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1 Introduction

In recent years there has been an explosion of interest in natural language processing (NLP)

within finance and macroeconomics. The use of text data to forecast and assist in model

estimation is becoming increasingly commonplace. Still, there are many open questions

around the use of NLP in macroeconomics. For example, which of the numerous available

methods work best, and work best in specific contexts? Are off-the-shelf tools appropriate,

or are there greater returns to specializing models to the data in hand? How useful is text

for forecasting real output indicators, such as manufacturing output? This paper addresses

these questions, using a novel dataset and a variety of NLP methods.

Our primary data source is the monthly survey microdata for the Institute of Supply

Management’s (ISM) Report on Business. The survey is taken by purchasing managers at a

representative sample of U.S. manufacturing firms. Part of the survey consists of categorical-

response questions about aspects of their current operations, including production levels,

inventories, backlogs, employment, and new orders. The answers to these questions are

aggregated into the widely-reported ISM diffusion indexes. But the survey also includes

free-form text boxes, where purchasing managers can provide further comments either in

general or about specific aspects of their businesses; these free-form comments are a novel

potential source of signal and our focus in this paper.

The first step of our analysis is to evaluate various natural language processing (NLP)

techniques for classifying sentiment in our data. Our context is fairly specific: the data are

manufacturing-sector purchasing managers opining about their business outlook, without

much discussion of financial conditions. While there are numerous sentiment classification

tools and techniques available, many were developed for vastly different contexts, such as

social media posts (Nielsen, 2011). Even within economics and finance, most work has

focused on the financial side (Araci, 2019; Correa et al., 2021; Huang et al., 2022). The lack

of results for related datasets motivates our assessment of a wide variety of NLP techniques.

One common approach is to count the frequency of words within a sentiment dictionary.

Economists initially used positive and negative words from psychology literature, but have

since moved on to using domain-specific words (e.g., Correa et al. (2021)) and using simple

word counts to measure uncertainty (see Baker et al. (2016) and Gentzkow et al. (2019)).

While this method is simple, it may fail to capture negation, synonyms, and often requires

context-specific dictionaries that may not be available. More recent-developed techniques

employ deep learning methods that account for the nuances of language. These models are

pre-trained : the parameters are set by exposing the model to a large corpus of text, such as
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the entirety of Wikipedia. The pre-trained models can be used to classify sentiment directly,

or they can be further trained (“fine-tuned”) on a specific dataset. The latter approach

attempts to get the best of both worlds: a solid ability to parse language from the exposure

to extremely large training data, plus the context-specific nuance from the fine-tuning data.

Our first contribution is to compare the accuracy of these different methods, using a

sample of hand-coded comments from our dataset. The range of available NLP tools and

methods is vast, and there have been very few comparisons of NLP methods for economics

and finance-related tasks (Kalamara et al. (2022) is a notable exception.) Deep learning gets

enormous attention, but it is ex-ante unclear whether it should outperform carefully curated

dictionaries in our context. We find that deep learning does have an advantage on our data,

in part because the brevity of the comments means that many comments have no overlap

with dictionary terms. In addition, we find that there is value in specializing the models

to our data: the fine-tuned models have the highest sentiment classification accuracy on a

hold-out sample. These results point to the advantages of using pre-trained models, as well

as carfully specializing them to the task at hand. Our hope is that these results help guide

other economists when deciding between NLP approaches.

Next, we investigate the relationship between sentiment expressed by purchasing man-

agers and future manufacturing output, as measured by the manufacturing component of

industrial production. Our baseline model includes–among other controls—some of the ISM

diffusion indexes, so the test is whether the sentiment indexes have additional information

beyond the ISM categorical responses data. We find that most dictionary-based text vari-

ables are not predictive of future manufacturing output, with the exception of a curated

financial stability-specific dictionary. On the other hand, sentiment variables generated us-

ing deep learning are predictive of future manufacturing output. Through out-of-sample

exercises, we also find that the financial stability dictionary and deep learning techniques

significantly reduce the mean squared errors. Overall, our results suggest that purchasing

managers’ survey responses contain useful forward-looking information, and that sentiment-

based measures can improve the accuracy of forecasts of manufacturing output.

Finally, we investigate what features of the data are most important to our fine-tuned

deep learning model. To shed light on these black box models, we use a standard method—

Shapley decompositions—to score the contribution of each individual word. Our results point

to a sensible interpretation of our deep learning models: the most positive words include

“brisk”, “excellent”, “booming”, “improve”, and “efficient”; among the most negative words

are “unstable”, “insufficient”, “fragile”, “inconsistent”, and “questionable”. In addition, we
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find that average sentiment and changes in average sentiment are largely accounted for by the

words with the most extreme (positive or negative) sentiment scores, with the vast majority

of words playing little role.

Our paper contributes to two strands of literature. First, our comparison of NLP tech-

niques for measuring sentiment adds to the growing body of literature incorporating NLP

into economic and financial research. Since the seminal work of Tetlock (2007), several stud-

ies have used dictionary-based methods (Baker et al., 2016; Hassan et al., 2019; Young et

al., 2021). Refined lexicons for specific contexts have been shown to improve performance

in measurement and forecasting (Correa et al., 2021; Gardner et al., 2022; Sharpe et al.,

2017). Machine learning techniques have also been used to select word lists (Manela and

Moreira, 2017; Soto, 2021). More recent papers incorporate more sophisticated machine

learning methods to extract the tense and topic of texts (Angelico et al., 2022; Hanley and

Hoberg, 2019; Hansen et al., 2018; Kalamara et al., 2022). Advances in NLP, particularly the

use of deep learning techniques, have significantly improved sentiment classification (Heston

and Sinha, 2017; Araci, 2019; Huang et al., 2022).

Second, we contribute to the literature on predicting industrial production (D’Agostino

and Schnatz, 2012; Lahiri and Monokroussos, 2013; Ardia et al., 2019; Cimadomo et al.,

2022; Andreou et al., 2017). Our analysis of the relationship between sentiment and indus-

trial production provides new insights into the role of unstructured text data in economic

forecasting. By comparing various NLP techniques, we are able to identify which methods

are most effective for classifying sentiment and incorporating them into predictive models of

industrial production.

The remainder of the paper is structured as follows. Section 2 presents our data. Section

3 reviews how we measure sentiment from the textual survey data, and Section 4 reviews the

empirical strategy and results. Section 5 discusses the mechanism with which firm survey

responses predict industrial production. Section 6 concludes.

2 Data

The primary data for this study comes from the Institute of Supply Management (ISM). Each

month, the ISM conducts a survey of purchasing managers from a sample of manufacturing

firms in the United States. The ISM data is timely and relevant. Indeed, as highlighted in

Bok et al. (2018), not only does such survey data provide important signal about the state

of the economy, but the ISM data in particular provides the “earliest available information
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for the national economy on any given quarter.”

The ISM survey includes a series of questions about the respondents’ operations, including

their production levels, new orders, backlog, employment, supplier delivery times, input

inventories, exports, and imports. These questions have a categorical response, allowing

the purchasing managers to specify whether these metrics have increased, decreased, or

stayed the same between last month and the current month. These categorical responses

are aggregated into publicly-released diffusion indexes, discussed more below. All the survey

questions are shown in Table 1. In addition to the categorical response, purchasing managers

can provide further explanation in accompanying text boxes (the questions with “Free text”

response in the table.) There are free text response questions accompanying nearly every

categorical question, asking for the reason for the response.1 In addition there is a “Remarks”

field at the beginning, where the respondent can put any general remarks they wish. The

text responses are briefly excerpted in the ISM’s data release to provide context for the

diffusion indexes, but otherwise are not released publicly.

The survey dates back to the 1930s, and our dataset covers the roughly 30,000 firm-

month observations from 2007 to 2019. Figure 1 shows the number of firms in the sample

over time. The sample size has varied, increasing to nearly 300 respondents by the end of

2019. The figure also shows that the majority of respondents provided clarifying remarks in

their responses, with word counts ranging from 10 to 29 words on average per month. We

observe a sudden increase in word count around 2018, which appears to be due to the tariffs

imposed on China. After removing responses that contain the word “tariff,” we observe a

smoother increase in word counts (see Figure A1 in the appendix for further details).

Table 2 provides a summary of the text responses. Nearly 49 percent of the general

remarks sections contain text, while the next most common sections containing text are

those related to production, new orders, and input inventories. The last row shows statistics

for all the text fields concatenated together: 68 percent of firm-month observations have

any text at all, and the text is about 16 words long on average. The average word count is

highest for the General Remarks section, with an average of 8 words used in these responses.

When considering only those responses that contain text, the average word count for the

General Remarks section increases to 17 words.

Turning from the ISM survey microdata, we use several time series in our forecasting

exercises. Our focus is on forecasting the manufacturing industrial production (IP) index.

We use real time data on the right hand side, reflecting what policy makers knew at the time,

1The exception is the general ”Remarks” question, which only asks for a free form response.
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and forecast the fully revised series. In addition to IP series, we use the ISM diffusion indexes

as regressors. The diffusion indexes are aggregations of the categorical response questions in

the survey. For example, the production diffusion index is a weighted average of the responses

to the production question (paraphrasing, “Is production higher/the same/lower than last

month?”), with the “Higher” responses getting weight 100, “Same” responses getting weight

50, and “Lower” responses getting weight 0. The formula for the diffusion index in period t,

with Nt total firms responding is shown in equation (1):

Dt =
1

Nt

N∑
i=1

[100 · 1{Response i is “Higher”}+ 50 · 1{Response i is “Same”}] (1)

These diffusion indices have values between 0 and 100, with 0 indicating that all respondents

say things are worse and 100 indicating that all respondents say things are better. The ISM

publishes indexes for each question, as well as a “PMI Composite”, which is an equally-

weighted average of the diffusion indexes for new orders, production, employment, supplier

deliveries, and inventories.

3 Measuring Sentiment

Our goal is to extract useful information from the ISM survey text responses. We focus on

sentiment analysis: measuring the positive or negative sentiment expressed by the purchasing

managers. Even focusing on sentiment analysis, the wide range of natural language process-

ing (NLP) techniques available can make it challenging to choose an appropriate method. In

this section we discuss the methods we use, leaving a complete description of the approaches

to the Appendix 7.

One of the simplest methods for measuring sentiment is dictionary-based analysis, which

involves counting the frequency of a predetermined list of sentiment words in the text. We

use common sentiment dictionaries from the psychology literature, such as the Harvard

(Tetlock, 2007) and AFINN (Nielsen, 2011) word lists. However, we also recognize that

certain words that may be considered negative in other contexts may not be considered

negative in the context of finance, such as “taxing” or “liability”. As such, we also apply

finance-specific word lists, including the sentiment word list from Loughran and McDonald

(2011) (henceforth, “LM”) and the financial stability word list from Correa et al. (2021). For

all dictionaries, we score comments on a scale of -1 to +1, using the percent of total words

in the comment that are positive less the percent of total words that are negative. When
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we require discrete classifications, as in Figure 2, we classify the comment as positive if the

score is greater than zero, negative if it is less than zero, and neutral if it equals zero.

Another approach to sentiment analysis involves fitting a model to the data. We try

several variations on this theme, ranging from regressions on word counts to customized

neural networks. Unlike the dictionary methods, all of these approaches require labeled

data: a sample of observations that have already been classified, which is used to fit the

model and classify the remaining observations.

3.1 Human-labeled data

We create a labeled dataset from a randomly selected subsample of 2,000 of the text responses

to the individual questions.2 Each response was classified for sentiment by two economists

using the following question as a guide: “Is this comment consistent with manufacturing IP

rising month over month?” The classifications were either positive, neutral, or negative,

where “neutral” includes cases where is it is impossible to determine the sentiment. Both

economists agreed on the sentiment classification for roughly 1,500 cases. This subsample

is further split into a “training” dataset, used to fit the models, and “test” dataset, used to

assess the relative merits of the models.3

3.2 LASSO

The first model-based approach is a logistic LASSO regression. This treats the data as a

“bag of words”, where all that matters is the counts of individual words, not their order. In

the regressor matrix each unique word is placed in a column, with the counts of that word

populating the column. This leads to a large number of regressors (the number of unique

words in the training data), motivating the use of LASSO to regularize the regression. The

dependent variable is the categorical variable yi ∈ {1, 2, 3}, representing a negative, neutral

or positive classification, respectively.

3.3 Deep Learning Models

Deep learning models have gained popularity in recent years, driven by their impressive per-

formance on language-related tasks. Much of the progress has occurred within a particular

2Note, that the categorical responses can be considered a kind of label. In Section XXXXX we investigate
how well models can predict the categorical response from the associated text.

3The test data consists of 10 percent of the human-labeled dataset, and is not used by any of the models
during training.
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class of deep learning models called transformers (see, e.g., Devlin et al. (2018), Radford

et al. (2018), Ouyang et al. (2022), Chung et al. (2022), and Touvron et al. (2023)). The

defining feature of transformers—relative to other neural network architectures—is a mech-

anism called attention; a way to interact words within a sentence, allowing the context of

a particular word to influence the meaning. A full explanation of transformers and the

attention mechanism is beyond the scope of this paper, but we do provide a brief sum-

mary in the Appendix. The important points are that (unlike dictionaries and bag-of-words

approaches), transformers take into account interactions between words, word order, and

context-dependent meanings (polysemy).

One notable transformer model is “BERT”, or Bidirectional Encoder Representations

from Transformers, developed by Devlin et al. (2018). It is important to note that BERT

is a pre-trained model: Devlin et al. (2018) specified the architecture and then trained the

model on a corpus including the entirety of (English) Wikipedia and a number of books.

The model is large by the standards of the economics literature, with roughly 110 million

parameters. We use several versions of BERT in this paper.

By default, the off-the-shelf BERT model produces sentence embeddings: Given a sentence-

length piece of text, it returns a 768-dimensional vector representing the sentence. Intuitively,

sentences with similar meaning ought to have embedding vectors close to each other. BERT

can be used as a classifier by adding an additional layer on top of it, essentially a logistic

regression that takes the embedding vector as the input and returns class probabilities. Note

that this requires some labeled data to fit the logit.

BERTs open access saves researchers the expensive cost of training a large language

model, while still allowing them to leverage the pre-trained version for their specific needs,

in a concept known as ‘fine-tuning.’ In the financial domain, specialized BERT models have

been developed to account for the unique characteristics of financial and economic text. Two

prominent examples are Huang et al. (2022) (which we refer to as FinBERTv1) and Araci

(2019) (which we refer to as FinBERTv2.) FinBERTv1 uses the BERT architecture but

is trained from scratch on SEC filings, equity reports, and earnings conference call tran-

scripts. The sentiment classification layer is trained on the human labeled AnalystTone

dataset Huang et al. (2014).4 FinBERTv2 was initialized with the pretrained BERT weights

and further pre-trained on a corpus of Reuters news articles, which tend to focus on finan-

cial news. The sentiment classification layer was trained on the human-labeled Financial

4Specifically, the model is yiyanghkust/finbert-tone from the Huggingface model hub, a classification
fine-tuned version of “FinBERT-FinVocab uncased” in Huang et al. (2022).
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PhraseBank dataset from Malo et al. (2014).5

While FinBERTv1 and FinBERTv2 can do a good job parsing financial news and regula-

tory filings, our data are more focused on topics like order backlogs, production difficulties,

inventories, and delivery times, which are not commonly found in financial corpora. After

reviewing the text responses from the ISM survey, we found examples suggesting that Fin-

BERTv1 and FinBERTv2 have some difficulty with the language. For example, the comment

“slight up-tick inventory to account for slight up-tick in production” is coded as positive by

the economists: it implies increased production, and an increase in input inventories to sup-

port that higher level of production. But this passage is classified as neutral by FinBERTv1

and negative for FinBERTv2. These issues motivate our use of the human-labeled dataset

to fine-tune or train from scratch our own models. First, we estimate our own transformer

model using the training dataset and a relatively small number of parameters. We call this

model, TF-Small (TF for ‘transformer’)6 Second, we fine-tune BERT with our manually la-

beled training examples, and call the resulting model Fine-Tuned BERT. Fine-Tuned BERT

benefits from the large size and extensive training of the base BERT model, but is explicitly

tuned on the language relevant for our task. As we shall see below, this results in good

performance.

When applying the transformer-based models, we use the predicted most likely class

(positive, neutral or negative) as the output and code these as +1, 0 and -1 respectively. In

Section 5 we exploit the predicted class probabilities as well.

Overall, we propose eight models for sentiment classification. The four dictionary-based

methods are the Harvard, AFINN, Loughran and McDonald (2011), and financial stabil-

ity (Correa et al. (2021)) dictionaries, and the four transformer models are FinBERTv1,

FinBERTv2, TF-Small, and Fine-Tuned BERT.

3.4 Comment-Level Classification Results

We evaluate the accuracy of each model on the test human-labeled dataset, as shown in

Figure 2.7 The confusion matrix for each model tabulates the percent of observations with a

given human “true” classification (which varies across rows) and the model-based predicted

5This model is ProsusAI/finbert on the Huggingface model hub.
6We use the Keras library to build a simple encoder-only transformer model with input embedding

dimension of 16 and an output sentiment layer with similar dimensions.
7While the test dataset contains 154 observations, we report predictions for only the 111 observations for

which a categorical response is provided, excluding the General Remarks responses. This step was taken so
as to make the evaluation sample for the categorical response similar to the evaluation sample for the other
models.
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classification (which varies across columns.) Overall accuracy is reported at top of each

matrix. We begin by considering whether the categorical response for each comment is

predictive of the human label applied to the corresponding text. For example, if the human

label for a new orders response is positive, we’d like to know how often was the categorical

response that new orders are higher than last month. We find an overall accuracy of 66.7%,

suggesting that the sentiment in the text responses is not fully redundant with the categorical

responses. Interestingly, of the nearly 20% of responses that have a human-labelled neutral

sentiment, 70% are associated with a positive categorical response variable.

The Harvard, AFINN, Loughran-McDonald, and Stability dictionaries all have accuracy

scores around 30%. The low accuracy is due to the fact that nearly all responses are predicted

to be neutral. Dictionary-based methods can only produce a positive or negative classification

if either positive or negative words appear in the text, and the short comments in our

data often do not contain any of the words in the dictionaries. Due to this limitation, the

dictionary-based methods are not accurate at classifying the comments.

FinBERTv1 and FinBERTv2 perform better, with accuracies of 76.6% and 70.3%, re-

spectively. Both of these models are better able to classify actual neutral responses, but

both tend to over-predict neutral classifications. The best performing models are TF-Small

and Fine-Tuned BERT models, with accuracies of 84.7% and 85.6% respectively. It ap-

pears that the good performance of these models is largely due to having seen examples of

manufacturing-specific text, as well as survey-specific examples of positive, negative, and

neutral responses.

We next run the eight sentiment classifiers on all available observations, and average the

sentiment scores by month; these monthly averages are what will feed into the forecasting

models in Section 4.8 Table 3 collects the summary statistics for the monthly series. The

dictionary-based monthly averages tend to have a mean close to zero and a small standard

deviation, as a result of the infrequent usage of words appearing in the dictionaries. In

contrast, the transformers models have larger (in absolute value) means and standard devia-

tions, as each firm-month response is assigned a value of 1 for positive, 0 for neutral, and -1

for negative, rather than a percentage of sentiment words in the sample. Across the entire

sample, the average sentiment of most transformer models is negative. This finding aligns

with previous research on text analysis in finance suggesting a negative bias in textual data

(Tetlock (2007)).

8Note that the comment-level sentiment scores all range between -1 and +1.
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4 Time Series Results

Our forecasting exercises focus on predicting monthly manufacturing output growth, as

measured by the Federal Reserve Board’s Industrial Production statistics. The real time

data flow is important to understand, and is as follows:

• The ISM data for a month t are typically released on the third business day of month

t+ 1

• The first IP data for month t are typically released around the 15th of month t+ 1

• The IP estimates for a month t are revised several time over the subsequent months

and years, as more product data becomes available and benchmark revisions are in-

corporated. The monthly revisions all take place as part of the subsequent month’s IP

releases, so the first monthly revision to IP for month t is released around the 15th of

month t+ 2, the second revision occurs around the 15th of t+ 3, etc.

Our baseline forecasting model is as follows:

∆IP current
t = α + β1∆IP

t∗

t−1 + β2∆IP
t∗

t−2 + β3∆IP
t∗

t−3 + δxt
∗

t + εt (2)

where ∆IP current
t is the fully revised, current-vintage growth rate of manufacturing output

in month t. The superscript t∗ denotes a variable as reported on the eve of the month t G.17

IP data release: the real-time vintage relevant for forecasting ∆IPt just prior to its first

print. Thus ∆IP t∗
t−1 is the estimate of month t− 1 from the initial month t− 1 data release

(released around the middle of month t), and ∆IP t∗
t−2 is the revised estimate of month t− 2

from the month t−1 data release (again, released around the middle of month t). The vector

xt
∗
t collects the ISM metrics for month t. These are available well before the month t IP

data, and so may be particularly useful for forecasting. For the baseline model xt contains

only the the composite PMI index, an average of five of the ISM diffusion indexes.

Table 4 presents the in-sample estimation of our baseline model with the added text

measures. In column (1), we see that the baseline model has an R-squared of 28.8% with a

positive and statistically significant relationship between the composite PMI and IP growth.

The following columns show that the LM, Harvard, and AFINN dictionaries are not statis-

tically significant, and only lead to small improvements in R squared. Column (5) shows a

positive and significant effect (at the 10% level) of sentiment as measured with the Stability
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dictionary, and a larger increase in R squared. Moving to columns 6-9, all four transformer-

based sentiment measures are positively and significantly related to manufacturing growth.

The deep learning sentiment measures also have improved explanatory power, seen by the

two to three percentage point increase in R-squared.

Next, we assess the out-of-sample performance of the sentiment indexes. Table 5 shows

the Diebold-Mariano test statistic comparing the forecast of the baseline model with each

text-augmented baseline model over the period 2018m1-2019m12. Each cell displays the out-

of-sample RMSE and DM test statistic. In the top row—for our preferred specification—we

see that the LM dictionary-based text measure increases the RMSE, while the Harvard and

AFINN dictionary-based text measures reduce the RMSE slightly. The Stability dictionary

results in an RMSE reduction of nearly 11%. Similarly, the transformer-based sentiment

measures significantly reduce the out-of-sample forecast errors, both statistically and eco-

nomically. The other rows in the table show alternative specifications: only including the

PMI index as a control, only using lagged manufacturing growth as a control, replacing the

PMI composite with new orders, and including several ISM diffusion indexes as controls.

In nearly all cases, the Stability dictionary the and transformer-based models significantly

reduce the out-of-sample RMSE.

5 Interpretation

The results in Section 4 suggest that the sentiment indexes, and fine-tuned BERT in partic-

ular, provide additional forecasting power. However, BERT is very much a black box, and it

is far from obvious what drives its behavior. In this section we provide supporting evidence

to help interpret the BERT results. It is difficult to explain or interpret the predictions from

deep learning models like transformers. It is unclear which features of the model architecture

or the data lead to certain predictions being made. Fortunately, there is an active field of

research in interpretable machine learning, and many methods have been proposed to deal

with these issues. We will use one such method—Shapley decompositions—as the basis of

our work.

5.1 Shapley Decompositions

Shapley decompositions are used in machine learning to deal with the nonlinear relationships

between the dependent variable and independent variables (Lundberg and Lee (2017)), draw-

ing on cooperative game theory results from Shapley (1953). Given (1) an observation, and
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(2) the prediction of the model, the Shapley decomposition estimates the additive contribu-

tion of each feature to the prediction. Each contribution is relative to a “null value” for the

feature. For numeric data the null value might be the mean. Roughly speaking, the Shapley

decomposition calculates the marginal contribution of switching a given feature from its null

value to the observed value, averaging across all possible null/observed permutations for the

other features. The averaging across permutations ensures that the resulting contributions

have good properties, including additivity. The contributions to the prediction add up to

the prediction exactly.

In our context, an observation is a single ISM comment, and the features are the individ-

ual words. BERT provides three predictions for each observation: the probability of being

in the negative, neutral and positive classes. Rather than deal with this vector, we calculate

the net positive score: Pr[positive class]− Pr[negative class], and use this as the prediction.

The net positive score is analoguous to the diffusion index formula, and reduces the model

output to a single number between -1 and +1.

To understand how the Shapley decomposition operates in our context, consider the

example comment “Business continues to be slow”. Fine-tuned BERT predicts this

comment is positive with probability 0.078, with a net positive probability of -0.76. The

Shapley decomposition proceeds by replacing subsets of the words with a special token,

[MASK].9 BERT interprets [MASK] as meaning that there is a real, unknown word in that

place in the comment. BERT continues to make predictions for the class of the comment

even when words are masked; these predictions are based on the remaining unmasked words

and the positions of the words in the comment.

The marginal contribution of the word “slow” can be calculated as the difference be-

tween the net positive probability of “Business continues to be slow” and “Business

continues to be [MASK]”. However another plausible estimate of the marginal contribu-

tion would be, e.g., the difference between “[MASK] continues to be slow” and “[MASK]

continues to be [MASK]”. The Shapley decomposition iterates over the various masking

permutations to arrive at an average marginal contribution.10

It is worth noting here that the Shapley decomposition is not a structural explanation,

nor does it imply any casual relationship. It is an accounting identity that can be imposed

on any model. For our purposes, it is useful for linearizing the the relationship between

9In NLP “tokens” are the basic unit of observation, roughly speaking they can be words or word parts.
10In practice, calculating every permutation requires 2N model evaluations for a sequence with N tokens,

which can become very costly even for comments around 16 words long. The SHAP package for Python
circumvents this issue by sampling.
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tokens and the aggregate sentiment index.

After running the Shapley decomposition on all the comments, we have Shapley scores

for each token in each comment. The Shapley scores for the tokens in a given comment add

up to the net positive probability for that comment. The contribution of a token can vary

across comments, because BERT’s predictions are not a linear function of the tokens. This

is part of the advantage of BERT: tokens may have different meanings depending on the

context. But we can assess the average contributions of the tokens to check that the results

are sensible. Table 6 shows the words with the most positive and negative Shapley scores.

The words in each group appear quite reasonable. We can also examine the distribution or

words across scores: Figure 4 plots the density of words across Shapley scores. The density

is winsorized at ±0.05 to make the central mass visible. The weighted density, in black,

shows the distribution weighted by the number of occurrences in the corpus. The vermillion

unweighted density counts each unique token in the vocabulary equally. Note that many

tokens have scores close to zero, particularly in the weighted plot. As the Shapley scores can

range between positive and negative 1, it might be puzzling why so much mass is concentrated

on the (-0.05,0.05) interval. Part of the reason is simply due to the length of the comments:

if comments are on average 16 words long, a random word will—on average—only contribute

1/16th to the comment’s score (which is bounded on (-1,1)). In addition, many of the tokens

are filler words or word parts, e.g., the token “the” has a Shapley score of 0.003.

5.2 Time Series Properties

Our main interest is not so much in which words contribute the most to the classification of

individual comments, but in the change in the aggregate sentiment time series. The Shapley

decomposition can help here as well. To illustrate this, we focus on the change in sentiment

between the first quarter of 2007 and the first quarter of 2009. These two dates are near the

peak and trough of the business cycle, respectively, and picking the same quarter each year

lets us ignore seasonality. The fine-tuned BERT sentiment index fell by about -0.4 between

these two periods. We will determine what changes in language accounted for this decline.

First, it is useful to introduce and approximate a linear sentiment index. The actual

sentiment index is a nonlinear function of the the probabilities returned by BERT: The sen-

timent indexes uses the comment classifications as -1 (negative), 0 (neutral) and 1 (positive),

and the predicted class is nonlinear in the the underlying probabilities. It turns out that

this diffusion index is well-approximated by the simple average of the comment probabilities.

This simplification means that the (approximate) sentiment index is just an average of the
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individual token contributions, aggregating across first tokens in a comment and then across

comments. The contribution of each token to the aggregate is then just the sentiment of the

token times the number of occurrences.

A basic question is whether the decline in sentiment around the Great Recession was due

to (1) a change in the mix of tokens being used (i.e. a change in the pattern of occurrences)

or (2) changes in the sentiment assigned to the tokens in the two periods. The results in

Table XXXXX suggest that most of the effect is attributable to the first factor, the change

in occurrences with sentiment fixed. To some extent this is reassuring: it would be harder

to interpret a situation where the connotation of the words was driving aggregate sentiment.

The next question is which words contribute most to the decline in aggregate sentiment.

Given the results above we can weight words by their full-sample average sentiment, rather

than period-specific sentiment, and focus on the change in occurrences. Then we can calcu-

late the contribution of each token to the aggregate sentiment score as the token’s average

sentiment score, multiplied by the number of occurrences, divided by the number of com-

ments in that period. Note that if we sum this contribution across all tokens for a period, we

get the sum of all the token Shapley scores, divided by the number of comments—the aver-

age comment score, in other words. Thus these contributions map directly from individual

token occurrences to the aggregate (approximate) sentiment index.

To reduce the dimensionality of the problem we group the tokens into 20 quantiles, based

on their average Shapley score. Summing the contributions within each quantile, we can

see which quantiles are most important for the aggregate index, and which quantiles explain

changes in the aggregate index. Figure 5 shows these comparisons. The black line shows

the contributions by quantile for 2007:Q1. The bottom two or three quantiles have large,

negative contributions to the aggregate index in that period. The top two quantiles have

fairly large positive contributions, while all the others are negligible. We conclude that the

aggregate score is product mostly of the extreme quantiles—where each token occurrence is

highly weighted—rather than the intermediate quantiles. This is not obvious ex ante, we

might have imagined that high token counts in the intermediate quantiles more than offset

small weights.

The extreme quantiles also appear to account for the change in aggregate sentiment.

Comparing the blue and the black lines, the more negative sentiment in 2009:Q1 is a result

of more tokens being used in the bottom two quantiles, and somewhat fewer tokens being

used in the top quantile, which the intermediate quantiles largely irrelevant. Tables 7 and 8

list the bottom- and top-quantile words.
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To summarize, the aggregate sentiment index is a nonlinear function of the BERT model’s

predictions. Shapley values allow us to begin interpreting the contributions of individual

tokens to the index, and it turns out that tokens have mostly invariant Shapley scores, with

variation in token counts driving aggregate changes. Tokens with Shapley scores close to

zero contribute very little to the aggregate score, even though they account for much of

the distribution of tokens. Furthermore, the very top and bottom quantiles of the score

distribution are by far the most important in accounting for changes in the index, with the

Great Recession leading to both fewer very positive words and more very negative words.

6 Conclusion

In this study, we examine the relationship between manufacturing sentiment and indus-

trial production growth, an important indicator for macroeconomic forecasting. To evaluate

the effectiveness of the sentiment measures, we compare dictionary-based and deep learn-

ing methods to human labelled sentiment scores. Our results show that context-specific

dictionary-based methods and deep learning techniques perform best in mimicking human

sentiment. In addition, when estimating out-of-sample industrial production growth, we

find that a finance-specific dictionary sentiment measure and all deep learning sentiment

measures significantly improve forecasting accuracy.

Our comparison of different sentiment measures can assist future researchers in choos-

ing the most appropriate methodology for their text analysis studies. Our findings suggest

that deep learning techniques benefit from the use of manually labelled text data, and that

context-specific dictionaries outperform general purpose dictionaries in out-of-sample exer-

cises. Moreover, the improvements in industrial production forecasts achieved through the

use of survey responses suggest that other macroeconomic variables may also benefit from

the inclusion of unstructured data such as text.
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Tables

Table 1: ISM Survey Instrument
Field Type of Response

Remarks: Free text

Indicate if the current month’s level of production (units, not dollars) compared to the previous month is: Higher/Same/Lower

Reason if higher or lower: Free text

Indicate if the current month’s level of new orders (i.e., new sales orders from customers) (units, not dollars) for

finished products compared to the previous month is:

Higher/Same/Lower

Reason if higher or lower: Free text

Indicate if the current month’s level of backlog of orders (unfilled sales orders from customers) (units, not dollars)

compared to the previous month is:

Higher/Same/Lower

Reason if higher or lower: Free text

Indicate if the current month’s level of new export orders (units, not dollars) (for delivery outside the U.S.) compared

to the previous month is:

Higher/Same/Lower

Reason if higher or lower: Free text

Indicate if the current month’s approximate weighted average prices for the materials, commodities and services that

you are ordering compared to the previous month is:

Higher/Same/Lower

Indicate if the current month’s level of inventory of production inputs (including raw materials, intermediate products,

MRO items, etc.) (units, not dollars) compared to the previous month is:

Higher/Same/Lower

Reason if higher or lower: Free text

Do you perceive your customers’ inventories of products they order from you, THIS MONTH, as: Too High/About

Right/Too Low/Do

Not Know

Indicate if the current month’s level of imports of production inputs (including raw materials, intermediate products,

MRO items, resources/services, etc.) (units, not dollars) compared to the previous month is:

Higher/Same/Lower

Reason if higher or lower: Free text

Indicate if the current month’s level of employment (all personnel, not just supply management personnel) compared

to the previous month is:

Higher/Same/Lower

Reason if higher or lower: Free text

Indicate if the current month’s supplier delivery performance for purchased commodities, materials and services

compared to the previous month is:

Faster/Same/Slower

Reason if faster or slower: Free text
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Table 2: Survey Summary Statistics

(1) (2) (3)

Field Fraction W/ Text Mean Word Count
Mean Word Count

Cond. on Text

General Remarks 0.49 8.21 16.73

Production 0.27 1.47 5.53

New Orders 0.26 1.50 5.70

Backlog 0.19 1.20 6.46

Employment 0.01 0.07 5.10

Supplier Speed 0.12 0.92 7.72

Input Inventories 0.23 1.58 6.81

Exports 0.11 0.63 6.01

Imports 0.12 0.81 6.64

All Text (Appended) 0.68 16.40 24.27

Notes: This table provides summary statistics derived from the ISM survey. Column (1) reports
the fraction of firm-month observations containing any text. Column (2) shows the mean word
count across all firm-month observations, while column (3) shows the mean word count of only
those responses containing any text. Each row corresponds to one of the various question types on
the ISM survey.
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Table 3: Summary Statistics

Notes: Summary statistics for the variables used in the in-sample and out-of-sample analysis.
LM, Harvard, AFINN, and Stability measure the average net sentiment when applying dictionary
word counts of the Loughran and McDonald, Harvard, AFINN and Stability (Correa et al. 2019)
word lists, respectively. FinBERT (v1) and FinBERT (v2) measure the average net sentiment of
applying the FinBERT model from Araci 2019 and Yang et al. 2019, respectively. TF-Small and
Fine-Tuned BERT are sentiment scores derived from a fine-tuned transformer and a fine-tuned
BERT model using a sample of human-labeled ISM responses.
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Table 4: In-sample Regression Results

Notes: This table reports in-sample regressions of the month-to-month percentage change of in-
dustrial production on a set of real-time predictors of IP from 2007m1-2019m12. ISM Sentiment
is a text measure of the survey response sentiment using either dictionary-based methods (columns
2-5), transfer learning of financial BERT models (columns 6-7), or fine-tuned models trained on
a random selection of human-labeled ISM survey responses (columns 8-9). ISM PMI is the
monthly diffusion index of PMI released by the ISM at the beginning of the month. IP Growth
with lag t-1, t-2, or t-3 is the once, twice, or three-times revised estimate released in month t-1,
t-2, or t-3, respectively.
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Table 5: Out-of-sample Regression Results

Notes: This table reports out-of-sample mean squared errors of regressions of month-to-month
percentage change of industrial production on a set of real-time predictors of IP from 20018m1-
2019m12. The text measures represent the survey response sentiment using either dictionary-based
methods (columns 2-5), transfer learning of financial BERT models (columns 6-7), or fine-tuned
models trained on a random selection of human-labeled ISM survey responses (columns 8-9). PMI,
New Orders, and Inventories are monthly diffusion indices released by the ISM at the beginning
of the month. The 3 lags are the IP Growth lags at time t-1, t-2, or t-3 revised once, twice, or
three-times, respectively. The P-values are calculated using the Diebold-Mariano out-of-sample
error statistics.
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Table 6: Average Net Positive Scores

Positive Words Score Negative Words Score

negotiated 0.068 unstable -0.455
improve 0.068 insufficient -0.358
good 0.070 fragile -0.344
gaining 0.072 inconsistent -0.325
steady 0.073 questionable -0.283
stronger 0.074 restricted -0.262
strong 0.075 weaken -0.250
robust 0.075 poor -0.238
enjoying 0.075 shortage -0.234
lab 0.078 hurting -0.226
protecting 0.083 difficulties -0.203
cleared 0.085 weak -0.200
efficient 0.085 depression -0.197
improvement 0.089 shortages -0.197
improved 0.097 instability -0.195
improving 0.099 delays -0.195
booming 0.109 depressed -0.194
helps 0.120 slipping -0.194
excellent 0.129 declining -0.190
brisk 0.135 reluctance -0.188

Notes: Words are those with the most positive and most
negative scores, among words appearing more than 5
times in the data. The “score” is the net positive prob-
ability from the Shapley decomposition: The average
marginal contribution of the word toward a positive clas-
sification, minus the average marginal contribution to-
wards a negative classification.
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Table 7: Words with Lowest Sentiment in 2007:Q1-2009Q1 Comparison
affected decreasing horrific poor stalled
affecting delay hurricane population strike
bad delayed hurt problem toxic
bankrupt delaying hurting problems trough
bleak delays inability quo ugly
bleeding depressed inflation ra uncertainty
cancellation depression instability ravaged volatile
cancelled deteriorating lack recession weak
cannot difficult less reduced weaken
causes difficulty loss reducing weakening
causing disruption lost reduction weaker
ceased down low reductions weakness
closed downward lower retirement worried
closure drain lowered retreating worse
collapse drop lowering severe worst
concerns dropped mortgage severely ##ag
conflicting dropping negative shortage ##air
conservative excessive negatively shortages ##gis
crisis falling none shrinking ##hwa
cuts fell nothing slow ##sett
decline fewer offs slowed ##sma
declines flood overs slower ##une
declining forcing paralyzed slowing
decrease grave plague slug
decreased hampered plum slump

Notes: Tokens in the lowest 5 percent of average sentiment, alphabetical
order. Tokens prepended with “##” are word fragments, which appear in
the comments as part of a larger word.
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Table 8: Words with Highest Sentiment in 2007:Q1-2009Q1 Comparison
active emphasis healthy ok stable
activities everybody help opened steady
added evidence hopefully opportunities strategy
adjusting excellent implemented optimistic strengthening
advantage expand improve outlook strong
airplanes expanded improved picking stronger
arrived expanding improvement pickup supporting
avail expansion improvements positive techniques
balanced extended improves preparing traction
best extending improving pretty unchanged
better favorable included priority upbeat
booming filled increase promising warm
boost focus increased pursuing watching
bracing gaining increasing ready worked
bright glad initiated realization ##ability
brighter goal initiative rebuild ##cing
builds good initiatives relaxation ##hg
busy gradually introduced responding ##my
completed great launches risen ##rry
completing greater launching robust ##screen
connected grew lots selected ##yas
consistent grow lust soared
controlling growing matched solid
decent grown matching solutions
effort growth medical stability

Notes: Tokens in the highest 5 percent of average sentiment, alphabetical order.
Tokens prepended with “##” are word fragments, which appear in the comments
as part of a larger word.
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Figures

Figure 1: ISM Survey Responses

Notes: This figure shows the total number of firms and the word counts for the ISM survey
responses. [Left Axis] The light (dark) grey region shows the total number of firms that
provided empty (non-empty) responses on their monthly response. The total number of
firms is the height of the light and dark grey regions. [Right Axis] The black line shows the
mean number of words per response across all respondents for a given month.
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Figure 2: Confusion Matrices & Accuracy Scores

Notes: This figure shows the confusion matrix for eight manufacturing sentiment measures
applied to the training dataset of manually labelled ISM survey responses. The rows of each
matrix refer to the actual values, while the columns refer to the predicted values. Values
along the diagonal are correctly classified, while values on the off-diagonals are incorrect.
The shaded color refers to the percentage of responses within a given cell, according to the
heatmap legend on the right.
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Figure 3: Industrial Production and Sentiment

Notes: This figure shows various manufacturing sentiment measures alongside IP Growth
(grey). FinBERTv1 is a widely available BERT models trained on financial text. TF-Small
and Fine-Tuned BERT consist of a baseline transformer model and a widely available BERT
model, respectively, both of which have been fine-tuned on a training dataset of human-
labeled ISM survey responses. Correlations to IP Growth are provided in parentheses.
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Figure 4: Token PDFs
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Note: Distribution of tokens across Shapley scores. For this graph, Shapley scores are Winsorized at -0.05
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Figure 5: Sentiment Contributions by Quantile
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Note: A token’s contribution to the net aggregate score is their own score multiplied by the number of
occurrences, and scaled to account for the number of comments in the relevant period. Tokens that appear in
either 2007:Q1 or 2008:Q1 are divided into 20 quantiles, based on their average Shapley score. Contributions
are summed within each quantile.
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Appendix

Figure A1: What Explains the 2018 Increase in Text Responses?

Notes: This figure shows the total number of firms and the word counts for the ISM survey
responses. [Left Axis] The light (dark and red) grey region shows the total number of firms
that provided empty (non-empty) responses on their monthly response. The total number
of firms is the height of the light and dark grey regions. The red region highlights the
number of firms that included the word ”tariff” in their response. [Right Axis] The solid
(dotted) black line shows the mean number of words per response across all respondents
(excluding responses using the word ”tariff”) for a given month.
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Figure A2: Explaining Fine-Tuned BERT

Notes: This figure shows the local interpretable model-agnostic explanations (LIME) of our
Fine-Tuned BERT model. The leftmost panel shows the probability that the text example
belongs to one of the three sentiment classifications. The middle panel illustrates the increase
in probability that a given word has on the Negative classification. This technique can
be applied to any individual observation to help explain which words trigger a particular
sentiment classification.
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7 Summary Text Methods

7.1 Dictionary Based Methods

A bag of words dictionary method is a mapping of the form f : RV → R where xd ∈ RV

is a V-dimensional vector and V represents the size of the set of the unique tokens across a

corpus, S. The elements of xd, e.g. xdwi
, represent the number of occurrences of the word wi

in document d.

For a bag of words method, we select a subset of the unique words across the corpus, D ⊂
S. Then, the function f is simply the sum of the elements in xd, i.e. f(xd) =

∑
wi∈D twi

xwi
.

twi
represents the weight given to word wi. Typically, for sentiment analysis, there are three

weights: +1 for positive words, 0 for neutral words, and -1 for negative words inside of D.

7.2 BERT Models

This section describes the basics of BERT, one of the most popular transformer-based mod-

els. It is difficult to explain transformer-based models briefly, in part because they are

fundamentally complex. Existing descriptions of these models are either very terse, assume

extensive knowledge of deep learning terminology and history, or are vague. Our goal to pro-

vide a reasonably succinct overview of the architecture, accessible to someone not specialized

in deep learning.

These models are called “transformers” because the input is transformed into a repre-

sentation in a latent space.11 This aspect of the architecture is not particularly unique;

the main distinguishing feature of transformers is attention, a mechanism that allows the

interpretation of words in a sentence to be influenced by the other words in the sentence.

Transformers gained popularity in part because they showed excellent performance on a

wide variety of language tasks and, relatedly, the design allows for extreme parallelism.

Section 7.2.1 describes in detail the mechanics of what happens when text is fed to a

BERT model used for sentiment classification (or more broadly, any type of classification).

Section 7.2.2 goes over how BERT models are trained. Section 7.2.3 discusses how the

BERT model is further trained and specialized (“fine-tuned”) to perform specific tasks or

use additional data.

11In the original transformer paper the application was machine translation. The input, in one language,
was transformed (“endcoded”) into an abstract representation and this was then “decoded” back into the
second natural language. The BERT architecture only includes the encoding step, and classification or other
tasks use the abstract representation as an input. GPT-like models are considered decoder-only models,
which seek to generate the next word in a sequence using a representation of the sequence so far.
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7.2.1 BERT at inference

BERT at inference can generally be defined in five steps. First, the input text is partitioned

into its atomic unit, e.g. a word, in a process known as tokenization. Each token is repre-

sented in an abstract vector space that captures the syntactic and semantic meaning of the

token. Second, the word order is taken into account using positional embeddings. Third,

the model adjusts the attention it should place to other words in the sequence through

the defining characteristic of transformers, known as the attention mechanism. Fourth, a

normalization step concatenates the attention with the input embeddings. Lastly, the new

representation of the input sequence is used for sentiment classification. We guide the reader

through these five steps below.

Step 1: Creating the Input Embeddings

A transformer-based sentiment model can be defined as a mapping of a fixed number of

tokens, L, such that fT : RV xL → R, where the input x is a V × L matrix.

A token is a word, a part of a word or a single character. V is the size of the vocabulary,

the tokens that are valid inputs.12 The columns of x are dummy vectors of size V , with

element i equal to 1 if the word in the i − th position is equal to wi, and zero otherwise.

Many pre-trained BERT models fix L, the sequence length, at 512 tokens. If a sequence

contains less than 512 tokens, then the remaining sequences are “padded”, in other words

replaced with a special “end of sequence” token that will mask any parameters associated

with those positions. If a sequence has more than 512 tokens, only the first 512 would be

used.

Transformers, like most NLP methods, represent words as vectors, called embeddings.

In large-scale, general versions of BERT, such as the base version released by Meta,13 the

word (token) is represented as a 768-dimensional vector. The high dimensionality should

help capture the fact that words’ meanings have many dimensions, so two words can be be

similar in many ways but still distinct along important dimensions.

At inference time the embeddings are fixed. The first step of fT is to convert the V xL

input into a NxL matrix, where each token indicator column (of length V , the size of the

12BERT has a vocabulary of 30,522 tokens. These tokens include most common words, and “token” is
sometimes used interchangeably with “word”. But, importantly, the vocabulary also includes many word
parts, such as common word endings, and all single characters. Thus BERT can process any text, since
unfamiliar words can be built up from word fragments and single characters.

13https://github.com/google-research/bert/blob/master/README.md
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vocabulary) is converted into a length N word embedding vector. Define the NxL matrix

as x′.

Step 2: Adjust to Generate Positional Embeddings

Transformer models do not inherently account for the order of the inputs anywhere in their

architecture, a characteristic that is critical for understanding the meaning of text. Adding

an index number of the input token (e.g. 1 for the first token, 2 for the second token, etc.)

would create two difficulties. First, this method leads to unbounded positional adjustments.

Second, the model may not be able to generalize for sequence lengths that are rarely seen,

especially longer sequences. The model could see plenty of first word adjustments, second

word adjustments, etc. but larger values would become rarer. The typical solution to account

for positions is to use sine and cosine functions. For input token x′k, an N-dimension vector

- pk- is generated. For 0 ≤ i < N/2, :

pk2i = sin(
k

10000
2i
N

)

pk2i+1 = cos(
k

10000
2i
N

)

(3)

where pki is the i-th index of pk and N is the dimension size of the target embedding.

We adjust the column vectors of x′ for their position by adding p to x′. Call the adjusted

matrix y ∈ RNxL

Step 3: Attention Mechanism

Next we enter the transformer block. This is a mapping f : RNxL → RNxL. Note that the

output and input are the exact same size. This step of the transformer model is arguably

the most important as the final representation of the word vectors captures well the meaning

of the text.

We begin by creating a set of key, value, and query matrices. This step mimics a look-up

table in a database table. They are defined as follows:

K(yi) = Wkyi

V (yi) = Wvyi

Q(yi) = Wqyi

(4)

where yi ∈ RN (a column vector from the input y) and Wk,Wv,Wq ∈ RMxN . Ultimately,
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the resulting vectors K(yi), V (yi), Q(yi) ∈ RM are transformations of the input vector, yi.

This can be thought of as projecting the individual vector yi into into an abstract M -

dimensional space. An LxL matrix is then created:

α =


α11 . . . α1L

...
. . .

...

αL1 . . . αLL

 (5)

where αi,j = softmaxj(
Q(yi)·K(yj)√

M
) (i.e. the rows of the α matrix sum to 1). Essentially,

αi,j measures how similar the query is (a transformation of the i-th word in consideration)

to the other keys (a transformation of the words in the sentence).

The vector for the i-th vector is then weighted depending on the attention of that word

with the other words in the sentence.

u′i = W0

L∑
j=1

αi,jV (yj) (6)

where W0 ∈ RNxM and u′i ∈ RN . This assumes there is just one head. However, we

can have multiple heads such that equations (4), (5), and (6) are repeated with H differ-

ent sets of parameters. For example, for head h, the W matrices in (4) will be different:

Wk,h.Wv,h, and Wq,h. This will lead to αh in (5), and (6) will become:

u′i =
H∑
h=1

W0,h

L∑
j=1

α
(h)
i,j V

(h)(yi) (7)

with W0,h ∈ RNxM .

The last step of the attention mechanism is to add back the resulting matrix u′i from (7)

back to the input vector yi, and then pass the resulting vector through a layer normalization

function, which is analogous to a standard normalization procedure but slightly adjusted

with a different scaling and shifting parameter.14

14The layer normalization function has two hyperparameters, γ and β, and is defined as follows:
LayerNorm(x; γ, β) = γ ∗ x−µσ + β
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ui = LayerNorm(yi + u′i) (8)

Step 4: Feed Forward and Normalize

Next the resulting vector, ui, is passed to a ReLU network, then added to itself, and finally

normalized once more:

z′i = W2ReLU(W1ui) (9)

zi = LayerNorm(ui + z′i) (10)

where W1 ∈ RPxN and W2 ∈ RNxP . The final vector zi ∈ RN is the transformed input

vector yi that accounts for the position of the i-th word and the attention the word emits

and receives from other words in the sequence.

Step 5: Sentiment Classification

The last step entails a mapping f : RNxL → R. Typically, this is a neural network that

takes as input a matrix and outputs a probability distribution across 3 categories: positive,

negative, and neutral.

7.2.2 Training

As with most deep learning models, BERT is estimated using stochastic gradient descent.

Model weights are adjusted using a learning rate, λ, such that wi+1 = wi − λ δL
δwi

, where L is

the loss function. If λ is too large, updates may exceed wi and the optima may be missed.

Setting λ too small may lead to smaller adjustments and more time needed for convergence.

To accelerate the process and improve the efficiency of finding optimum weights, an extension

of gradient descent, known as Adaptive Moment Estimation (or the ADAM optimizer), is

typically used.

For financial text sentiment classification, two popular BERT models have been pre-

trained on large corpi of data and are publically available: Huang et al. (2022) (which we

refer to as FinBERTv1) and Araci (2019) (which we refer to as FinBERTv2). FinBERTv1

was trained on nearly 10,000 sentences from SEC filings, equity reports, and earnings con-

ference call transcripts that were hand labelled for sentiment. FinBERTv2 was trained
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on nearly 5,000 randomly selected sentences from financial news articles, and nearly 1,000

financial news tweets, all of which were manually labelled for sentiment.

7.2.3 Fine-Tuning

We fine-tune BERT by first creating a dataset of responses that were hand-labeled for sen-

timent. We format the ISM survey responses the firm-month-question level and randomly

select 2,000 text responses. Each response was classified for sentiment by two Federal Re-

serve economists using the following question as a guide: ”Is this comment consistent with

manufacturing IP rising month over month?” The classifications were either positive, neu-

tral, or negative. We keep only 1,543 responses for which both economists agreed on the

sentiment.

We split our sample such that 90% is used for fine-tuning, and 10% is leftover for an

unseen test set for sentiment model comparisons (i.e. is never used for the training). We use

the training data to train two types of models. The first uses a publicly available pre-trained

model trained on a large corpus of English. We fine-tune the last layer (the sentiment layer)

of this model to create Fine-Tuned BERT. Second, we train a plain vanilla transformer

model from scratch using a simple architecture (with embedding dimensions of size 12-16).

We call this model simply the TF-Small model (TF for ‘transformer’). Note that for the

TF-Small model, we are estimating the entire attention mechanism weights, whereas for the

Fine-Tuned BERT, we are further tuning the attention weights that were pre-trained on a

large dataset.
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