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Abstract

This paper shows that Markov regime shifts in Full Information Rational Expectations

(FIRE) models lead to predictable, regime-dependent forecast errors. More generally, regime

shifts imply that ex-post forecast error regressions display waves of over- and under-reaction

to current information across rolling window samples. Using survey-based forecast data of

macroeconomic aggregates, we confirm the existence of such waves. We then propose a for-

mal econometric test that is robust to regime shifts conditional on a given data-generating

process. We apply the test to a medium-scale FIRE model with regime shifts in the aggres-

siveness of monetary policy that is estimated on U.S. data. The model provides a close fit of

observed macroeconomic dynamics and – despite the assumption of FIRE – does not allow us

to decisively reject the null that the forecast error regression estimates observed in the data

were generated from the model. Hence, predictability of ex-post forecast errors is, by itself,

neither a sufficient condition against FIRE nor a good metric to test alternative theories of

expectations formation.
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1 Introduction

Much of modern macroeconomic research operates under the assumption that agents perfectly

know the current state of the economy and form expectations rationally based on a “model-

consistent” calculation of the equilibrium. One of the hallmarks of this full-information rational

expectations (FIRE) hypothesis is that forecast errors are unpredictable. Yet, a growing body of

research based on survey expectations data shows that ex-post, forecast errors are often predictable

in systematic and quantitatively important ways. This has been taken as evidence against FIRE

and has sparked a burgeoning literature introducing information frictions, departures from rational

expectations, or some combination thereof to explain observed forecast error patterns.1

In this paper, we study the predictability of ex-post forecast errors in FIRE models in the

presence of regime shifts in either model parameters or stochastic processes. Such regime shifts,

due for example to changes in the economic environment or the stance of fiscal and monetary

policy, are well-documented and the focus of a large literature.2

The main result of our investigation is that regime shifts in FIRE models lead to predictable,

regime-dependent forecast errors. Intuitively, regime shifts introduce uncertainty about the future

probability distribution of variables. Agents incorporate this uncertainty by forming expectations

as a weighted average of regime-conditional forecasts. Forecast errors, measured ex-post after a

particular regime has realized, are therefore systematically related to information available at the

time of forecast.

The result implies that a researcher estimating reduced-form regressions of ex-post forecast

errors on current information may find significant non-zero coefficients even if the data has been

generated under FIRE. The sign of the estimated coefficient depends on the sequence of regime

realizations relative to agents’ expectations. More generally, regime shifts produce waves of over-

and under-reaction of expectations to current information across rolling sample regressions as the

sequence of regime realizations changes. Under FIRE, ex-post forecast error predictability vanishes

only as the sample size grows large and the distribution of regime realizations converges to its

population counterpart (and thus agents’ expectations). In the limit, unpredictability of forecast

1See Coibion and Gorodnichenko (2015), Angeletos et al. (2020), Bordalo et al. (2020), or Kohlhas and Walther
(2021) among many others. Also see Coibion et al. (2018) for a summary of the literature.

2Prominent examples include Clarida et al. (2000), Leeper and Zha (2003), Stock and Watson (2003), Cogley
and Sargent (2004), Lubik and Schorfheide (2004), Boivin and Giannoni (2006), Sims and Zha (2006) or Bianchi
(2013). Also see Hamilton (2016) for a survey and references therein.
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errors therefore remains a hallmark of FIRE even in the presence of regime shifts. But regime

shifts may be too infrequent for this convergence to occur in available samples of macroeconomic

forecasting data.

We assess the quantitative importance of our results first by estimating rolling sample window

regressions of ex-post forecast errors for U.S. inflation and output growth with data from the Survey

of Professional Forecasters (SPF). Consistent with the predictions of our analysis, we uncover large

waves of over- and under-reaction to current information. We then propose a formal econometric

test that is robust to regime shifts by simulating the distribution of forecast error regression

coefficients under the null of a data-generating process that incorporates the uncertainty about

the realized sequence of regime realizations and comparing this distribution against the regression

coefficients estimated in the data. We apply the test to a medium-scale dynamic stochastic general

equilibrium (DSGE) model with regime shifts in the aggressiveness of monetary policy that is

estimated on U.S. data. Despite the assumption of FIRE, the model generates ex-post forecast

error predictability for inflation and output growth consistent with the empirical evidence, and we

cannot decisively reject the null of FIRE.

The main lesson from these results is that predictability of forecast errors is not a sufficient con-

dition to reject FIRE, nor do the estimated regression coefficients provide guidance for alternative

theories of expectations formation. This should be taken as neither an endorsement of FIRE nor

a dismissal of alternative theories of expectations formation. Indeed, there is much empirical evi-

dence that even relatively sophisticated market participants are subject to imperfect information

and make decisions that are hard to square with the assumption of rational expectations.3 Instead,

our view is that alternative theories of expectations formation should be tested against FIRE as

part of equilibrium models that incorporate plausible regime shifts. Such an evaluation likely

requires data on expectations, as advocated by Coibion et al. (2018), and may include moments

from reduced-form forecast error regressions for candidate models to match.

The paper proceeds as follows. Section 2 sets the stage by reviewing the existing empirical

evidence on the predictability of survey-based forecast errors. We then document that over rolling

sample windows, these regressions imply waves of over- and under-reaction of forecasts to current

information.

3See for instance Tversky and Kahneman (1973), Tversky and Kahneman (1974), Kahneman and Tversky
(1973), De Bondt and Thaler (1985), De Bondt and Thaler (1989), Adam (2007), Malmendier and Nagel (2016),
Afrouzi et al. (2021), among many others.
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Section 3 illustrates the implications of regime shifts for forecast error predictability with a

univariate FIRE model whose coefficients switch values according to a Markov process. Agents have

perfect information about the current state of the economy, including the realized regime, and form

rational expectations about the future based on full knowledge of the environment. The simplicity

of the model admits a closed-form solution of ex-post forecast errors as a function of the current

state, with the sign of this relation depending on the future regime realization. We then derive

the expected forecast error regression coefficient in finite samples and show that unpredictability

of forecast errors is a knife-edge case that arises only if a particular condition about the sequence

of regime realizations is satisfied. Hence, we should expect waves of over- and under-reaction to

current information across rolling window samples as the sequence of regime realizations changes.

We illustrate with Monte Carlo simulations that even within the context of this simple model, these

waves can be sizable and that convergence of regime realizations to the unconditional distribution

is slow, exceeding the available time series of survey expectations of macro aggregates. Finally, we

use the univariate model to introduce our regime-robust test of FIRE. The test is similar in spirit

to simulation-based tests of rational expectations models with imperfect information and learning

by Andolfatto et al. (2008) and Adam et al. (2017) but adapted here to evaluate FIRE models

with regime shifts. In particular, the simulated distribution of forecast error regression coefficients

under the null of the model not only takes into account possible finite sample and omitted variable

biases, but also incorporates the uncertainty about the sequence of realized regimes.

Section 4 generalizes the analysis to any Markov-switching FIRE model with a minimum state

variable solution. We show that ex-post forecast errors are typically a complicated function of the

current state of the economy and the sequence of realized regimes over the entire forecast horizon.

The result confirms the predictability of ex-post forecast errors in FIRE models with regime shifts.

At the same time the result implies that simple forecast error regressions will generally be subject

to omitted variable bias. This bias makes it difficult to interpret the estimates from such regressions

and can amplify waves of over- and under-reaction across rolling sample windows.

Section 5 assesses the extent to which a reasonably rich FIRE model with regime shifts is

quantitatively consistent with the empirical evidence on the predictability of forecast errors. To

this end, we estimate a medium-scale New Keynesian model along the lines of Christiano et al.

(2005), Smets and Wouters (2007), and Justiniano et al. (2011) augmented with Markov regime

shifts in the monetary policy interest rate rule as proposed by Bianchi (2013). We apply our
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regime-robust FIRE test, and we find that we cannot generally reject the FIRE hypothesis for

inflation and output growth. For instance, for the post-1970s period, the results of Coibion and

Gorodnichenko (2015), Angeletos et al. (2020), or Kohlhas and Walther (2021) that inflation and

output growth forecasts under-react to forecast revisions but over-react to current realizations do

not significantly conflict with the model once one allows for regime shifts. Furthermore, despite the

assumption of FIRE, the estimated model generates waves of over- and under-reaction in forecasts

similar to what we document in the data.

The paper is related to several literatures. As reviewed further in Section 2, our paper con-

tributes to a burgeoning literature on the predictability of survey-based forecast errors of macro

aggregates. The key insight of our analysis is that FIRE, if combined with plausible regime shifts,

leads to predictable forecast errors in finite samples. As already emphasized above, we do not

interpret our results as a critique of alternative theories of expectation formation. Our point in-

stead is that in the presence of regime shifts, reduced-form regressions by themselves are unlikely

to inform the empirical validity of these theories relative to FIRE.

The result shares clear parallels with an earlier asset pricing literature on tests of the efficient

markets hypothesis in the presence of so-called peso problems; i.e. anticipated changes in the

probability distribution of asset prices. See for instance Rietz (1988); Engel and Hamilton (1990);

Cecchetti et al. (1993); Kaminsky (1993); Evans and Lewis (1995a, 1995b); Bekaert et al. (2001);

or Barro (2006).4 The main difference of our paper relative to this literature is that we study

the consequences of regime shifts for the predictability of ex-post forecast errors in a modern

macroeconomic context, propose a formal regime-robust test of FIRE, and show that an estimated

medium-scale DSGE model with plausible regime shifts is consistent with reduced-form regression

results reported in the literature.

The paper also contributes to a recent literature that analyzes the extent to which learning in an

equilibrium context can explain salient features of survey-based forecast errors of macroeconomic

aggregates. Aside from work by Andolfatto et al. (2008) and Adam et al. (2017) mentioned

above, the paper perhaps most closely related is King and Lu (2021) who propose a model with

endogenous regime shifts in monetary policy and private sector learning to account for the rise

4The name peso problem goes back to the empirical puzzle that forward rates on the Mexican Peso traded
below the dollar exchange rate for much of the early 1970s even though the Peso was pegged to the dollar. Then, in
1976, the Peso was allowed to float and depreciated by almost 50 percent. Ex-post, the forward-spot rate difference
prior to the devaluation looks like a predictable forecast error, but ex-ante it is consistent with rational expectations
under the assumption of regime shifts. See Lewis (2008) for a review.
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and fall in U.S. inflation and the concomitant dynamics of inflation forecast errors in the SPF.

Other related papers are Farmer et al. (2021) who propose a model of professional forecasters

who learn about low-frequency features of the underlying data-generating process to account for

various “forecast anomalies”; as well as Andolfatto and Gomme (2003); Davig (2004); Schorfheide

(2005); Bullard and Singh (2012); Richter and Throckmorton (2015); and Foerster and Matthes

(2021) among others who introduce imperfect information and learning into otherwise rational

expectations DSGE models with Markov regime shifts. The distinguishing feature of our analysis

to show that even with perfectly informed rational agents, regime shifts can generate predictable

forecast errors consistent with the empirical evidence.

2 Empirical evidence on survey-based forecast errors

In this section, we provide a brief review of the empirical evidence on the predictability of survey-

based forecast errors. Then we document that survey-based expectations exhibit waves of over-

and under-reaction to current information across rolling sample windows.

2.1 Reduced-form forecast error regressions

A large literature documents that survey-based expectations of macroeconomic aggregates are

often biased and that ex-post forecast errors – the difference between actual realizations and

ex-ante forecasts – are autocorrelated in systematic and quantitatively important ways. See for

example the reviews by Croushore (2010) and Coibion et al. (2018) as well as the references therein.

While these results were initially greeted with scepticism, they have over time gained increasing

acceptance as evidence against FIRE, reflecting either inefficient use of information by forecasters

(departures from rationality) or sticky information / costly information acquisition (departures

from full information) or both.5

More recently, the literature has expanded on this empirical evidence by estimating linear

regressions of ex-post forecast errors for prominent macroeconomic aggregates (e.g. inflation,

output growth) on information available at the time of forecast. For instance, Angeletos et al.

5See Mincer and Zarnowitz (1969), Friedman (1980), Nordhaus (1987), Maddala (1991), Croushore (1998) or
Schuh (2001) for early examples on the former perspective; and Mankiw and Reis (2002), Mankiw et al. (2003),
Sims (2003), Woodford (2003), or Mackowiak and Wiederholt (2009) for early examples on the latter perspective.
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(2020) and Kohlhas and Walther (2021) among others estimate

yt+h − Ftyt+h = θ + γyt + et+h, (1)

where yt+h − Ftyt+h denotes the ex-post forecast error about time t+ h realization of some macro

aggregate of interest, yt+h, relative to its forecast at the end of period t and beginning of period

(t + 1), Ftyt+h; yt is the current realization known to agents at the time of forecast; and et+h is

an error term. In turn, Coibion and Gorodnichenko (2015), followed by Bordalo et al. (2020),

Angeletos et al. (2020), and Kohlhas and Walther (2021) among others, estimate

yt+h − Ftyt+h = ω + δ (Ftyt+h − Ft−1yt+h) + et+h, (2)

where Ftyt+h−Ft−1yt+h denotes the ex-ante forecast revisions reflecting news known to the agents

at the time of forecast.6

The OLS estimate γ̂T of regression (1) is often found to be negative, although the significance

and even the sign of the estimate depends on the macro aggregate, forecast horizon, and sample

period considered. The OLS estimate δ̂T of regression (2), by contrast, is typically positive and

significant.7 These estimates are frequently interpreted as evidence that agents simultaneously

over-react to the current state of the economy but under-react to news, which has led different

authors to propose new theories of expectations formation based on information rigidity (Angeletos

et al. (2020)) or asymmetric attention (Kohlhas and Walther, 2021).

6We note that Ftyt+h denotes the forecast about yt+h given information available at the end of period (t − 1)
and beginning of period t. Hence, the subscript t in Ft denotes the period when information becomes available to
the professional forecasters (end of period t), and not the period when they report the forecast (beginning of period
t + 1). This notation is different from the one in Coibion and Gorodnichenko (2015), Ftyt+3,where t denotes the
period when forecasters report the forecast.

7Some studies compute forecast errors by averaging forecasts across survey participants, while other studies use
individual forecasts and estimate the two regressions with individual fixed effects. The results are typically very
similar. Bordalo et al. (2020) and others, in turn, estimate regression (2) as a panel using individual forecast errors
yt+h − Fityt+h and individual forecast revisions Fityt+h − Fit−1yt+h. They report negative as opposed to positive
estimates of δ. As Angeletos et al. (2020) and Kohlhas and Walther (2021) point out, however, the sign of this
estimate depends on the treatment of outliers in the individual forecast data and the sample period. We return to
discussing evidence on individual forecasts and forecast dispersion towards the end of the paper.

6



Table 1: Forecast error regression estimates for U.S. inflation and output growth

Panel A: yt+4 − Ftyt+4 = θ + γyt + et+4

p-value
γ̂T σγ̂T H0 : γ̂T = 0

Full sample 1970:2-2019:1

Inflation 0.049 0.070 0.480

Output growth −0.105 0.062 0.090

Post-1970s subsample 1983:1-2019:1

Inflation −0.169 0.070 0.017

Output growth −0.049 0.092 0.594

Panel B: yt+4 − Ftyt+4 = ω + δ(Ftyt+4 − Ft−1yt+4) + et+4

p-value

δ̂T σδ̂T H0 : δ̂T = 0

Full sample 1970:2-2019:1

Inflation 1.010 0.476 0.035

Output growth 0.717 0.232 0.002

Post-1970s subsample 1983:1-2019:1

Inflation 0.111 0.221 0.617

Output growth 0.507 0.299 0.092

Notes: The table reports OLS coefficient estimates, HAC-robust standard errors, and p-values of the null hypothesis that the coefficients
are zero for regressions of four-quarter ahead ex-post forecast errors of U.S. inflation and U.S. output growth on current realizations
and current forecast revisions of the two variables, respectively. See the text for details on the data construction. HAC-robust standard
errors are computed using the Newey-West estimator with bandwith set equal to 5.

To fix ideas and set the stage for the rest of paper, we reproduce some of these regression

estimates for inflation and output growth. Following Coibion and Gorodnichenko (2015), Angeletos

et al. (2020), and Kohlhas and Walther (2021) among others, we use quarterly data from the SPF

and focus on four-quarter ahead forecasts. The sample covers the period t = {1970 : 2, 1970 :

3, ..., 2019 : 1}.8 We measure inflation at time t (i.e. yt in the above notation) as the average

quarterly growth rate of the real-time GDP deflator over the last four quarters (i.e. time t− 4 to

t) and repeat the same computation with chain-weighted real GDP to measure output growth. To

construct four-quarter ahead, that is annual, forecasts, we use the consensus forecasts and average

8Note that to construct annual forecast error data, we use data realizations up to period 2020:1.
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the forecasts at time t about quarterly inflation (similarly for output growth rates) in the end of

periods (t + 1), (t + 2), (t + 3), and (t + 4). We then compute forecast errors as the difference

between the average quarterly growth rate of the real-time GDP deflator over the last four quarters

(i.e. time (t+1) to (t+4)) and the annual inflation forecast,.9 For all observed realizations, we use

real-time data because final revised data may reflect reclassification and information not available

at the time of forecast (see Croushore, 2010). As is common in this particular literature, we do

not correct the OLS point estimates for possible finite sample bias and use HAC-robust standard

errors for inference.10

Table 1 reports the results, both for the full sample and what we call the Post-1970s subsample

that starts in 1983:1 and ends in 2019:1, a period that is often associated with low inflation and

low output growth volatility.

As shown in Panel A, while the OLS estimate γ̂T of regression (1) is negative for both the full

sample and the post-1970s sample for the case of output growth, the sign switches for the case

of inflation. In neither case, one can reject the null of zero prediction at high significance level.

As discussed in Kohlhas and Walther (2021), however, the negative sign and significance of γ̂T is

somewhat more robust for samples starting in the mid-1980s and ending before the 2008-09 Great

Recession, and when inflation is measured with the consumer price index (CPI) as opposed to the

GDP deflator.

As shown in Panel B, the OLS estimate δ̂T of regression (2) is more robustly positive and, at least

for the full sample, highly significant, thus confirming the results in Coibion and Gorodnichenko

(2015). At the same time, the magnitude of the estimates declines considerably for the post-1970s

subsample and, for the case of inflation, the estimate becomes insignificant.

9Similarly, to construct Ft−1yt+4, we average the forecasts at time (t− 1) about quarterly inflation and output
growth rates in the end of periods (t + 1), (t + 2), (t + 3), and (t + 4). The way we construct forecasts and
forecast errors is similar to Coibion and Gorodnichenko (2015) and Kohlhas and Walther (2021), with some minor
differennces. The former compute annual forecast errors by averaging the one- through four-quarter ahead forecast
errors. The latter, instead, rely on the forecast about the level of the GDP deflator and real output growth to
construct forecasts about the annual growth rates, by computing the growth rate between the forecast about the
level in period (t+ 4) and the forecast about the level in period (t+ 1).

10OLS coefficient estimates are biased in finite samples if the regressors are not strictly exogenous. As discussed
in the next section, strict exogeneity is generally violated for the type of regressions in (1) and (2). Under the
assumption of no regime shifts, this bias is likely to be small for the full sample but may be more substantial for
smaller samples. See Adam et al. (2017) for bias-corrected estimates in a related context. As discussed in the next
section, in the presence of regime shifts, finite sample bias is likely to be larger even over relatively long samples.
We either correct for this bias explicitly or take it into account implicitly in the different simulations and tests.
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2.2 Waves of over- and under-reaction

To investigate the variation in the predictability of forecast errors further, we estimate each of the

above equations for inflation and output growth over rolling 40-quarter samples. Figure 1 shows

the different rolling regression point estimates (blue solid lines) with associated 90% confidence

intervals implied by HAC-robust standard errors (blue shaded areas). The estimates are centered

at the mid-point (i.e. 1980 denotes the regression estimated over the sample 1975:1 to 1984:4).

Figure 1: Waves of over- and under-reaction in SPF data

Notes: The plots show 40-quarter rolling regression coefficient estimates of four-quarter ahead ex-post forecast errors of U.S. inflation
and U.S. output growth on current realizations and current forecast revisions of the two variables; i.e. yt+4 − Ftyt+4 = θ + γyt + et+4

and yt+4 − Ftyt+4 = ω + δ(Ftyt+4 − Ft−1yt+4) + et+4, where yt denotes annual inflation, respectively annual output growth. See
the text for details on the data construction. The estimates are centered at the midpoint of the rolling regression window (e.g. 1980
denotes the regression window 1975:1 to 1984:4). The blue shaded areas show 90% confidence bands based on HAC-robust standard
errors computed using the Newey-West estimator with bandwidth set equal to 5.

The figure provides evidence of large waves of over- and under-reaction to current information.

As shown in panels (a) and (c), in the 1970s and then again from the 1990s to the mid-2000s,

inflation forecasts errors are predicted to be significantly negatively related to current realizations

but significantly positively related to forecast revisions of inflation. In the 1980s as well as from

the mid-2000s onward, inflation forecast errors are less strongly related to the two predictors.

9



Over the full sample, current inflation realization do not predict inflation forecast errors whereas

current forecast revisions are strong positive predictors of forecast errors – consistent with the

aforementioned empirical evidence.11

Panels (b) and (d) show similar waves in the regression coefficients for output growth forecasts

errors, but with somewhat different timing. From the 1970s to the early 1990s and then again from

2000s through the end of the sample, forecast errors for output growth are negatively associated

with current realizations, although these estimates are surrounded by considerable uncertainty. In

between, the association switches to positive. In turn, forecast errors of output growth are mostly

positively associated with current forecasts revisions, although there is a marked downward swing

from the late 1980s through the mid-1990s. Over the full sample, forecast errors are significantly

negatively related to current output growth realizations but significantly positively related to

forecast revisions – again consistent with the above discussed empirical evidence.

Our take of this evidence is, on the one hand, that predictability of forecast errors represents

potentially useful information to distinguish between alternative theories of expectations formation.

On the other hand, the large time-variation in coefficient estimates across rolling window samples

seem hard to explain with departures from FIRE alone. While some of this variation may come from

small sample measurement error or noise, we propose in what follows an alternative explanation

that combines regime shifts with the fact that the data-generating process for forecast errors is

unlikely to be described by a simple univariate equation of the form given in (1) or (2).12

3 Predictable forecast errors in a univariate model

This section considers a univariate FIRE model without and with regime shifts. While too simple

from an empirical standpoint, the model has the advantage that the relationship of forecast errors

with current information can be derived analytically and has clear intuition. We then study the

implications for reduced-form forecast error regressions and propose a regime-robust test of FIRE.

11Perhaps unsurprisingly, there are also large swings in the estimates of the constants, θ̂ and ω̂ respectively,
across regression windows. This indicates time variation in the bias of forecasts – a finding that to our knowledge
is also new but of less immediate interest in what follows. In the generalized framework of Section 4, we show why
regime shifts in FIRE model are also likely to generate non-zero biases that are time-varying across rolling window
samples.

12Additional evidence suggesting misspecification comes from the fact that the coefficient estimates of interest can
vary substantially depending on whether the regression includes additional variables (either other macro aggregates
or lagged values of the variable forecasted).
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3.1 No regime shifts

Consider an endogenous variable of interest yt with the following FIRE solution

yt = axt, (3)

and the exogenous variable xt evolves according to

xt = φxt−1 + εt, (4)

with φ ∈ [0, 1) and εt ∼ i.i.d.(0, σ2).13

Given (3) and (4), FIRE implies that for any horizon h ≥ 1, agents’ forecasts of xt+h conditional

on information at time t are

Etyt+h = aφhxt, (5)

and ex-post forecast errors can be expressed as

yt+h − Etyt+h = aφhxt + a
h−1∑
k=0

φkεt+h−k − aφhxt = a
h∑
τ=1

φh−τεt+τ . (6)

In the absence of regime shifts, ex-post forecast errors under FIRE are a linear combination of i.i.d.

innovations {εt+τ}hτ=1 that are unpredictable based on time t information; i.e. E [(yt+h − Etyt+h) yt] =

aE
[(∑h

τ=1 φ
h−τεt+τ

)
yt

]
= 0. Intuitively, the portion of ex-post realization yt+h that is predeter-

mined as of t (i.e. aφhxt) is exactly the same as the agent’s forecast based on information at t

and thus, ex-post forecast errors are unpredictable. Similarly, ex-ante forecast revisions about yt+h

from time t− 1 to time t are

Etyt+h − Et−1yt+h = aφhεt, (7)

and thus, forecast errors are equally unpredictable based on this information.

As we review below, in the absence of regime shifts, the same result of unpredictable forecast

errors holds for any linear FIRE model. The result constitutes the starting point for the above-

13The FIRE solution in (3) obtains, for example, as the result of an expectational difference equation yt =
βEtyt+1 + ψxt with | β |< 1, ψ ≥ 0 and Et denoting the rational expectations operator conditional on full
information available at time t. Given the exogenous process in (4), the FIRE solution implies a = ψ

1−βφ .
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discussed literature documenting that ex-post forecasting errors constructed from survey-data are

in fact predictable, a finding that is typically taken as evidence against FIRE.

3.2 Markov regime shifts

Suppose instead that within the same model, the FIRE solution in (3) switches between two

regimes st ∈ {1, 2}; i.e.

yt = astxt (8)

where

ast =

a1 if st = 1

a2 if st = 2

(9)

and that the regime switching is governed by an exogenous Markov process with transition matrix

P =

p11 p12

p21 p22

 (10)

where pij = Pr(st = j | st−1 = i) with 0 < pii < 1 and
∑2

j=1 pij = 1 for both i = 1, 2.14

Two regimes are sufficient for the purpose of this illustration, though the results easily generalize

to many regimes. Also, all results carry through if we allow for regime shifts in the persistence

parameter φ of the exogenous process for xt. In this section, we abstract from these generalizations

to keep the example as simple as possible.

Given (8)-(10), FIRE implies that for any horizon h ≥ 1, agents’ forecasts of yt+h conditional

on information at time t (including regime realization st) are given by

Etyt+h =
(
P

(h)
st,1a1φ

h + P
(h)
st,2a2φ

h
)
xt, (11)

where P
(h)
st,j

is the j-th row of P h. Hence, agents’ expectations are a weighted average of regime-

conditional forecasts: a1φ
hxt if the first regime realizes in h periods from now, which arrives with

probability P
(h)
st,1, and a2φ

hxt if the second regime realizes in h periods from now, which arrives

14Returning to the example from the previous footnote, suppose the parameters {β, ψ} of the expectational
difference equation take on different values across the two regimes st ∈ {1, 2}, then under conditions described in

Davig and Leeper (2007), the FIRE solution takes on the form in (9) with a =
[
a1 a2

]′
= (I2−φβP )−1

[
ψ1 ψ2

]′
and β =

[
β1 0
0 β2

]
.

12



with probability P
(h)
st,2.

From (11), we obtain the following result.

Proposition 1. Given the exogenous forcing process (4) and model solution described by (8)-(9),

ex-post forecast errors under FIRE are related to current realizations of the endogenous variable

by

yt+h − Etyt+h = γ(h)
st,st+h

yt + ξt+h, (12)

where γ
(h)
st,st+h ≡

(−1)st+h−1(a1−a2)
(

1−P (h)
st,st+h

)
φh

ast
and ξt+h ≡ ast+h

∑h
τ=1 φ

h−τεt+τ is uncorrelated with

yt. Furthermore, γ
(h)
st,st+h = 0 for any h ≥ 1 if and only if a1 = a2 or φ = 0.

Proof. See Appendix A.1.

Proposition 1 establishes that in the presence of Markov regime shifts, ex-post forecasting

errors are systematically predictable even though agents have full information and are fully rational.

Intuitively, and in contrast to environments without regime shifts, the portion of ex-post realization

yt+h that is predetermined as of t (i.e. ast+hφ
hxt) is no longer the same as agents’ forecast based

on information at t. This is because, as described above, agents’ expectations at t are a weighted

average of regime-conditional forecasts. Forecast errors, measure ex-post after a particular regime

has realized, are therefore a function of information at the time of forecast.

Corollary 1 elaborates on the sign of γt,t+h.

Corollary 1. Given the environment in 1,

sign(γ(h)
st,st+h

) =

sign(a1 − a2) if st+h = 1

−sign(a1 − a2) if st+h = 2

(13)

Proof. See Appendix A.2.

Without loss of generality, suppose from hereon that a1 > a2; i.e. the first regime is the one

associated with a more sensititve response of agents to exogenous shocks. Hence, γ
(h)
st,st+h > 0

whenever st+h = 1. In the empirical literature, a positive value of γ
(h)
st,st+h would be interpreted as

forecasters under-reacting to current realizations at the time of forecast. According to Proposition

1 and Corollary 1, by contrast, this apparent under-reaction is the result of fully informed rational

agents making forecasts under uncertainty about future regime realizations so that when ex-post,

13



the higher-volatility regime is realized, the forecast error is positively related to current information

because agents ex-ante put positive weight on the lower-volatility regime.

As a prelude to the generalized analysis in Section 4, we also consider the implications of

regime shifts for the relation between ex-post forecast errors and ex-ante forecast revisions Etyt+h−

Et−1yt+h; i.e., news about the state of the economy.

Proposition 2. Given the same environment as in Proposition 1, ex-post forecast errors under

FIRE are related to ex-ante forecast revisions by

yt+h − Etyt+h = δ(h)
st,st+h

(Etyt+h − Et−1yt+h) + λ(h+1)
st−1,st+h

yt−1 + ξt+h, (14)

where δ
(h)
st,st+h ≡

(−1)st+h−1(a1−a2)
(

1−P (h)
st,st+h

)
P

(h)
st: a

, λ
(h+1)
st−1,st+h ≡

(−1)st+h−1(a1−a2)
(

1−P (h)
st,st+h

)
P

(h+1)
st−1:

a

φast−1P
(h+1)
st−1:

a
, and ξt+h

is defined as in Proposition 1.

Proof. See Appendix A.3.

Proposition 2 shows that in the presence of Markov regime shifts, ex-post forecast errors are

also systematically predictable by ex-ante forecast revisions. Contrary to some of the empirical

evidence reviewed above, for the simple univariate model under consideration, the sign of this

relation (δt,t+h) is the same as the sign of the relation between ex-post forecast errors and current

realizations (γt,t+h) given in Corrolary 1. As we shall see in Section 4, this result does not necessarily

hold for richer, more realistic FIRE models with regime shifts.

3.3 Implications for reduced-form forecast error regressions

We now use the derived results to study the implications of regime shifts for the type of reduced-

form forecast error regressions estimated in the literature. To save on space, we focus on regression

(1), reproduced here under the assumption that the data has been previously demeaned15

yt+h − Ftyt+h = γyt + et+h. (15)

All results carry through for regression (2).

15Using demeaned data is consistent with the FIRE solution considered in (8). This type of equation generally
arises as the result of log-linearizing optimality conditions of dynamic stochastic problems, which by definition refer
to deviations from the mean. All of the results that follow carry through for models that contain a mean. We
consider implications of regime shifts in constant terms in the generalized framework in Sections 4 and 5.
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The objective is two-fold. First, we want to characterize the predictability of ex-post forecast

errors implied by the univariate model for a given sequence of regime realizations. Second, we

want to investigate the extent to which regime-shifts can lead to waves of over- and under-reaction

across rolling window regressions. Addressing the two objectives formally is complicated by the

fact that the OLS coefficient estimate of γ is biased in finite samples because the regressor yt is not

strictly exogenous.16 We approach this problem by first deriving the linear projection coefficient

conditional on a given sequence of regime realizations, effectively assuming that finite sample bias

is negligible. Then, we perform simulations that correct for finite sample bias of the OLS estimator.

Consider a sequence of regime realizations {st}T+h
t=1 . Under the assumption that forecasters are

fully informed rational expectations agents (i.e. Ft = Et), the linear projection coefficient implied

by the univariate model under FIRE can be derived as

E
[
γT | {st}T+h

t=1

]
=

E
[
(yt+h − Etyt+h)yt| {st}T+h

t=1

]
E
[
y2
t | {st}

T
t=1

] =

∑2
i=1

∑2
j=1 a

2
i γ

(h)
ij F

(h)
T (i, j)∑2

i=1 a
2
iFT (i)

(16)

where γ
(h)
ij is the relation of yt+h − Etyt+h with yt conditional on regime realizations st = i and

st+h = j as defined in Proposition 1; F (h)
T (i, j) ≡ 1

T

∑T
t=1 1(st = i, st+h = j) is the sample frequency

of these joint regime realizations occurring; ai is defined as in (9); and FT (i) ≡ 1
T

∑T
t=1 1(st = i)

is the unconditional sample frequency of regime realizations st = i.

Note that the sample frequency of joint regime realizations can be expressed as F (h)
T (i, j) =

f
(h)
ij F

(h)
T (j), where f

(h)
ij ≡ 1

T

∑T
t=1 1(st = i|st+h = j) is the sample frequency of regime realization

st = i conditional on regime realization st+h = j. As shown in Appendix A.4, using this expression,

we can rewrite (16) as

E
[
γT | {st}T+h

t=1

]
=

φh(a1 − a2)

a2
1(1− f (h)

22 ) + a2
2(1− f (h)

11 )︸ ︷︷ ︸
(+)

[
a1(1− f (h)

22 )
(
f

(h)
11 − p

(h)
11

)
− a2(1− f (h)

11 )
(
f

(h)
22 − p

(h)
22

)]
︸ ︷︷ ︸

g(f
(h)
11 ,f

(h)
22 )

where the first term is positive by assumption of a1 > a2. Hence, the sign of the linear projection

coefficient is determined by the sign of g(f
(h)
11 , f

(h)
22 ). This gives rise to the following proposition.

Proposition 3. Consider the same conditions as in Proposition 1 and assume without loss of

16By definition, we have E(ytet+h) = 0 but E(yt+ket+h) 6= 0 for k > 0. Hence, the OLS assumption for
unbiasedness is violated.
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generality that a1 > a2. Then under the null hypothesis of FIRE,

1. for a finite sequence of {st}T+h
t=1 characterized by conditional sample frequencies f

(h)
11 and f

(h)
22 ,

E
[
γT | {st}T+h

t=1

]
R 0⇔ f

(h)
11 R g(f

(h)
22 ) ≡ a1p

(h)
11 (1− f (h)

22 ) + a2(f
(h)
22 − p

(h)
22 )

a1(1− f (h)
22 ) + a2(f

(h)
22 − p

(h)
22 )

;

2. for T →∞, g(f
(h)
11 , f

(h)
22 )→ 0⇔ E

[
γT | {st}T+h

t=1

]
→ E [γ] = 0.

Proof. See Appendix A.4.

The first part of the proposition establishes that in finite samples, unpredictability of forecast

errors (i.e. E
[
γT | {st}T+h

t=1

]
= 0) in the presence of regime shifts are knife-edge cases that arise

for regime realizations {st}T+h
t=1 with conditional frequencies f

(h)
11 and f

(h)
22 such that f

(h)
11 = g(f

(h)
22 ).

Generally, regime realizations {st}T+h
t=1 are such that either E

[
γT | {st}T+h

t=1

]
< 0 or E

[
γT | {st}T+h

t=1

]
>

0; i.e. agents look like they over- or under-react to yt. To the extent that the sequence of regime

realizations and with it the sign of g(f
(h)
11 , f

(h)
22 ) changes over time, this means that we should see

waves of apparent over- and under-reaction across rolling window regressions.

Figure 2: Characterizing waves of over- and under-reaction

Notes: The plots in two panels show the sign of expected OLS coefficients of regression (15) for different conditional regime realizations

f
(h)
11 and f

(h)
22 . The two regions are separated by the hyperbola f

(h)
11 = g(f

(h)
22 ) in Proposition 3.

Figure 2 visualizes this result for the example of a1 = 2, a2 = 0.5 and two sets of transition

probabilities p
(h)
11 , p

(h)
22 . The knife-edge cases for which E

[
γ| {st}T+h

t=1

]
= 0 are given by the hyperbola

f
(h)
11 = g(f

(h)
22 ) separating the two regions. A special knife-edge case arises when f

(h)
11 = p

(h)
11
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and f
(h)
22 = p

(h)
22 . In this case FT (i) = P(i) for i ∈ {1, 2}: the sample frequency of regime

realizations equals the population distribution (and therefore agents expectations). Waves of

under-reaction arise for regime realizations with conditional frequencies f
(h)
11 > g(f

(h)
22 ). When

f
(h)
11 > p

(h)
11 and f

(h)
22 < p

(h)
22 (i.e. the north-west quadrant), these regime realizations are necessarily

such that FT (1) > P(1); i.e. the first (high) regime arises more frequently than expected by

agents. Vice versa, waves of over-reaction arise for regime realizations with conditional frequencies

f
(h)
11 < g(f

(h)
22 ). When f

(h)
11 < p

(h)
11 and f

(h)
22 > p

(h)
22 (i.e. the south-east quadrant), these regime

realizations are necessarily such that FT (1) < P(1); i.e. the second (low) regime arises more

frequently than expected by agents.17

The second part of proposition 3 establishes that as T increases and the sample frequency of

regime realizations converges to the population distribution, periods of over- and under-reaction

tend to cancel each other out such that in the limit, ex-post forecast errors become unpredictable.

The result makes clear that ex-post forecast error predictability is a finite sample phenomenon, thus

providing a new explanation for the observation that in survey expectation data, ex-post forecast

error predictability often declines with longer time series (e.g. Croushore, 1998). This naturally

raises the question of what sample size T is large enough for ex-post forecast error predictability

to vanish. Perhaps unsurprisingly, the answer depends on the specifics of the data-generating

process. But foreshadowing results below, we find that across the different models considered, T

would need to be much larger than the length of the typically available samples used to estimate

forecast error regressions.

To illustrate the extent to which regime shifts can lead to waves of over- and under-reaction,

we simulate the simple univariate model for 500 periods by drawing innovations εt from a normal

distribution, first conditional on no regime shifts and second conditional on regime shifts. 18We

then estimate (15) for rolling window samples of T = 40 periods and, for each of the samples,

correct the OLS point estimate γ̂T for finite sample bias.19 To compute the coverage bands, we

17Note that under-reaction arises even if f
(h)
11 < p

(h)
11 provided that f

(h)
11 > g(f

(h)
22 ), as shown by the black region

in the south-west quadrant. Vice versa, over-reaction arises even if f
(h)
11 > p

(h)
11 provided that f

(h)
11 < g(f

(h)
22 ), as

shown by the black region in the north-east quadrant. The size of these regions depends on the values of γ(h)st,st+h ,

which are in turn governed by a1, a2 and p
(h)
11 , p

(h)
22 .

18For the simulation without regime shifts, we set a = 1.25 and choose φ = 0.9, σε = 1. For the simulation with
regime shifts, we keep the exogenous forcing process unchanged and set a1 = 2, a2 = 0.5 with Markov transition
probabilities p11 = p22 = 0.7. Similar results would obtain for other parameterizations.

19To correct for finite sample bias, we simulate i = 1, ..., 10, 000 new samples of 500 periods, preserving the original
sequence of regime realizations for each of the samples. For each 40-period rolling window, we then compute the

model-implied biasi =
∑t+39
τ=t (yiτ−ȳ

i
t:t+39)(ξiτ+1−ξ̄

i
t+1:t+40)∑t+39

τ=t (yτ,n−ȳt:t+39,n)2
across the different samples i, and subtract the average bias
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perform a blind boostrapping procedure in order to preserve the regime path pertaining to each

rolling sample. 20

Figure 3 reports the results. As shown in panel (a), in the absence of regime shifts, the bias-

corrected OLS point estimates are almost never significantly different from zero. This confirms

that in the absence of regime shifts, ex-post predictability of forecast errors is a sufficient condition

to reject FIRE even in relatively small samples.21

Figure 3: Waves of over- and under-reaction in simulated data

Notes: Panel (a) shows average bias-corrected OLS coefficient estimates and 90% coverage bands of regression (15) for rolling windows
of 40 periods with data generated from the univariate model under FIRE without regime shifts. Panel (b) shows resuls for the same
rolling window regressions, but with data generated from the univariate model under FIRE with regime shifts.

Panel (b) shows bias-corrected estimates for the data generated with regime shifts. There are

much larger and often significant swings across the rolling sample windows.22 This illustrates that∑10,000
i=1 biasi/10, 000 from the OLS estimate.
20Using the bias-corrected OLS point estimates, we compute the fitted values of the regression in 15 as well

as the standard deviation of the regression error terms for each rolling sample of simulated data. From a normal
distribution with that standard deviation and mean 0, we generate N = 1000 i.d.d. innovations, and add those
disturbances to the fitted values to generate 1000 new datasets of the dependent variable. Preserving the regressor,
we re-estimate 15 and bias-correct the point estimates for finite sample bias using the model-implied bias averaged
across the 1000 simulations. Finally, for each rolling sample we isolate the bottom and top 5% bias-free estimates
to compute the 90% coverage bands.

21As discussed further below, finit sample bias correction is important for this result. For the present simulation,
the mean absolute bias across all 40-period rolling windows is −0.1. Hence, without bias-correction, a researcher
would frequently reject zero ex-post predictability at standard significance levels even though this is the implication
of the data-generating process.

22The swings are, on average, negative because for the particular calibrations chosen, f
(h)
11 > g(f

(h)
22 ) and therefore

γ̂T < 0 on average.
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in the presence of regime shifts, ex-post predictability of forecast errors is not a sufficient condition

to reject FIRE. More generally, regime shifts naturally lead to waves of over- and under-reaction

across rolling sample windows, similar to the results reported in Section 2.

The result raises the question of what sample size T is large enough for ex-post forecast error

predictability to vanish. To provide an answer, we simulate the univariate model 10,000 times

for different sample sizes, each time with a different sequence of regime realization drawn from

transition matrix P . For each sample size T , we then average the absolute values of the bias-

corrected OLS estimates γ̂T across simulations.

Figure 4: Average predictability of ex-post forecast errors by sample size

Notes: Panel (a) shows average absolute values of bias-corrected OLS estimates γ̂T for different sample sizes T with data generated
from the univariate model under FIRE without regime shifts. Panel (b) shows results for the same regressions, but with data generated
from the univariate model under FIRE with regime shifts.

As shown in Figure 4, deviations from the asymptotic value of γ = 0 are on average small for

the no-regime shift case, even in small samples, and γ̂T converges quickly (independent of bias-

correction). For the case of regime shifts, in contrast, deviations from the asymptotic value of γ = 0

are an order of magnitude larger and die out at a lower rate as T becomes large. Hence, at least
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in the context of the univariate model, the usual sample size for which we have expectations data

of macroeconomic aggregates (150 to 200 quarters) is unlikely to be large enough for reduced-form

foreacast error regressions to be characterized by asymptotic properties.

3.4 A regime-shift robust test of FIRE

The above results indicate that standard statistical tests of FIRE based on reduced-form regressions

are misspecified, both because the null of unpredictability of forecast errors is typically violated

in finite samples, and because the usual standard errors do not take into account the uncertainty

implied by regime shifts. Here, we show how – given an underlying data-generating process (DGP)

– one can construct a regime-shift robust test of FIRE for reduced-form regressions. The approach

is similar in spirit to simulation-based tests of rational expectations models with imperfect infor-

mation by Andolfatto et al. (2008) or Adam et al. (2017), but applied to the case of FIRE models

with regime shifts. We first implement the test with the simple univariate model which, while

unrealistic from an empirical standpoint, helps us to provide intuition. In Section 5, we then apply

the test to the empirically more relevant case of a medium-scale DSGE model.

Consider the univariate FIRE model with regime shifts given by (4) and (8)-(10) as the DGP,

with the parameters either calibrated or estimated to fit the observed data used to estimate the

reduced-form forecast error regressions (1) and (2). From the DGP, we can simulate the finite

sample distribution of the OLS coefficient estimates γ̂T and δ̂T by (i) generating i = 1, ..., N

artificial samples of observations {yit}
T+h
t=1 and

{
Etyit+h

}T
t=1

; and (ii) estimating γ̂iT and δ̂iT for

each sample. From these distributions, we then compute the probability that the simulated γ̂iT ,

respectively δ̂iT , are larger than the γ̂T , respectively δ̂T , estimated in the actual data. This provides

a p− value for a t-test of the null of FIRE conditional on the assumed DGP.

Note that the simulation of artificial samples in step (i) is non-standard because of the need to

incorporate the uncertainty about the sequence of realized regimes. We do so by drawing regimes

{sit}
T+h
t=1 for each sample i from the smoothed probabilities P̂ r(st | YT ) implied by the calibrated

/ estimated DGP and the observed data YT . Also note that the simulation naturally provides us

with the finite sample distribution of regression coefficient γ̂T . Hence, we do not need to bias-

correct the estimates (e.g. through bootstrapping) and we can conduct inference directly from the

simulated distribution without assuming normality.
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Figure 5: Regime-robust test of FIRE for the case of output growth

Notes: Panel (a) shows the sample distributions of the OLS estimate of forecast error regression (1) for the case of output growth
under the usual empirical null of E [γ̂T ] = 0 and HAC-robust standard errors (dashed black lines) and under the null that the data was
generated by the univariate FIRE model with regime shifts (shaded red area). Panel (b) shows the corresponding distributions of the
OLS estimate of forecast error regression (2). The sample for both panels (a) and (b) is 1970:2-2019:1.

For illustration, we apply the test for the case of output growth, using the same real-time data

as in Section 2 over the full sample period 1970:2-2019:1 and with forecast horizon set to h = 4.

The model parameters are estimated with Bayesian techniques under the assumption that xt is

unobserved.23 The estimated values of the parameters for the regime switching case are a1 = 5.272,

a2 = 1.765, φ = 0.872, σ = 0.285, P (1, 1) = 0.978, P (2, 2) = 0.981.24 The data strongly prefers

the version of the model with regime shifts over the alternative without regime shifts.

Figure 5 reports the results. The solid black lines show the OLS point estimates γ̂T = −0.105,

respectively δ̂T = 0.717 from Table 1, and the dashed black lines show the distributions of these

23Estimation can be implemented either by treating xt as unobserved or by measuring xt with an observable.
Since we do not want to impose additional assumptions on the nature of xt, we treat it as unobserved and use the
Kalman and Hamilton Filters as described in Kim and Nelson (1999) for estimation. See Appendix for more details.

24See Appendix B for more details.
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estimates under the empirical null of unpredictable forecast errors and HAC-robust standard errors

that is typically adopted by the literature. The red shaded areas show the simulated distributions

of γ̂T and δ̂T under the null that the data was generated by the estimated DGP. These distributions

are shifted to the left of the empirical distributions because of negative finite sample bias.25 Hence,

the expected OLS coefficient estimates E [γ̂T ] and E
[
δ̂T

]
under the null, shown by the red solid

lines, are both negative. This is not a general result, however. As explained in Sections 4 and 5,

depending on the underlying DGP, E [γ̂T ] and E
[
δ̂T

]
can be of different sign.

As shown in panel (a), the estimate of γ̂T for the regression of ex-post forecast errors on current

realizations is in the left tail of the empirical null, implying a p-value of 0.09 in a two-sided test

(twice the area under the dashed distribution to the left of γ̂T ). According to the usual assumption

of no regime shifts and HAC-robust standard errors, a researcher would therefore be able to reject

the null of FIRE at a significance level of 9%.

According to the estimated DGP, by contrast, the estimate of γ̂T implies a much higher p-value

of 0.91 (the area under the shaded distribution to the left of γ̂T plus the corresponding area to

the right of 2E [γ̂T ]− γ̂T ). Hence, a researcher would not be able to reject the null of FIRE at a

reasonable significance level. There are two reasons for this difference. First, the distribution is

shifted to the left of the usual empirical null; and second, the distribution is wider than what is

implied by HAC-robust standard errors.

As shown in panel (b), the estimate of δ̂T for the regression of ex-post forecast errors on

ex-ante forecast revisions is in the far tail of not only the usual empirical distribution but also

the distribution implied by the estimated DGP. For the present case, the latter distribution is

only mildly more dispersed than the empirical one and again shifted to the left due to the finite

sample bias. Hence, the p-value associated with both the empirical distribution and the simulated

distribution is essentially 0. A researcher would therefore be able to reject the null of FIRE with

a very high degree of confidence.

As already mentioned, this regime-robust test of FIRE is conditional on the assumed DGP,

25Another, less important reason is that the linear projection coefficients are, on average, negative across the
simulations. This is because the linear projection coefficients are a non-linear function of the empirical conditional

sample frequencies f
(h)
11 and f

(h)
22 and the estimated theoretical counterparts p̂

(h)
11 and p̂

(h)
22 that agents use according to

the model to form expectations (e.g. g(f
(h)
11 , f

(h)
22 ) for the linear projection coefficient E

[
γT | {st}T+h

t=1

]
in Proposition

3). So, even though f
(h)
11 and f

(h)
22 are on average equal to p̂

(h)
11 and p̂

(h)
22 because the smoothed probabilities

P̂ r(st | YT ) from which we draw the states in each of the simulations are inferred from p̂
(h)
11 and p̂

(h)
22 , the non-linear

mapping implies that the linear projection coefficients are slightly negative.
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which in the present case is unlikely to be a realistic representation of observed output growth and

output growth expectations. In Section 4, we therefore expand the analysis to the generalized case

of FIRE models with regime shifts, and in Section 5, we estimate a medium-scale DSGE model

with regime shifts that provides a close fit with observed macro aggregates and survey forecast

data and rerun our regime-robust tests conditional on this, more realistic DGP.

4 Generalized Framework

The above results are useful for understanding the nature of forecast error predictability implied

by regime shifts in a simple univariate context. In this section, we show that ex-post predictability

of forecast errors is a generic feature of the FIRE hypothesis in any model with regime shifts that

has a minimum state variable (MSV) solution. Importantly, we also show that forecast errors

can no longer be represented by a univariate equation. Instead, the complexity of the ex-post

forecast errors representation increases with that of the underlying data generating process, which

has several important implications.

4.1 Environment

The MSV solution to any FIRE model with regime shifts can be expressed as

Xt = Cst + AstXt−1 +Bstεt (17)

where Xt is a nx × 1 vector of model variables; εt is a nε × 1 vector of innovations with E(εtε
′
t) =

Σε where Σε is a diagonal matrix and E(εtε
′
t+h) = 0nε×nε for any h 6= 0; and Cst , Ast , and

Bst are conformable matrices that can take on st ∈ {1, 2} different values capturing 2 possible

regime realizations in period t that are governed by Markov transition matrix P . Note that this

formulation allows for regime shifts not only in the dynamics of the different variables but also

in the variables’ trends (e.g., a shift in the inflation target; output growth trend, etc.). A ny × 1

vector of observables Yt is then mapped to the vector of model variables as follows26

Yt = Ψ0 + Ψ1Xt (18)

26Adding a vector of measurement errors in (18) would not change any of the results that follow.
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The system (17)–(18) constitutes the state-space representation of the model.

Proposition 4 provides an expression for the FIRE forecats of Yt+h.

Proposition 4. Given the state-space representation (17)-(18), the rational expectations forecast

of Yt+h conditional on the full information set available at time t (including regime realization st)

is given by

EtYt+h = Mt,t+h +Qt,t+hXt, (19)

where the matrices Mt,t+h and Qt,t+hdepend on the realized regime in period t, the transition matrix

P , forecast horizon h, and matrices Ast , Bst, and Cst.

Proof. See Appendix A.5.

4.2 Relation of forecast errors with current information

From (19), we can derive the following relation of ex-post forecast errors with current realizations

of the different model variables.

Proposition 5. Given state-space representation (17)-(18) and regime sequence {st, st+1, ..., st+h},

ex-post forecast errors under FIRE for any forecasting horizon h ≥ 1 can be expressed as

Yt+h − EtYt+h = Θt,t+h︸ ︷︷ ︸
bias

+ Γt,t+h︸ ︷︷ ︸
predictability

Xt + ξt+h (20)

and

Yt+h − EtYt+h = Ωt,t+h︸ ︷︷ ︸
bias

+ ∆t,t+h︸ ︷︷ ︸
predictability

(EtXt+h − Et−1Xt+h) + Λt−1,t+h︸ ︷︷ ︸
predictability

Xt−1 + ξt+h, (21)

where Θt,t+h, Ωt,t+h, Γt,t+h, and Λt−1,t+h depend on the ex-post realized regime path {st−1, st, st+1, ..., st+h},

the transition matrix P , forecasting horizon h, and matrices Ast , Bst, and Cst; while ξt+h is un-

correlated with Xt, (EtXt+h − Et−1Xt+h), or Xt−1.

Proof. See Appendix A.6.

Proposition 5 contains three important results. First, it confirms that forecast error bias and

ex-post predictability (with respect to current information or ex-ante forecast revisions) are generic

features of the FIRE hypothesis in any model with regime shifts. Corollary 2 explores this result

further by we considering three special cases.
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Corollary 2. Proposition 5 nests the following special cases:

1. Suppose that there are regime shifts only in the vector of constants; i.e., C1 6= C2, but A1 = A2

and B1 = B2. Then, Γt,t+h = ∆t,t+h = Λt−1,t+h = 0ny×nxand Θt,t+h = Ωt,t+h 6= 0ny×1.

2. Now, suppose there are regime shifts only in the relationship between endogenous variables

and innovations; i.e., C1 = C2 and A1 = A2, but B1 6= B2. Then, Γt,t+h = ∆t,t+h =

Λt−1,t+h = 0ny×nx and Θt,t+h = Ωt,t+h = 0ny×1.

3. Finally, suppose there are no regime shifts; i.e., C1 = C2, A1 = A2 and B1 = B2. Then,

Γt,t+h = ∆t,t+h = Λt−1,t+h = 0ny×nxand Θt,t+h = 0ny×1.

Proof. See Appendix A.7.

The corrolary shows that if only the vector of constants is subject to regime shifts or if there are no

regime shifts at all, then ex-post forecast errors will be biased but are not systematically related

to information in Xt. In other words, regime shifts in the dynamic component of FIRE models is

a necessary condition for the results highlighted here.

Second, comparison of Proposition 5 with Propositions 1 and 2 makes clear that the relation

of forecast errors with current information in the generalized framework diffes in two key aspects

from the univariate example. First, ex-post forecast errors in the generalized framework depend

on the entire vector Xt of available information at the time of forecast and not just on the ex-ante

realization of the variable to be forecasted. Second, matrices Γt,t+h and ∆t,t+h relating ex-post

forecast errors to information Xt and ex-ante forecast revisions (EtXt+h − Et−1Xt+h), respectively,

are contingent on the entire sequence of regime realizations between t and forecast horizon t + h,

{st, st+1, ..., st+h}, and not only on the regimes realized in periods t and t+ h.

Third and most importantly, Proposition 5 implies that the reduced-form forecast error regres-

sions considered in the literature will generally be subject to omitted variable bias. To see this,

consider forecast error regressions (1) and (2) for the ith variable in Y ; i.e.

Yi,t+h − FtYi,t+h = θ + γYit + et+h (22)

Yi,t+h − FtYi,t+h = ω + δ(FtYi,t+h − Ft−1Yi,t+h) + et+h (23)

Since Γt,t+h and ∆t,t+h are generally non-diagonal matrices, Yit and (FtYi,t+h−Ft−1Yi,t+h) will not

span all the information in Xt, respectively in (EtXt+h −Et−1Xt+h) and Xt−1, that fully-informed

rational agents use to forecast Yi,t+h. Consequently, Yit and (FtYi,t+h−Ft−1Yi,t+h) will be correlated

with et+h, and the OLS estimates of γ and δ do not have a structural interpretation that would

be informative about the expectations formation process or the model more generally.

This omitted variable bias result provides a potential explanation for the instability of reduced-

form regression estimates with respect to different regressors documented in the literature. More-

over, since omitted variable bias changes with the sequence of regime realizations, it may amplify
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waves of over- and under-reaction across rolling window samples. Finally, since ∆t,t+h 6= Γt,t+h,

the expected signs of the OLS estimate of γ and δ may differ from each other. This outcome is an-

other distinguishing feature of the generalized framework over the univariate example in Section 3

where by construction, FIRE implied that the OLS estimates of γ and δ shared the same expected

sign. In other words, a sufficiently rich FIRE model with regime shifts may, depending on the

sequence of regime realizations, generate simultaneously negative OLS estimates of γ and positive

OLS estimates of δ, as Coibion and Gorodnichenko (2015), Bordalo et al. (2020), Angeletos et al.

(2020), Kohlhas and Walther (2021) and others have found in their regressions.

5 Application with a medium-scale New Keynesian model

Given the theoretical results of the previous section, we assess the extent to which a FIRE model

with regime shifts that fits macroeconomic dynamics reasonably well is quantitatively consistent

with the reduced-form evidence on the predictability of forecast errors discussed in Section 2. The

FIRE model we consider is a medium-scale New Keynesian model augmented with Markov regime

shifts in the monetary policy interest rate rule. We estimate the model with U.S. macroeconomic

aggregates using Bayesian likelihood-based techniques and then simulate smoothed series of the

macroeconomic aggregates and forecasts under FIRE from the estimated sequence of regime real-

izations. Finally, we run forecast error regressions on the simulated data and compare the estimated

OLS coefficients to their empirical counterparts from the regressions on actual SPF data.

5.1 Model

The model structure follows Christiano et al. (2005), Smets and Wouters (2007), and Justiniano

et al. (2011) except that the monetary policy interest rate rule allows for exogenous regime shifts

as proposed by Bianchi (2013). In particular, monetary policy is described by

Rt = φrstRt−1 + (1− φrst)
(
φ∆y
st ∆yt + φπstπt

)
+ vt, (24)

where Rt denotes the federal funds rate; ∆yt real output growth; πt inflation (all in deviations

from their long-run average values); and vt is an exogenous monetary policy shock. The response

of the interest rate to last period’s interest rate, current inflation, and current output growth is

subject to regime shifts that are governed by an exogenous two-state Markov process st ∈ {1, 2}
with transition matrix

P =

[
p11 p12

p21 p22

]
, (25)

whose elements pst−1st = Pr(st | st−1) for any st, st−1 ∈ {1, 2} are estimated together with the

other parameters of the model.
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The rest of the model is as in Smets and Wouters (2007). The economy is populated by a

representative household, labor unions, intermediate firms, a final goods producer, and a mone-

tary policy authority. Households maximize a nonseparable utility function in goods consumption

and labor effort, subject to external habit. Households can save via one-period nominal bonds or

investment in physcial capital subject to convex adjustment cost. Capital is rented to intermedi-

ate firms on a period-by-period basis at a rate that reflects a convex cost of time-varying capital

utilization. Household members provide labor to unions that transform labor services into differen-

tiated types and supply them to firms at nominal wages that are subject to Calvo-type infrequent

reoptimization. Intermediate firms, in turn, produce differentiated goods with labor and capital

and supply the goods to final producers at nominal prices that are subject to Calvo-type infre-

quent reoptimization. Non-reoptimized nominal wages and prices are partially indexed to lagged

inflation. Aside from the monetary policy shock, the economy is subject to exogenous shocks to

the household discount factor, government spending, total factor productivity, investment-specific

technology, and wage and price markups.

To save on space, we refer the reader to Smets and Wouters (2007) for further details on the

model and provide a list of log-linearized equilibrium equations in Appendix C.

5.2 Model solution and estimation

We solve the model under FIRE using the RISE Matlab toolbox developed by Maih (2015). The

regime-dependent MSV solution is given by

Xt = AstXt−1 +Bstεt (26)

We then map a vector of observable variables, Yt, with the endogenous variables vector Xt,

Yt = Ψ0 + Ψ1Xt (27)

where Yt contains data on output growth, consumption growth, investment growth, real wage

growth, labor hours, inflation, and the federal funds rate.27 Vector Ψ0 is given by

Ψ0 =
[
∆̄y ∆̄c ∆̄i ∆̄w l̄ π̄ r̄

]′
(28)

where ∆̄y, ∆̄c, ∆̄i, ∆̄w denote the average trend growth rates of output, consumption, investment

and wages, respectively; l̄ is steady state hours worked; π̄ is steady state inflation; and r̄ is the

steady state federal funds rate.

We estimate the model with Bayesian likelihood-based techniques using annual historical data

27We do not adjust the growth rates of output, consumption and investment by population growth. Otherwise,
we would have to make assumptions about the evolution of the population growth within the model since the SPF
provides forecasts about output growth, not output growth per capita.
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Table 2: Posterior mode estimates of monetary policy rule

φrst φ∆y
st φπst P (1, st) P (2, st)

st = 1 0.76 0.26 2.01 0.986 0.014

st = 2 0.75 0.38 1.10 0.047 0.953

Notes: The table shows Bayesian posterior modes for the monetary policy regime parameters in (24) and the Markov transition
probabilities in (25). See Appendix D for details.

at a quarterly frequency from 1964:3 to 2020:1. .28Bayesian priors for the different model parame-

ters are as in Smets and Wouters. Priors for the monetary policy and regime transition parameters

are taken from Bianchi (2013).

Table 2 reports the estimated posterior modes for the monetary policy parameters in each of

the two regimes as well as the regime transition probabilities. Tables ?? and ?? in Appendix D

report the prior and posterior distributions for all other estimated parameters.

Consistent with Bianchi (2013), we find that one monetary policy regime is more active (regime

1) in the sense that the Fed is estimated respond aggressively to inflation whereas the other regime

is more passive (regime 2). In either regimes, the response to output growth is small, and both

regimes are highly persistent.

5.3 Regime-shift robust test of FIRE

In this subsection, we apply our regime-shift robust test of FIRE to the DGP implied by the model

above, whose state-space representation is given by:

Yt = Ψ0 + Ψ1Xt

XT = AstXt−1 +Bstεt

We set the parameters of the model to the estimated posterior mode.29 Relying on the state-

space representation above, we simulate i = 1, ..., N = 10, 000 artificial samples of output growth

and inflation observations and annual forecasts. We account for regime uncertainty by drawing

regimes {sit}
T+h
t=1 for each sample i from the smoothed probabilities P̂ r(st | YT ) implied by the

estimated DGP and the observed data YT , as exhibited in Figure 6. 30 31

28For the estimation, we make again use of the RISE toolbox by Maih (2015).
29See the Appendix D for an exhibit of the model’s estimated posterior mode and standard deviation.
30For each simulation, we generate a path of regimes {s1, s2, ..., sT }. Based on this path, we compute the

frequency of (st+1 = j, st = j) events together with the frequency of st+1 = j for any j ∈ {1, 2}.We then compute

the simulation-specific elements of the transition matrix P i(j, j) =
∑T−1
τ=1 1(st+1=j,st=j)∑T−1

τ=1 1(st+1=j)
.

31Consistent with the narrative of U.S. monetary policy history and in line with the estimates in Bianchi (2013),
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Figure 6: Evolution of smoothed regime probabilities

For each sample, we estimate γ̂iT and δ̂iT . From these distributions, we then compute the prob-

ability that the simulated γ̂iT , respectively δ̂iT , are larger than the γ̂T , respectively δ̂T , estimated in

the actual SPF data from 1970:2 to 2020:1. This provides a p−value for a t-test of the null of FIRE

conditional on the assumed DGP. As mentioned earlier, the simulation naturally provides us with

the finite sample distribution of regression coefficient γ̂T . Hence, we do not need to bias-correct

the estimates and we can compute robust standard errors directly from this distribution.

Table 3 reports the p-values of the null hypothesis that the coefficients are zero for regressions of

annual forecast errors of inflation and output growth on current realizations and forecast revisions

of both variables. Panel A shows that for the full sample 1970:2-2019:1 (respectively, subsample

1983:2019:1) the two-sided p-value that γ̂T = E[γ̂T ] is 0.43 (respectively, 0.21) for inflation and

0.37 (respectively, 0.82) for output growth, in both cases higher than 10 As a consequence, the

FIRE null hypothesis cannot be rejected based on the regression in Panel A. Turning to Panel

B, for the full sample 1970:2-2019:1, the two-sided p-value that δ̂T = E[δ̂T ] is essentially 0 for

both inflation and output growth yielding rejection of FIRE. However, looking at the post-1970s

period, the p-value for inflation increases to 0.13, whereas the one for output growth to 0.10. In this

sample, therefore, one cannot reject FIRE for inflation and output growth with high significance.

We note that the results in Table 3 depend importantly on the assumed DGP. For example, in a

model with added uncertainty in the form of regime shifts in the volatility of shocks, one might

monetary policy is in the passive regime during the 1970s and then turns active in the early 1980s during the Volcker
years. Active monetary policy continues from the 1980s through the end of our sample, although the probability of
a passive regime increases around the Great Recession periods.
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anticipate higher variance of the null distribution, increasing thus p-values.

Table 3: FIRE hypothesis test for U.S. inflation and output growth

Panel A: yt+4 − Ftyt+4 = θ + γyt + et+4

p-value
γ̂T E[γ̂T ] σγ̂T H0 : γ̂T = E[γ̂T ]

Full sample 1970:2-2019:1

Inflation 0.049 −0.022 0.090 0.43

Output growth −0.105 −0.008 0.107 0.37

Post-1970s subsample 1983:1-2019:1

Inflation −0.169 −0.041 0.105 0.21

Output growth −0.049 −0.020 0.123 0.82

Panel B: yt+4 − Ftyt+4 = ω + δ(Ftyt+4 − Ft−1yt+4) + et+4

p-value

δ̂T E[δ̂T ] σδ̂T H0 : δ̂T = E[δ̂T ]

Full sample 1970:2-2019:1

Inflation 1.010 −0.063 0.125 0.00

Output growth 0.717 −0.059 0.298 0.01

Post-1970s subsample 1983:1-2019:1

Inflation 0.111 −0.089 0.133 0.13

Output growth 0.507 −0.068 0.345 0.10

Notes: The table reports OLS coefficient estimates, γ̂T and δ̂T ; standard errors implied from the FIRE hypothesis; σγ̂T and σδ̂T
; mean

of the ditribution of the FIRE null hypothesis, E[γ̂T ] and E[δ̂T ]; and p-values of the null hypothesis that the coefficients are zero for
regressions of annual ex-post forecast errors of U.S. inflation and U.S. output growth on current realizations and forecast revisions of
the two variables; i.e. yt+4 − Ftyt+4 = θ+ γyt + et+4 and yt+3 − Ftyt+4 = ω+ δ(Ftyt+4 − Ft−1yt+4) + et+4, where yt denotes annual
inflation, respectively annual output growth.

These results in Table 3 show that whether the FIRE null hypothesis is rejected depends, among

other things, on the sample size of interest. To investigate this further, we compute the p-values

that γ̂T = E[γ̂T ] and δ̂T = E[δ̂T ], as the sample size shrinks such that the end period is fixed to

2019:1 but the starting period is increasing.32 Figure 7 shows the evolution of such p-values for

inflation and output growth. From the top panels of the figure, it is clear that FIRE cannot be

rejected based on regression (1) regardless of the sample size and variable. On the other hand,

32For instance, the p-value in period 1975 is associated with sample 1975:1-2019:1. We do not exceed year 2009
as the starting period.
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the bottom panels show that whether FIRE is rejected based on regression (2) depends crucially

on the sample and variable of interest. The p-value that δ̂T = E[δ̂T ] increases and remains above

10% for output growth after the 1970s. We find a similar pattern for inflation in panel (c), but

the p-value begins to decline below the significance threshold of 10% in the 1990s to revert back

to high levels afterwards.

Figure 7: Evolution of p-values

Notes: The plots show p-values that γ̂t = E(γ̂t) and δ̂t = E(δ̂t) for inflation and output growth as the sample size shrinks, such that
the final period is fixed to 2019:1 but the starting period is increasing by 1 quarter. The estimates are centered at the starting period
of the sample (e.g. 1980 denotes the p-value associated with sample 1980:1 to 2019:1). The dashed red line indicates the 10% p-value
threshold, above which we cannot reject the null of FIRE.

Finally, we apply the same regime-robust FIRE test to the 40-quarter rolling window estimates

of γ̂t and δ̂t. Figure 8 plots the SPF estimates adjusted by the mean of the FIRE null distribution,

that is, (γ̂t−E[γ̂t]) in panels (a) and (b), and (δ̂t−E[δ̂t]) in panels (c) and (d). The confidence inter-

vals for every rolling window are constructed by
[
(γ̂t − E[γ̂t])− zσγ̂t (γ̂t − E[γ̂t]) + zσγ̂t

]
, where

z denotes the z-score associated with a certain confidence level. Therefore, for a particular rolling

window sample, we reject FIRE if the whole confidence interval falls in a strictly positive/negative

region.

For the regression in (1), we cannot generally reject the null hypothesis of FIRE for neither

output growth nor inflation, that is the waves of forecasters’ over- and under-reacting to current

realizations are not inconsistent with FIRE. Regarding regression (2), we find that we cannot

generally reject FIRE for output growth. However, FIRE seems to be generally rejected for inflation

forecast’ over- and under-reaction to new information.

In ongoing work, we are exploring several avenues to improve the fit in regression estimates.
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Figure 8: FIRE test for waves of over- and under-reaction in SPF data

Notes: The plots show 40-quarter rolling regression coefficient estimates (blue) of γ̂t and δ̂t in regressions (1) and (2) adjusted by the

mean of the FIRE null distribution, that is, E[γ̂t] and E[δ̂t]. We shade in red the 90%, 95%, and 99% confidence intervals. The brightness
of the red color increases with the level of confidence. See main text for more details on the construction of confidence intervals. The
estimates are centered at the midpoint of the rolling regression window (e.g. 1980 denotes the regression window 1975:1 to 1984:4).

First, the data used to estimate the model and simulate the regression time series is based on his-

torical, revised time series whereas the regressions on actual data are based on real-time, unrevised

time series. Second and as already mentioned, we estimate the model using realized macroeco-

nomic data only and do not rely on any information from forecasting data. Third, the model

can be augmented with a richer set of regime shifts, in particular allowing for regime shifts that

directly affect the growth and volatility of real output, and shifts in average inflation.

6 Concluding remarks

The present paper shows that regime shifts in FIRE models lead to predictable, regime-dependent

ex-post forecast errors. In general, in the presence of regime shifts, forecast errors become a

complicated function of the current state of the economy and the sequence of realized regimes over

the entire forecast horizon. This further implies that forecast errors will exhibit waves of over- and

under-reaction to current information in rolling sample windows. Using survey-based forecast data

of inflation and output growth constructed from the SPF, we confirm the existence of such waves.

We develop a regime-robust test of the FIRE hypothesis, and show that whether one rejects We

then estimate a medium-scale DSGE model with regime shifts in the aggressiveness of monetary
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policy on U.S. data to assess the quantitative importance of the proposed mechanism. Despite the

assumption of FIRE, simulated data conditional on the estimated sequence of regime realizations

generates ex-post forecast error predictability consistent with reduced-form regressions from the

existing literature and large waves of over- and under-reaction across subsamples.

The key take-away from our paper is that predictability of forecast errors is not a sufficient

condition to reject the FIRE hypothesis. This should be taken as neither an endorsement of FIRE

nor a dismissal of alternative theories of expectations formation. Indeed, there is much empirical

evidence that even relatively sophisticated market participants are subject to imperfect informa-

tion and make decisions that are hard to square with the assumption of rational expectations.

Instead, the main lesson in our view is that different expectations formation processes should be

tested and evaluated within equilibrium models that incorporate plausible regime shifts. Another

fruitful approach to discriminate between alternative theories of expectations formation is to ex-

ploit differences in forecasts about aggregate variables across individual agents – something that

by definition should not occur under FIRE.
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Appendix

A Proofs

A.1 Proof of Proposition 1

Consider forecasting errors,

= yt+h − Etyt+h

= ast+hφ
hxt − P (h)

st: aφ
hxt + ast+h

h∑
τ=1

φh−τεt+τ

=
(
ast+h − P (h)

st: a
)
φhxt + ast+h

h∑
τ=1

φh−τεt+τ

= (ast+h − p
(h)
st,1a1 − p(h)

st,2a2)φhxt + ast+h

h∑
τ=1

φh−τεt+τ

=


(

(1− p(h)
st,1a1 − p(h)

st,2a2

)
φhxt + a1

∑h
τ=1 φ

h−τεt+τ if st+h = 1

−p(h)
st,1(a1 − a2)φhxt + a2

∑h
τ=1 φ

h−τεt+τ if st+h = 2

(A.1)

where the last equality follows from p
(h)
st,1 + p

(h)
st,2 = 1. We show this through proof by induction.

Clearly, P1(st, 1)+P1(st, 2) = 1 for any st ∈ {1, 2}. Suppose that p
(h)
st,1 +p

(h)
st,2 = 1. We should prove

that p
(h+1)
st,1 + p

(h+1)
st,2 = 1. We have that

P (h+1) = PP (h) =

[
p11p

(h)
11 + p12p

(h)
21 p11p

(h)
12 + p12p

(h)
22

p21p
(h)
11 + p22p

(h)
21 p21p

(h)
12 + p22p

(h)
22

]
(A.2)

Then, p11p
(h)
11 + p12p

(h)
21 + p11p

(h)
12 + p12p

(h)
22 = p11 + p12 = 1 and p21p

(h)
11 + p22p

(h)
21 + p21p

(h)
12 + p22p

(h)
22 =

p21 +p22 = 1. Note that p
(h)
st,1 = 1−p(h)

st,2, i.e., p
(h)
st,1 = 1−p(h)

st,st+h for st+h = 2, and xt = yt
ast

, therefore,

FEt,t+h =
(−1)st+h−1(1− p(h)

st,st+h)(a1 − a2)φh

ast
xt + ast+h

h∑
τ=1

φh−τεt+τ (A.3)
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A.2 Proof of Corollary 1

Consider

ast+h − P (h)
st: a =

(1− p(h)
st,1)(a1 − a2) if st+h = 1

−(1− p(h)
st,2)(a1 − a2) if st+h = 2

One can show via proof by induction that for 0 < p11, p22 < 1, it follows that 0 < p
(h)
st,st+h < 1 for

any st, st+h ∈ {1, 2}. Clearly, 1− pst,st+h > 0 for any st ∈ {1, 2}. Suppose that 1− p(h)
st,st+h > 0; we

should prove that 1− p(h+1)
st,st+h > 0. Consider

P (h+1) = PP (h) =

[
p11p

(h)
11 + p12p

(h)
21 p11p

(h)
12 + p12p

(h)
22

p21p
(h)
11 + p22p

(h)
21 p21p

(h)
12 + p22p

(h)
22

]
(A.4)

Then,

1−p11p
(h)
11 −p12p

(h)
21 = 1−p11(p

(h)
11 −p

(h)
21 )−p(h)

21 = p
(h)
22 −p11(p

(h)
11 +p

(h)
22 −1) = p

(h)
22 (1−p11)+p11(1−p(h)

11 ) > 0

1− p11p
(h)
12 − p12p

(h)
22 = 1− p11(1− p(h)

11 − p
(h)
22 )− p(h)

22 = p
(h)
21 (1− p11) + p11p

(h)
11 > 0

1− p21p
(h)
11 − p22p

(h)
21 = 1− p21(p

(h)
11 − 1 + p

(h)
22 )− p(h)

21 = p
(h)
22 p22 + p21(1− p(h)

11 ) > 0

1− p21p
(h)
12 − p22p

(h)
22 = 1− p21(p

(h)
12 − 1 + p

(h)
21 )− p(h)

22 = p
(h)
21 p11 + p12p

(h)
11 > 0

Hence,

sign(ast+h − P (h)
st: a) =

sign(a1 − a2) if st+h = 1

−sign(a1 − a2) if st+h = 2

A.3 Proof of Proposition 2

Forecast revisions can be expressed as

Etyt+h − Et−1yt+h = φh
P

(h)
st: a

ast
yt − φh+1P

(h+1)
st−1: a

ast−1

yt−1. (A.5)

To obtain (14), we isolate yt from (A.5), and substitute for it into (12).

A.4 Proof of Proposition 3

Ignoring the small sample bias, the OLS estimate of γ over a finite sample of size T , under the

FIRE assumption, is given by
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E[γ|{st}T+h
t=1 ] =

E[(yt+h − Etyt+h)yt|stT+h
t=1 ]

E[y2
t |stTt=1]

=

∑2
j=1

∑2
i=1 a

2
i γ

(h)
ij F

(h)
T (i, j)∑2

i=1 a
2
iF

(h)
T (i)

(A.6)

To derive the moments of interest over the finite sample, we first define the following finite

sample transition probabilities:

f
(h)
ji =

∑T
t=1 1(st = i, st+h = j)∑T

t=1 1(st+h = j)
=
F (h)
T (i, j)

F (h)
T (j)

where
∑2

i=1 f
(h)
ji = 1. Moreover, one can show that

F (h)
T (j) =

1

T

T∑
t=1

1(st+h = j) ≈


1−f (h)22

2−f (h)11 −f
(h)
22

if j = 1

1−f (h)11

2−f (h)11 −f
(h)
22

if j = 2

Then, F (h)
T (i, j) = f

(h)
ji F

(h)
T (j) and F (h)

T (j) depends on f
(h)
11 and f

(h)
22 only. Substituting for γ

(h)
ij ,

F (h)
T (i, j), and F (h)

T (j) in the formula for γ̂T above, we have

γ̂T =
φh(a1 − a2)

a2
1(1− f (h)

22 ) + a2
2(1− f (h)

11 )︸ ︷︷ ︸
(+)

[a1(1− f (h)
22 )(f

(h)
11 − p

(h)
11 )− a2(1− f (h)

11 )(f
(h)
22 − p

(h)
22 )]︸ ︷︷ ︸

g(f
(h)
11 ,f

(h)
22 )

(A.7)

Clearly, the sign of E[γ|{st}T+h
t=1 ] depends on the sign of g(f

(h)
11 , f

(h)
22 ). The frontier in the (f

(h)
11 , f

(h)
22 )

plane for which is given by

f
(h)
11 = g(f

(h)
22 ) =

a1p
(h)
11 (1− f (h)

22 )− a2(p
(h)
22 − f

(h)
22 )

a1(1− f (h)
22 )− a2(p

(h)
22 − f

(h)
22 )

where a1(1−f (h)
22 ) > a2(p

(h)
22 −f

(h)
22 ) for any 0 ≤ f

(h)
22 ≤ 1, given that a1 > a2. Moreover, g(p

(h)
22 ) = p

(h)
11

and g(1) = 1. Then, E[γ|{st}T+h
t=1 ] Q 0 ⇐⇒ f

(h)
11 Q g(f

(h)
22 ).

A.5 Proof of Proposition 4

Note that EtYt+h = Ψ0 + Ψ1EtXt+h. Full-information rational expectations about Xt+hare given

by:
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EtXt+h = Et (Ct+h + At+hXt+h−1 +Bt+hεt+h)

= Et

(
Ct+h +

h−1∑
τ=1

(
τ∏
l=0

At+h−τ

)
Ct+h−τ +

h−1∏
τ=0

At+h−τXt

)

We will show through a proof by induction that

EtXt+h =

([
C1 C2

]
(P ′)h +

[
A1 A2

]
(P ′ ⊗ Inx)

h−1∑
τ=1

(
Ã(P ′ ⊗ Inx)

)τ−1

C̃(P ′)h−τ

)
I:st

+
[
A1 A2

]
(P ′ ⊗ Inx)

(
Ã(P ′ ⊗ Inx)

)h−1

ῑstXt

where C̃ =

[
C1 0nx×1

0nx×1 C2

]
, Ã =

[
A1 0nx×nx

0nx×nx A2

]
, ῑst is a 2nx × nx size matrix whose stht block

of nx rows together with the columns form an identity matrix and the rest of elements are 0,and

I:st is the stht column of a 2× 2 identity matrix.

One can check that the expression above holds for h ∈ 1, 2. Suppose it also holds for h = h̄;does

it also apply for h = h̄+ 1?

EtXt+h̄+1 = Et (Ct+h̄+1 + At+h̄+1Xt+h̄) = Et [Et+1 (Ct+h̄+1 + At+h̄+1Xt+h̄)]

= Et

([
C1 C2

]
(P ′)h̄ +

[
A1 A2

]
(P ′ ⊗ Inx)

h̄−1∑
τ=1

(
Ã(P ′ ⊗ Inx)

)τ−1

C̃(P ′)h̄−τ

)
I:st+1

+ Et
([
A1 A2

]
(P ′ ⊗ Inx)

(
Ã(P ′ ⊗ Inx)

)h̄−1

ῑst+1Xt+1

)
=

([
C1 C2

]
(P ′)h̄ +

[
A1 A2

]
(P ′ ⊗ Inx)

h̄−1∑
τ=1

(
Ã(P ′ ⊗ Inx)

)τ−1

C̃(P ′)h̄−τ

)
EtI:st+1

+
[
A1 A2

]
(P ′ ⊗ Inx)

(
Ã(P ′ ⊗ Inx)

)h̄−1

Et
(
ῑst+1At+1Xt + ῑst+1Ct+1

)
=

[
C1 C2

]
(P ′)h̄+1I:st +

[
A1 A2

]
(P ′ ⊗ Inx)

h̄∑
τ=1

(
Ã(P ′ ⊗ Inx)

)τ−1

C̃(P ′)h̄+1−τI:st︸ ︷︷ ︸
constant

+
[
A1 A2

]
(P ′ ⊗ Inx)

(
Ã(P ′ ⊗ Inx)

)h̄
ῑst︸ ︷︷ ︸

response to info at time t

Xt
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where the equality in the 7 row follows from EtI:st+1 = P ′I:st . Therefore,

Mt,t+h = Ψ1

[
C1 C2

]
(P ′)hI:st + Ψ1

[
A1 A2

]
(P ′⊗ Inx)

h−1∑
τ=1

(
Ã(P ′ ⊗ Inx)

)τ−1

C̃(P ′)h−τI:st (A.8)

Qt,t+h = Ψ1

[
A1 A2

]
(P ′ ⊗ Inx)

(
Ã(P ′ ⊗ Inx)

)h−1

ῑst (A.9)

Finally, we note that Mt,t+1 = Ψ1

[
C1 C2

]
P ′I:st .

A.6 Proof of Proposition 5

Consider the ex-post forecasting error about vector Y , h periods ahead, where h ≥ 1.

FEt,t+h = Yt+h − EtYt+h

= Ψ1

(
Cst+h + Ast+hXt+h−1 +Bt+hεt+h

)
−Mt,t+h −Qt,t+hXt

= Ψ1Cst+h + Ψ1Ast+h
(
Cst+h−1

+ As+h−1Xt+h−1 +Bst+h−1
εt+h−1

)
+ Ψ1Bst+hεt+h −Mt,t+h −Qt,t+hXt

= ...

= Ψ1

(
Cst+h +

h−1∑
τ=1

(
τ∏
l=0

Ast+h−l

)
Cst+h−τ

)
−Mt,t+h︸ ︷︷ ︸

Θt,t+h=bias

+

(
Ψ1

h∏
τ=1

Ast+τ −Qt,t+h

)
︸ ︷︷ ︸

Γt,t+h=ex-post predictability

Xt + errort+h

(A.10)

where errort+h = Ψ1

∑h−1
τ=1(

∏τ
l=0 Ast+h−l)Bst+h−τ εt+h−τ + Ψ1Bst+hεt+h. We know turn to expressing

ex-post forecast errors as a function of ex-ante forecast revisions. The FIRE forecasts about the

endogenous variables vector Xt+h in periods t and (t− 1) are given by, respectively,

EtXt+h = Mt,t+h +Qt,t+hXt (A.11)

Et−1Xt+h = Mt−1,t+h +Qt−1,t+hXt−1 (A.12)

Hence, the ex-ante forecast revision about Xt+h is

FRt,t+h = EtXt+h − Et−1Xt+h = Mt,t+h −Mt−1,t+h +Qt,t+hXt −Qt−1,t+hXt−1 (A.13)

From (A.13), Xt = Q−1
t (EtXt+h − Et−1Xt+h) + Q−1

t Qt−1Xt−1. Substituting for Xt into (12), we

can rewrite ex-post forecast errors as a function of ex-ante forecast revisions.

Let qij, q̃ij, and mijdenote the element located in row i and column j in matrices Qt,t+h,
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Q̃t−1,t+h, and (Mt,t+h −Mt−1,t+h) ,respectively. Then, the ex-ante forecast revision of any variable

Xi in X can be written as:

FRi,t,t+h= EtXi,t+h − Et−1Xi,t+h =
nx∑
j=1

mij +
nx∑
j=1

qijXj,t −
nx∑
j=1

q̃ijXj,t−1 (A.14)

Any variable Xktin Xt can be written as a function of the ex-ante forecast revision about variable

Xi,t+h, where i is chosen such that qik 6= 0, as well as X−kt, Xt−1, and a constant:

Xkt =
FRi,t,t+h −

∑
j 6=k qijXjt +

∑
j q̃ijXj,t−1 −

∑
jmij

qik
(A.15)

=
[
0 0 ... 1

qik
... 0 0

]
︸ ︷︷ ︸

Q−k:

FRt,t+h −
[
qi1
qik

...
qi,k−1

qik
0

qi,k+1

qik
... qinx

qik

]
︸ ︷︷ ︸

QQk:

Xt +
[
q̃i1
qik

... q̃inx
qik

]
︸ ︷︷ ︸

Q̃Qk:

Xt−1

−
[
mi1
qik

... minx
qik

]
︸ ︷︷ ︸

MQk:

1 (A.16)

where 1denotes a vector of size nx × 1 whose every entry equals 1. It follows then, that vector

Xtcan be written as a function of ex-ante forecast revisions as follows:33

Xt = Q−FRt,t+h−QQXt+Q̃QXt−1−MQ1 => Xt = (Inx+QQ)−1(Q−FRt,t+h+Q̃QXt−1−MQ1)

Yt+h − EtYt+h = Θt,t+h − Γt,t+h(Inx +QQ)−1MQ1︸ ︷︷ ︸
=Ωt,t+h

+ Γt,t+h(Inx +QQ)−1Q−︸ ︷︷ ︸
=∆t,t+h

FRt,t+h(A.17)

+ Γt,t+h(Inx +QQ)−1Q̃Q︸ ︷︷ ︸
=Λt−1,t+h

Xt−1 + errort+h (A.18)

A.7 Proof of Corollary 2

1. Consider the case when C1 6= C2, while A1 = A2 = A and B1 = B2 = B. Note that, for

A1 = A2 = A,the following is true:

Qt,t+h = Ψ1

[
A A

]
(P ′ ⊗ Inx)

(
Ã(P ′ ⊗ Inx)

)h−1

ῑst = Ψ1A
h (A.19)

33Note that ifQt,t+his invertable, then Xt = Q−1
t,t+h (FRt,t+h +Qt−1,t+hXt−1 − (Mt,t+h −Mt−1,t+h)). The

derivation above is more generic and not constrained by the invertability or lack thereof of Qt,t+h.
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Therefore, Γt,t+h = Ψ1(Ah − Ah) = 0ny×nx , and, given that B1 = B2 = B, we have that

errort+h = Ψ1

∑h−1
τ=0 A

τBεt+h−τ . Furthermore,

Mt,t+h = Ψ1

h−1∑
τ=0

Aτ C̃(P ′)h−τI:st 6= 0ny×1 (A.20)

In this case, Θt,t+h = Ψ1

∑h−1
τ=0 A

τ (Cst+h−τ − C̃(P ′)h−τI:st) 6= 0ny×1,therefore, ex-post forecast

errors will be biased, but they will not respond to information embedded in Xt.

2. Now, suppose that C1 = C2 = C and A1 = A2 = A, while B1 6= B2. Note that, given that

C1 = C2 = C,the following is true:

Mt,t+h = Ψ1

h−1∑
τ=0

AτC (A.21)

So, Θt,t+h = 0ny×nx , implying that ex-post forecast error are not biased. Furthermore,

A1 = A2 = A implies that Γt,t+h = 0ny×nx . For B1 6= B2, the error term is as defined in

Section A.6. Consequently, when the regime shifts affect only the relationship between the

endogenous variables and innovations, ex-forecast errors are just accumulated noise, similar

to the case of no regime shifts discussed below.

3. Finally, shutting down all regime shifts in the model implies that Θt,t+h = 0ny×1, Γt,t+h =

0ny×nx , and errort+h = Ω
∑h−1

τ=0 A
τBεt+h−τ . Hence, in this case, forecast errors are accumu-

lated noise similar to the second case.
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B Univariate model

Table 4 shows the assumed prior distributions for the univariate model. Figure 9 plots the evolution

of the smoothed probability for the least volatile regime together with the evolution of the annual

real-time output growth rate: the probability of the least volatile regime is close to 0 during the

1970s and it increases after the 1980s when output growth exhibits significantly more mitigated

fluctuations.

Table 4: Priors

Prior

parameter 5% 95% pdf
a1 0.1 5 U
a2 0.1 5 U
φ 0.2 0.8 B
σ 0.01 2 IG

P (1, 2) 0.01 0.05 B
P (2, 1) 0.01 0.05 B

Figure 9: Evolution of smoothed regime probabilities
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C Medium-scale model

In this section, we briefly describe the medium-scale model which largely extracts from Smets and

Wouters (2007), and refer the reader to their paper for details on the model’s muicrofoundations.

The aggregate resource constraint is given by

yt = cyct + iyit + zyzt + egt (C.1)

where yt is output, ct consumption, zt capital utilization rate, egt exogenous government spending

such that egt = ρge
g
t−1 + εgt + ρgaε

a
t , with εjt ∼ N (0, σ2

j ) for any j ∈ {g, a}. The parameter

cy = 1 − gy − iy, with gy being the share of exogenous government spending to output, whereas

iy = (γ − 1 + δ)ky where γ is the steady-state growth rate, δ capital depreciation rate, ky the

steady-state capital to output ratio. Moreover, zy = r∗kky, where r∗k is the steady-state rental rate

of capital. The consumption Euler equation is described by

ct = c1ct−1 + (1− c1)Etct+1 + c2(Lt − EtLt+1)− c3(rt − Etπt+1) + ebt (C.2)

where Lt is supplied labor hours, ebt such that ebt = ρbe
b
t−1 + εbt with εbt ∼ N (0, σ2

b ). Parameter c1 =

(λ/γ)(1 +λ/γ), where λ denotes external consumption habit and σc the elasticity of intertemporal

substitution. Moreover, c2 = (σc−1)(w∗L∗/C∗)/(σc(1+λ/γ)) with w∗L∗/C∗ being the steady-state

labor income share; and c3 = (1 − λ/γ)/(σc(1 + λ/γ)). The equilibrium equation for investment,

it, is

it = i1it−1 + (1− i1)Etit+1 + i2qt + eit (C.3)

where qt denotes the capital price, eit such that eit = ρie
i
t−1 + εit with εit ∼ N (0, σ2

i ). Parameter

i1 = (1 + βγ1−σc)−1, where β is the discount factor of households; i2 = ((γ2ϕ)(1 + βγ1−σc))
−1

,

with ϕ being the steady-state elasticity of the capital adjustment cost function. The equation for

capital price is

qt = q1Etit+1 + (1− q1)Etrkt+1 − (rt − Etπt+1) + q2e
b
t (C.4)

where rt is the nominal interest rate, rkt the rental rate of capital; q1 = βγ−σc(1 − δ) and q2 =

σc(λ+ γ)/(γ − λ). The aggregate production function is

yt = φp(αk
s
t + (1− α)Lt + eat ) (C.5)
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where eat is the TFP such that eat = ρae
a
t−1 + εat with εat ∼ N (0, σ2

a), α is the share of capital in

production, and φp is the share of fixed costs in production plus unity.

kst = kt−1 + zt (C.6)

where kst denotes current capital used in production.

zt = z1r
k
t (C.7)

where z1 = (1− ψ)/ψ with ψ being a (positive) function of the elasticity of the capital utilization

adjustment cost function. The equation for capital accumulation is described by

kt = k1kt−1 + (1− k1)it + k2e
i
t (C.8)

where eit is a shock to the investment-specific technology process such that eit = ρie
i
t−1 + εit,

εit ∼ N (0, σ2
i ); k1 = (1 − δ)/γ; k2 = γ2ϕ(1 − k1)(1 + βγ1−σc). The equilibrium equation for the

price mark-up follows

µpt = α(kst − Lt) + eat − wt (C.9)

The Phillips equation is described by

πt = π1πt−1 + π2Etπt+1 − π3µ
p
t + ept (C.10)

where ept is a price mark-up disturbance assumed to follow an ARMA(1,1) process, ept = ρpe
p
t−1 +

εpt − µpε
p
t−1. Furthermore, π1 = ιp/(1 + βιpγ

1−σc), with ιp is the degree of indexation to past

inflation; π2 = βπ1γ
1−σc/ιp; π3 = π1(1− ζp)(1− βζpγ1−σc)/(ιpζp(1 + ξp(φp − 1))). The rental rate

of capital is given by

rkt = Lt − kt + wt (C.11)

The equation for the wage mark-up is

µwt = wt − σLLt −
γct − λct−1

γ − λ
(C.12)

Real wages adjust according to

wt = w1wt−1 + (1− w1)(Etwt+1 + Etπt+1)− w2πt + w3πt−1 − w4µ
w
t + ewt (C.13)
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where ewt is a disturbance to the wage price mark-up, such that ewt = ρwe
w
t−1 + εwt − µwε

w
t−1.

Moreever, w1 = 1/(1 +βγ1−σc); w2 = w1(1 +βιwγ
1−σc) with ιw being wage indexation; w3 = w1ιw;

w4 = w1(1− ζw)(1− βζwγ1−σc)/(ζw(1 + ξw(φw − 1))) with ζw capturing real wage rigidity, ξw the

curvature of the Kimball labor market aggregator, and (φw − 1) the steady-state labor market

mark-up. Monetary policy sets the nominal interest rate according to the following Taylor rule:

rt = ρstrt−1 + (1− ρst)(φπstπt + φ∆y
st (yt − yt−1)) + vt (C.14)

where vt = ρvvt−1 + εvt with εvt ∼ N (0, σ2
v) is a monetary shock.

D Priors and posterior distribution mode

Table ?? shows the prior distribution as well as the estimated posterior mode and standard devia-

tion for all 40 parameters. As in Smets and Wouters (2007), we fix δ = 0.025, gy = 0.18, λw = 1.5,

ξw = 10, and ξp = 10. Moreover, r̄ = 100(β−1γσcπ∗−1), where π∗ = 1+π̄/100 and γ = 1+∆̄y/100.
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Table 5: Priors and posterior mode.

Prior Posterior Prior Posterior

5% 95% pdf mode 5% 95% pdf mode
parameter parameter

φπ1 1.5 2.7 N 2.067 µp 0.3 0.7 B 0.453
φπ2 0.8 1.2 N 1.100 µw 0.3 0.7 B 0.315

φ∆y
1 0.08 0.33 N 0.291 100(β−1 − 1) 0.05 0.8 G 0.803

φ∆y
2 0.11 0.57 N 0.329 ∆̄y 0.2 0.6 N 0.702
ρ1 0.3 0.7 B 0.678 π̄ 0.425 0.825 G 0.788
ρ2 0.3 0.7 B 0.768 l̄ -4 4 N -6.900
P (1, 2) 0.01 0.05 B 0.021 ρa 0.2 0.8 B 0.995
P (2, 1) 0.01 0.05 B 0.034 ρb 0.3 0.7 B 0.811
α 0.2 0.4 N 0.198 ρg 0.2 0.8 B 0.993
σc 0.75 2.25 N 1.030 ρi 0.3 0.7 B 0.981
φp 1 1.5 N 2.217 ρv 0.3 0.7 B 0.762
ρga 0.1 1.5 N 0.538 ρp 0.3 0.7 B 0.981
ϕ 1 7 N 14.916 ρw 0.3 0.7 B 0.805
λ 0.3 0.7 B 0.897 σa 0.01 2 IG 0.600
ζw 0.3 0.7 B 0.802 σb 0.01 2 IG 0.091
σl 0.5 3.5 N 4.933 σg 0.01 2 IG 0.643
ζp 0.3 0.7 B 0.612 σi 0.01 2 IG 0.403
ιw 0.3 0.7 B 0.786 σv 0.01 2 IG 0.295
ιp 0.3 0.7 B 0.705 σp 0.01 2 IG 0.067
ψ 0.3 0.7 B 0.940 σw 0.01 2 IG 0.226
Marginal likelihood (Laplace) = -1860.1

E Filtering and Smoothing Algorithms

In what follows, we describe the Kim and Nelson filter (Kim and Nelson (1999)) and smoothing

algorithms. Let the state-space representation of the model be given by

Yt = Ψ0 + Ψ1Xt (E.1)

We initiate the filtering process at regime s0 = 1, thus Pr(s0) = 1−p22
2−p11−p22 . Moreover, Xs0

0|0 = 0nx×1

and vec(Ks0
0|0) =

(
In2

x
− (As0 ⊗ As0)

)−1
(Bs0 ⊗ Bs0)vec(Σ). Then, for any t ≥ 1, we abide by the

following filtering algorithm:

1. Kalman filter

X
(st−1,st)
t|t−1 = AstX

st
t−1|t−1 (E.2)
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K
(st−1,st)
t|t−1 = AstK

st
t−1|t−1A

′
st +BstΣB

′
st (E.3)

g
(st−1,st)
t|t−1 = Yt −Ψ1X

(st−1,st)
t|t−1 −Ψ0 (E.4)

X
(st−1,st)
t|t = X

(st−1,st)
t|t +K

(st−1,st)
t|t−1 Ψ′1

(
Ψ1K

(st−1,st)
t|t−1 Ψ′1

)−1

g
(st−1,st)
t|t−1 (E.5)

K
(st−1,st)
t|t =

(
I −K(st−1,st)

t|t−1 Ψ′1

(
Ψ1K

(st−1,st)
t|t−1 Ψ′1

)−1

Ψ1

)
K

(st−1,st)
t|t−1 (E.6)

2. Hamilton filter

Let It denote the information set up until period t.

Pr(st, st−1|It−1) = Pr(st|st−1)Pr(st−1|It−1) (E.7)

f(Yt|It−1) =
∑
st

∑
st−1

f(Yt|st, st−1, It−1)Pr(st, st−1|It−1) (E.8)

where

f(Yt|st, st−1, It−1) = (2π)−
ny
2 | Ψ1K

(st−1,st)
t|t−1 Ψ′1 |−

1
2 exp

(
−1

2
g

(st−1,st)′

t|t−1

(
Ψ1K

(st−1,st)
t|t−1 Ψ′1

)−1

g
(st−1,st)
t|t−1

)
(E.9)

Pr(st, st−1|It) =
f(Yt|st, st−1, It−1)Pr(st, st−1|It−1)

f(Yt|It−1)
(E.10)

Pr(st|It) =
∑
st−1

Pr(st, st−1|It) (E.11)

3. Approximations

Xst
t|t =

∑
st−1

Pr(st, st−1|It)X(st−1,st)
t|t

Pr(st|It)
(E.12)

Kst
t|t =

∑
st−1

Pr(st, st−1|It)
(
K

(st−1,st)
t|t + (Xst

t|t −X
(st−1,st)
t|t )(Xst

t|t −X
(st−1,st)
t|t )′

)
Pr(st|It)

(E.13)

We then turn to the smoothing algorithm. We are interested particularly on making inferences

about st and Xt|T using all the information in the sample, where T denotes the final period of the

sample. Starting from t+ 1 = T , we have

Pr(st, st+1|IT ) =
Pr(st+1|IT )Pr(st|It)Pr(st+1|st)

Pr(st+1|It)
(E.14)

where Pr(st+1|It) = Pr(st+1|st)Pr(st|It). Finally, the smoothed regime probabilities are given by

Pr(st|IT ) =
∑
st+1

Pr(st, st+1|IT ) (E.15)
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Regarding the smoothing algorithm for Xt, we first compute

X
(st,st+1)
t|T = Xst

t|t + K̃
(st,st+1)
t (X

st+1

t+1|T −X
(st,st+1)
t+1|t ) (E.16)

where K̃
(st,st+1)
t = Kst

t|tA
′
st+1

(
K

(st,st+1)
t+1|t

)−1

. Further,

K
(st,st+1)
t|T = Kst

t|t + K̃
(st,st+1)
t (K

st+1

t+1|T −K
(st,st+1)
t+1|t )

(
K̃

(st,st+1)
t

)′
(E.17)

Xst
t|T =

∑
st+1

Pr(st, st=1|IT )X
(st,st+1)
t|T

Pr(st|IT )
(E.18)

Kst
t|T =

∑
st+1

Pr(st, st+1|IT )
(
K

(st,st+1)
t|T + (Xst

t|T −X
(st,st+1)
t|T )(Xst

t|T −X
(st,st+1)
t|T )′

)
Pr(st|IT )

(E.19)

Finally, the smoothed value of Xt is given by

Xt|T =
∑
st

Pr(st|IT )Xst
t|T (E.20)
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