforce is often
a costly action, it seems unlikely that people adjust their employment or workforce status in
anticipation of fire events over short horizons. The reverse causality channel—where people
anticipating certain labor market outcomes deliberately create or prevent fires—similarly
seems unlikely.2

Second, conditional on the control variables, counties exposed to wildfires should have
similar labor market trends as counties not exposed to wildfires. This is a “parallel trends”
assumption. Though counties are unique in many dimensions, our control variables and
fixed effects likely hold relevant differences constant across counties. In particular, lagged
labor market outcomes account for heterogeneous labor market trends, while lagged fire ex-
posures account for heterogeneous fire propensity (e.g., availability of fuel following recent
fires, fire seasonality). Controlling for these lags also addresses a backwards-looking Stable
Unit Treatment Value Assumption (SUTVA) condition that counties experiencing fires at
month t are unaffected by fires in the same county at months prior to t conditional on controls.

However, we still require a spatial SUTVA condition: that counties other than c are
unaffected by fire exposure in county c, conditional on controls. This condition is unlikely
to hold even with temporal lags of fire exposure and labor market outcomes, as migration
between counties in response to fire activity may induce labor market changes in counties
not exposed to fires (at t or at all). We conduct two robustness checks to measure the degree
to which such effects may bias our results. First, using IRS tax returns data, we use local
projections to measure the impulse response of county-level out-migration to wildfire activity.
We discuss these results further in section 4.1. Second, to measure potential spatial spillovers
more granularly while remaining agnostic to the source of such spillovers, we augment our
baseline specification in equation 1 with spatial lags (Halleck Vega and Elhorst, 2015). We
discuss these results further in section 4.2.

While our fire exposure measure allows us to study the effects of wildfires in unprece-
dented granularity, measurement error is a concern. The data-generating process is informa-
tive about the type of measurement error we might expect. The MODIS satellite captures
images of the Earth’s surface, which are then fed into a contextual classification algorithm
to determine which pixels contain fires (Giglio et al., 2020). Though the algorithm con-

2Employment at local fire departments may respond to labor market outcomes or fire activity, e.g.,
workers who are marginally attached to the labor force may join a volunteer fire department to assist in
firefighting activities during a wildfire event. Such actions are part of the effect we are studying.
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tains processing steps to remove false positives due to factors like sun glints and water
reflections, it may still miss small or low-intensity fires (incorrectly labeling such pixels as
“unburned”). Such small fires may not be representative of wildfire activity and so their
exclusion may be appropriate. A related source of measurement error in our fire exposure
measure comes from the discreteness of fire detection. The use of discrete measurement levels
(i.e., burned/unburned at the 500 m2) level induces further measurement error when burned
areas are not divisible by 500, e.g., a “true” burn area of 2750 m2 may at best be recorded as
2500 m2 or 3000 m2. Such measurement error is likely to attenuate our estimates toward zero.

Finally, our estimation framework has similarities with difference-in-differences (DiD)
frameworks, in that we consider the causal impact of wildfires on US counties and identify
these effects through comparison to counties experiencing less or no wildfire exposure. One
may thus wonder about potential bias arising from previously treated units (i.e., counties
which have experienced wildfires) being used as controls. The use of such controls has re-
cently been shown to create “negative weights” in traditional two-way fixed-effects (TWFE)
estimators, particularly when treatment effects change over time and vary across treated
units (De Chaisemartin and d’Haultfoeuille, 2020; Sun and Abraham, 2021; Callaway and
Sant’Anna, 2021; Goodman-Bacon, 2021). Though we do not rely on a TWFE estimator,
our treatment-control comparisons are similar to those implied by TWFE—i.e., we are im-
plementing a local projections difference-in-difference (LP-DiD) estimator with a continuous
treatment variable (Dube, Girardi, Jorda, and Taylor, 2022).

To see if negative weighting may present issues we run our analysis restricted the sam-
ple to treated counties and “clean controls” (Cengiz, Dube, Lindner, and Zipperer, 2019;
Dube et al., 2022). To account for the fact that counties may experience wildfires multiple
times over our sample period, we construct a sample with a clean control group using only
counties which have not experienced a wildfire for the past 3 years. Our results compar-
ing counties experiencing fires to only clean controls closely match our results from the full
sample (Appendix B, Figure B.1).

4 Economic Effects of Wildfires

We first investigate the effect of an increase in fire activity on counties’ employment. We
estimate the model based on expression 1 with the percent change in the total number of
people employed as the dependent variable. The impulse response is computed from the
series of estimated {βh}36

0 . Figure 4 shows the impulse response of employment following a
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60.91 km2 impulse (the size of July 2021’s average fire impulse across counties experiencing
fires) of additional fire exposure with 95% confidence intervals. Among counties which ex-
perienced wildfires in Julys of 2000-2021, the mean burn area was about 44.7 km2. Even
among these counties however fire exposure is highly unequal: the median exposure was
8 km2 but the maximum was 7,505 km2. July 2021 represents an 89th-percentile event in
terms of monthly fire exposures among counties experiencing fires—more severe than what
most counties experience, but considerably less severe than the most that some counties
experience.

Figure 2: Response of employment to an increase in fire exposure

The y axis shows percentage changes in response to a burn area impulse of about 61 km2—the mean burn
area in counties that experienced fires in July of 2021. Shaded areas indicate 95% CIs computed assuming
IID errors conditional on covariates, which include county and month-year fixed effects and 12 monthly
lags of county employment and burn area.

The initial decline in employment in the months following an increase in fire activity is
about 0.01%, growing to about 0.02% two years after the fire occurs and fading a little around
the one year mark. By three years the response is consistently noisy and centered on zero.
To put effect magnitude in context, Table 2 shows that the average monthly employment
growth rate in Western counties which experience fires—the region with the highest growth
rate in this period—is around 1e-03×100%=0.1%. One month after a fire, a decline of 1e-
04×100%=0.01% (the impact of the average July 2021 fire impulse one month later) implies
a loss of around 10% of the monthly employment growth.

10



4.1 Net Out-migration

The observed decrease in employment following a fire exposure impulse might reflect job
destruction or net out-migration. To assess the degree to which net out-migration may drive
our results in Figure 4, we estimate equation 1 with the percent change in net out-migration
as the dependent variable. Figure 4.1 shows the impulse response of out-migration to an
increase in fire burn area with H set at 10 (i.e., up to 10 years since the fire impulse)
since county-to-county migration data are only available at the annual frequency. The figure
shows that it takes approximately 3 years for fire exposure to have a statistically detectable
effect on net out-migration. The increase in out-migration after two years might explains
the greater decrease in employment around that time.

Figure 3: Response of out-migration to an increase in fire exposure

The y axis shows percentage changes in response to a burn area impulse of about 61 km2—the mean burn
area in counties that experienced fires in July of 2021. Shaded areas indicate 95% CIs.

Our results indicate no significant out-migration effects of wildfires until 3 years after the
fire impulse, though the data are only available at the annual frequency and do not measure
out-migration by individuals who did not file tax returns. The peak in out-migration at 3
years after the fire impulse is consistent with the trough in the impulse response shown in
Figure 4 at about 2 years after the fire impulse, given that tax returns are a lagging indicator
of migration.
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4.2 Spatial Spillovers

As Figure 1 shows, fire exposure is spatially correlated. In addition, there may be employ-
ment spillover effects as people and jobs move across county lines in response to fire damages
and suppression or recovery efforts. We model these spillover effects by augmenting equa-
tion 1 with variables for fire exposure in counties neighboring c and counties neighboring
c’s neighbors (i.e., c’s first two spatial lags) and their temporal lags. These variables are
the product of a spatial weight matrix W with county fire exposures Dc,t. We use county
adjacency relationships to construct W and its lags. A typical element in W is 1 if two
counties share a border and 0 otherwise, so that WDc,t measures fire exposure in counties
neighboring c. Our specification becomes

yc,t+h − yc,t−1 = αc,h + β0,hDc,t + WDc,tβ1,h + W 2Dc,tβ2,h + X ′
c,tγh + ϵc,t+h, (2)

where W 2 is the lagged weight matrix reflecting second-degree adjacencies (elements are
1 if two counties share a neighbor and 0 otherwise, with the diagonal normalized to 0).3 β0,h

is the effect of fires in c on employment growth in c (the “own effect”), β1,h is the effect of
fires in c’s neighbors on employment growth in c (the “first-degree neighbor effect”), and
β2,h is the effect of fires in c’s neighbors’ neighbors on employment growth in c (the “second-
degree neighbor effect”). The set of controls Xc,t in equation 2 includes twelve lags of fires in
first- and second-degree neighbors to control for spatiotemporal correlations in fire activity.
The impulse response coefficients βk,h from the spatially-lagged regression are more likely to
satisfy the necessary spatial SUTVA condition.

With spatial lags included, β0,h now represents the effect of fire impulses only in county
c holding fire exposure in c’s first- and second-degree neighbors constant. Figure 4 shows
the own effect with and without controlling for fires in neighboring counties. Comparison
reveals that spillovers from fires in neighboring counties appear to slightly offset the direct
losses of fires in a given county.

Figure 5 shows the effects of fires in c on monthly employment growth c’s first- and
second-degree neighbors. Though not statistically significant at the 5% level over a three-year
post-fire horizon and noisier over time, the effect is economically significant in first-degree

3Formally,
W 2 = W × W.

The diagonal may contain values larger than 1 due to loops from c to its neighbors and back to c, so is
removed to leave only the off-diagonal elements reflecting second-degree adjacencies.
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Figure 4: Response of employment to an increase in fire exposure with and without spatial
lags

Impulse responses of fires in a county on its employment with and without controls for fires in neighboring
counties. The y axis shows percentage changes in response to a burn area impulse of about 61 km2—the
mean burn area in counties that experienced fires in July of 2021. Shaded areas indicate 95% CIs.

neighbors and growing. Three years later, the fire impulse in c induces employment growth
in c’s first-degree neighbors on the order of 1e-4×100%=0.01%, or roughly half the largest
decline caused in c (-0.02%, roughly two years after the impulse) and about the magnitude
of the immediate decline a month after the impulse (-0.01%, lasting about three months
after the impulse). The positive first-degree neighbor effect appears to persist, with the
point estimate growing over the full three-year horizon. The second-degree neighbor effects
appear to be more precisely estimated “zeros”: though they trend negative over time, they
are usually not statistically significant at the 5% level.

Overall, the immediate change in the own-effect relative to the baseline model is negligible
and the effect appears to dissipate over space. In the longer run counties neighboring those
experiencing fires may see some employment growth. The effect at three years after the
impulse in c’s neighbors will offset the effects of a new impulse in c one month later, but will
only partially offset the medium-run (≈2 year) effects of a new impulse in c.
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Figure 5: Response of employment to an increase in fire exposure in first- and second-degree
neighbors

Impulse responses of fires in a county on employment in its neighbors (first-degree) and neighbors’
neighbors (second-degree). The y axis shows percentage changes in response to a burn area impulse of
about 61 km2—the mean burn area in counties that experienced fires in July of 2021. Shaded areas
indicate 95% CIs.
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4.3 County Characteristics

Some communities might be especially vulnerable to economic impacts of wildfires. The large
number of US counties gives us substantial spatial variations allowing us to analyze how key
county characteristics, such as the level of education or the degree of market concentration,
matter for the economic effects of wildfires.

4.3.1 Education

We first investigate how the level of education of a county’s population might affect the
response of employment to wildfires. Less-educated workers are known to have a lower
labor force attachment, as shown by a higher unemployment rate and lower employment-
to-population ratio, and might be more likely to work in certain industries that are more
affected by fires, such as the tourism or agricultural industry. More-educated workers might
be more likely to be insured against fires and might have a greater capacity to adapt (e.g.,
due to higher savings or mobility). For each county, we calculate the average percentage of
the population with a high school diploma since 2003 using data from the Census Bureau.
We then estimate our model in equation 1 for counties that are above and below the median
level of education. Figure 6 shows the impulse response of employment for counties that are
below the median level of education (right panel) and above the median level of education
(left panel).

Interestingly, only least educated counties see a decrease in employment following wild-
fires. The effect lasts for about two years after the shock. For counties with more educated
workers, there is a positive effect of wildfires on employment after one year, which could be
explained by reconstruction efforts. While least educated counties tend to be in rural areas
and have smaller population, we do not find any difference in economic impacts when we
split counties based on population size or the share of population living in urban/rural areas.

4.3.2 Industrial Concentration

As a second cut at the data, we split our counties based on their degree of industrial con-
centration. We measure industrial concentration using the Herfindahl index, which captures
the distribution of employment across a set of industries:

Hc =
Sc∑

s=1

(
es,c

ec

)2
(3)
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Figure 6: Response of employment to an increase in fire exposure split by county education
level

The level of education of a county is calculated from the percentage of the population without a high school
diploma. The y axis shows percentage changes in response to a burn area impulse of about 61 km2—the
mean burn area in counties that experienced fires in July of 2021. Shaded areas indicate 95% CIs.

where Sc is the total number of industries in county c, es,c is employment in industry s

in county c, and ec is the total employment in county c. High Herfindahl indexes can be
interpreted as high industrial concentration such that a relatively small number of industries
employs a large proportion of the population. In contrast, a county where employment is
dispersed across a large number of industries would have a low Herfindahl index. We use
2-digit NAICS codes as our industry classification. Data on the share of the population
employed in each industry is from the American Community Survey.

Figure 7 shows that counties that rely on a greater number of industries do not experience
a decrease in employment after wildfires. Counties that are less economically diverse are more
vulnerable to the economic effects of wildfires. This finding is consistent with the literature in
other settings showing that more-diversified economies are more robust to economic shocks
(e.g., Kluge (2018); Coulson, McCoy, and McDonough (2020)).

4.3.3 Income Inequality

Next, we divide our sample of counties based on their degree of income inequality, as mea-
sured from the Gini index. Figure 8 shows that counties that have a relatively high level of
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Figure 7: Response of employment to an increase in fire exposure split by industrial concen-
tration level

The level of industrial concentration of a county is calculated from the Herfindahl-Hirschman index. The y
axis shows percentage changes in response to a burn area impulse of about 61 km2—the mean burn area in
counties that experienced fires in July of 2021. Shaded areas indicate 95% CIs.

income inequality, i.e., high Gini index, are negatively affected by wildfires both on impact
and after three years. The effect is statistically significant at the 5% level. Workers at the
bottom of the income distribution might be less attached to where they live in counties with
high income inequality, which could explain the large decline in employment. It is worth
noting that the group of counties with high income inequality is very different than the
counties with a lower level of education. Table 4 in Appendix A shows that regions with
high income inequality tend to have large populations and to be located in urban areas.

Overall, these results show that counties characteristics matter a great deal. Communities
especially vulnerable to the economic effects of wildfires tend to have lower levels of education,
be more specialized, and be more unequal. Of course, counties might differ across other
characteristics. We don’t find any evidence that the economic effects of wildfires depend on
counties’ size, their income, or the share of population living in urban vs rural areas.
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Figure 8: Response of employment to an increase in fire exposure split by income inequality

The level of income inequality of a county is calculated from the Gini index. The y axis shows percentage
changes in response to a burn area impulse of about 61 km2—the mean burn area in counties that
experienced fires in July of 2021. Shaded areas indicate 95% CIs.

4.4 The State of the Economy

The effect of wildfires on employment might depend on the state of the economy when the fire
starts. For example, during a recession more businesses might be on the verge of bankruptcy,
which could exacerbate the economic impacts of wildfires. Following the approach taken in
Auerbach and Gorodnichenko (2012), Owyang, Ramey, and Zubairy (2013), and Ramey and
Zubairy (2018) in the context of fiscal multipliers, we modify the baseline model to allow
for the effect of marginal fire exposures to depend on the state of the business cycle of the
region before the fire occurs. We use county-specific unemployment rate data to measure
the level of slack of a region. Let Ic,t denote an indicator variable that equals one if the
unemployment rate in county c at month t is greater than the 70th percentile of county c’s
unemployment rate and 0 otherwise.4 We estimate the following model

yc,t+h − yc,t−1 =Ic,t

[
αH

c,h + βH
h Dc,t + X ′

c,tγ
H
h

]
+ (1 − Ic,t)

[
αL

c,h + βL
h Dc,t + X ′

c,tγ
L
h

]
+ ϵc,t+h (4)

4We find very similar results when we vary this threshold.
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where H denotes the high slack state and L the low slack state. All coefficient estimates
are allowed to vary across states. Figure 9 presents the results based on expression 4. The
effect of fires on employment in a low slack state, i.e., when the county’s unemployment rate
is below the 70th percentile before the fire, is depicted in red, while blue denotes the effect
during a high slack state. The state of the economy appears to matter a great deal. During
periods of high unemployment, fires lead to a much more pronounced decline in employment
in the two years following the shock. In periods of low slack states, however, the effect is not
statistically significant.

Figure 9: Response of employment to an increase in fire exposure split by level of slack

The level of slack before the fire occurs is based on the county’s unemployment rate. We consider a high
slack state if the unemployment rate in county c is greater than the 70th percentile of county c’s
unemployment rate. The y axis shows percentage changes in response to a burn area impulse of about 61
km2—the mean burn area in counties that experienced fires in July of 2021. Shaded areas indicate 95% CIs.

4.5 Cumulative Employment Impacts

As noted earlier, one advantage of using geophysical measures of fire exposure is the ability
to simulate the implied cumulative employment impacts historically and for potential future
fire scenarios. To illustrate this we simulate the historical cumulative employment impact
of fires in each US Census Region. The cumulative employment impact of a burn sequence
(ac0, . . . , ach) is the summation of present and lingering employment effects of fires which
have occurred in county c over the previous 36 months. The cumulative employment impact,
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CEc(h), is shown in equation 5.

CEc(h) =
h∑

j=0
βh−jacj, βk = 0 ∀k ̸∈ (0, 36] (5)

We compute the cumulative employment impacts for each county, then sum across coun-
ties within Census regions. The resulting cumulative fire-driven regional employment fluctu-
ations are shown in Figure 10. The cumulative employment impacts reveal the total cost of
recurring fire exposure. As might be expected, the US West region is most severely impacted
on average, followed by the South, the Midwest, and finally the Northeast. The magnitude
of the effect in all regions except the Northeast is substantial: an ongoing reduction in em-
ployment of roughly 0.03 (in the Midwest) to 0.15 (in the West) percent compared to the
no-fire counterfactual. This is a large effect relative to the monthly regional employment
growth over this period, which ranges from roughly 0.3 percent in the South to 0.34 per-
cent in the Midwest, and is net of fire impacts. Recurring fire exposure in the West is thus
reducing regional employment growth by roughly 7.5 times the observed monthly growth
rate in the 95th percentile, while in the Midwest the monthly employment growth losses are
“only” roughly 3 times the observed monthly growth rate in the 95th percentile (see Table 2).

Figure 10: Cumulative fire-driven regional employment fluctuations 2000–2021

This technique can be extended to include spatial spillover effects by augmenting equation
5 with spatial impulse response coefficients (e.g., β1,h and β2,h from equation 2) and burn
sequences from neighboring counties. It can also be used to forecast fire-driven employment
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losses in a set of counties given a projected burn area sequence (âc0, . . . , âch).

5 Conclusion

In this paper we measure the dynamic monthly impact of wildfires on county-level employ-
ment growth using a novel geophysical measure of fire exposure at the county-month level
for the entire US. We show that employment decreases immediately for around a quarter
after a fire impulse, and decreases again beginning around a year after the impulse and bot-
toming out roughly two years later. The magnitude of the effect can be significant: a large
(roughly 90th percentile) fire impulse can erase around 10% of monthly employment growth
in an average county experiencing fires in the US West—the Census region with the highest
average monthly employment growth.

The dynamics of this effect may be explained by both short-term (≈1-6 months af-
ter the impulse) net job destruction and medium-term (≈1-2 years after the impulse) net
out-migration. In the long term (≈3 years after the impulse), some counties may experience
modest positive growth effects from fires in neighboring counties, though perhaps not enough
to fully offset the effects of their own fires. These may be driven by reversion of housing
prices after an initial post-fire decline—e.g., McCoy and Walsh (2018) find ≈3-year-long
declines in housing prices in Colorado following wildfires. These patterns vary systemati-
cally by county education levels, industrial concentration, and inequality, with less educated,
more concentrated, and more unequal counties experiencing more significant negative im-
pacts. Highly educated, less concentrated, and less unequal counties may even experience
net positive impacts from fires, perhaps suggesting greater economic resilience or greater re-
ceipts of recovery and relief funding. The effects overall are more markedly negative during
periods of labor market slack.

Though our effects appear robust to some likely threats to identification, our results shed
little light on the mechanisms through which these changes to employment occur. While
the patterns in annual net out-migration are suggestive of medium-term flight from fires
and short-term job destruction, they are not conclusive. Establishment-level data on jobs
and vacancies or higher-frequency migration data (ideally covering individuals who do not
submit tax returns as well) would help in determining when and the degree to which job
destruction or out-migration are responsible for the employment effects of fires. Additionally,
though our fire exposure data is very spatially detailed, we lack similarly-detailed population
concentration measures. Such measures could be used to measure the per-capita effects of
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exposure to fire in regions smaller than counties, complementing existing analyses of the
effects of smoke exposure on labor market outcomes (Borgschulte et al., 2022). Lastly, fiscal
aid to states in response to fire exposure varies over time. The effects we measure are net of
such funding flows; they do not isolate the effects of wildfires on employment in the absence
of such spending. This packaging of effects limits the extent to which these results can
predict the effects of marginal fire aid allocations. Incorporating data on federal aid flows
could address this.

Our results are consistent with the growing economic literature on the dynamic short-
and longer-term impacts of wildfires (Nielsen-Pincus et al., 2013; Tran and Wilson, 2022;
Borgschulte et al., 2022). The effect magnitudes suggest that government spending on fire
prevention, suppression, and recovery efforts could have large fiscal multipliers, particularly
when targeted across space and time to counties. Our analysis identifies counties with lower
education, higher industrial concentration, greater income inequality, and slack labor mar-
kets as being more likely to experience negative impacts. Fire-related fiscal support to such
counties is likely to be particularly effective. The use of a geophysical fire measure facilitates
using our results with fire exposure forecasts (e.g., from coupled weather-fire models) to
forecast regional economic activity and project how it will respond to different fire patterns.
Applied to the 2000-2021 period, the results suggest that wildfires may have appreciably
reduced overall employment growth in particularly fire-stricken regions, such as the West
and South.

Measuring economic activity is among the oldest and most-central issues in economics,
and wildfires are among the oldest types of shocks to human civilization. Climate change
threatens to make wildfires both more frequent and more severe for ever-greater fractions
of the population, making them an increasingly important source of economic fluctuations.
Understanding how wildfires affect economic activity is an important step in adapting to a
warming planet.
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Appendix A Summary statistics

Table 4 shows county-level summary statistics across the three characteristics described in
Section 4.3. While these counties can be quite different in terms of their covariates, they all
have significant fire exposure.

Table 4: Average outcomes of interest by county characteristics

Sample Fire [500 m2] Emp-to-pop [%] Population [people] Income [$] Urban [%]
Full sample 3,156,251 45.5% 92,639 46,726.7 42.5%

(84.43) (7.1%) (299,025) (98,885.7) (32.0%)

Share w/o HS degree
above median 1,635,809 42.2% 66,200 35,402.8 36.2%
below median 1,520,442 48.8% 119,637 58,873.5 49.2%

Industrial concentration
above median 1,387,383 45.4% 73,947 39,261.1 39.0%
below median 1,768,868 45.6% 111,201 54,206.3 46.0%

Income inequality
above median 1,878,826 43.6% 132,398 57,875.3 46.8%
below median 1,277,425 47.3% 54,826 35,612.73 38.2%

The table shows the total fire burn area (in 500 m2) and average employment-to-population ratio, number
of people (rounded to the nearest integer), GDP per capita, and percentage of population living in an urban
area by county characteristics. Standard errors are in parentheses. Industrial concentration is measured
using the Herfindahl-Hirschman Index, and income inequality is measured using the Gini index.

Appendix B Robustness checks

B.1 Clean controls

To determine whether negative weighting issues are biasing our estimates, we construct a
“clean control” group from counties which have not experienced a fire in the past 36 months.
We then compare the estimated IRF using only clean controls to the IRF estimated using the
full sample in Figure B.1. The results are broadly similar with either type of identification
strategy.
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Figure 11: Response of employment to an increase in fire exposure

The y axis shows percentage changes in response to a burn area impulse of about 61 km2—the mean burn
area in counties that experienced fires in July of 2021. Shaded areas indicate 95% CIs.

27


	Introduction
	Data
	Empirical Framework
	Identification

	Economic Effects of Wildfires
	Net Out-migration
	Spatial Spillovers
	County Characteristics
	Education
	Industrial Concentration
	Income Inequality

	The State of the Economy
	Cumulative Employment Impacts

	Conclusion
	Summary statistics
	Robustness checks
	Clean controls


